用户名: 密码: 验证码:
H1和H3亚型流感病毒荧光RT-PCR及装甲RNA标准物质的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A型流感病毒是引起人和动物流感流行的主要病原,H1和H3亚型流感病毒是A型流感病毒中感染宿主范围最广、流行面积最大和危害最为严重的两种病毒。实时荧光RT-PCR是A型流感病毒检测和亚型鉴定的一种主要技术,相继被世界卫生组织(WHO)推荐用于2009年甲型H1N1流感和2013年人感染H7N9禽流感病毒的检测。在我国,实时荧光RT-PCR也被应用于H5、H7、H9等亚型以及A型流感病毒通用检测中,并制定了相应的国家标准。本研究立足于我国尚缺乏针对H1和H3亚型流感病毒荧光RT-PCR检测方法的国家标准,开展了相关研究。同时,采用噬菌体装甲RNA技术,研制了流感病毒的新型核酸标准物质,为流感病毒核酸检测技术的质量控制奠定了物质基础。
     1.H1和H3亚型流感病毒荧光RT-PCR检测方法的建立
     在对A型流感病毒属病毒株序列比对的基础上,分别针对H1和H3亚型HA基因设计引物和LNA或MGB修饰的TaqMan短探针。在对引物、探针进行筛选和反应条件优化的基础上,分别建立了H1和H3亚型流感病毒实时荧光RT-PCR检测方法。特异性试验表明,H1亚型流感病毒实时荧光RT-PCR可有效用于不同宿主来源和基因型毒株的检测,包括H1亚型人季节性流感病毒、古典H1N1猪流感病毒、类禽H1N1猪流感病毒和甲型H1N1流感病毒(2009);H3亚型流感病毒实时荧光RT-PCR可有效用于不同宿主来源毒株的检测,包括H3N8马流感病毒、H3亚型禽流感病毒和猪流感病毒;且两种方法与其他亚型流感病毒和动物病毒均无交叉反应。灵敏性试验结果表明,H1和H3亚型流感病毒实时荧光RT-PCR对体外转录cRNA标准品检测极限分别为46和69拷贝/反应;重复性试验中,2种方法对含不同病毒核酸拷贝数样品重复检测3次,其Ct值的变异系数均小于5%。将2种方法应用于612份临床送检组织和拭子样品的检测,并与国家标准规定的普通RT-PCR进行比对,结果符合率均在95%以上,且本研究建立的方法比普通RT-PCR方法灵敏度高10倍和100倍。
     2.H1和H3亚型流感病毒荧光RT-PCR检测方法国家标准的起草和验证
     在2种实时荧光RT-PCR技术建立的基础上,申请获得了国家标准立项,完成操作过程的标准化研究,起草了《动物流感检测H1亚型流感病毒荧光RT-PCR检测方法》和《动物流感检测H3亚型流感病毒荧光RT-PCR检测方法》2项国家标准草案,明确规定了样品采集与前处理程序、样品核酸提取程序、荧光RT-PCR反应体系配制与加样程序、反应参数设置、结果判定原则、引物序列和探针序列等技术内容。2项标准草案在国内13家实验室对合计1519份临床样品验证的基础上,征求13家科研单位的意见形成送审稿。
     3.内含A型流感病毒M基因装甲RNA病毒样颗粒的构建和表达
     为构建流感病毒新型装甲RNA核酸质控品,将MS2噬菌体成熟酶蛋白基因、衣壳蛋白基因、包装位点以及流感病毒M基因克隆于表达载体pET32a中,经原核表达后,利用Cellufine sulfate层析柱纯化,经RT-PCR和实时荧光RT-PCR鉴定后研制了包装有流感病毒M基因的装甲RNA(Armored-M, AR-M)病毒样颗粒。稳定性研究表明,AR-M可耐受RNase的降解,且在-20℃和4℃至少可保存3个月以上。AR-M用作流感病毒核酸检测质控样品,具有稳定、无生物传染性、可真实模拟病毒粒子结构、耐RNase等特性,将其用作动物A型流感病毒核酸检测质控品可实现对检测全过程的质量控制。
     4.A型流感病毒核酸检测装甲RNA标准物质的研制
     将包装有流感病毒M基因RNA的病毒样颗粒,经A型流感病毒通用荧光RT-PCR定值后,制备了流感病毒核酸检测的标准物质。均匀性试验表明病毒样颗粒分布均匀,随机抽取的10管标准物质变异系数小于5%;稳定性试验证实装甲RNA标准物质非常稳定,在室温、2-8℃、-20℃分别可保存14天、3个月和6个月以上;经协作标定及不确定度分析,表明该标准物质的不确定度为0.34×106Copies/μL,含量定值为(3.54±0.34)x106Copies/μL,可实现待检样品的定量分析。流感病毒装甲RNA标准物质的推广应用,将为流感病毒核酸检测工作提供统一的、具有可比性的标准物质。
     综上所述,本研究建立了H1和H3亚型流感病毒实时荧光RT-PCR检测方法,进而形成了相应的国家标准送审稿。同时,利用噬菌体病毒包装技术,构建了内含流感病毒核酸的装甲RNA标准物质。本研究制定的国家标准和研制的标准物质,将为流感病毒核酸检测技术的规范化使用提供重要的指导和保障。
Influenza A virus (IAV) is an important causative agent responsible for devastating influenza occurring in both human and animal populations. The subtypes H1and H3are the most prevalent subtypes of IAV, infecting a wide range of host species. Real-time RT-PCR (rRT-PCR) has been widely used in IAV detection and subtyping worldwide, and has been recommended by World Health Organization (WHO) for detection of2009H1N1and2013H7N9influenza viruses. In China, universal rRT-PCR assay has successfully been implemented for molecular subtyping of H5, H7, and H9of IAV, serving as a national standard (GB). Nevertheless, so far there has no rRT-PCR assay available as GB for subtyping of H1and H3IAVs in China. In this study, we sought to develop rRT-PCR assays for detection of H1and H3IAVs. Additionally, we intended to prepare recombinant bacteriophage MS2particles containing armored RNA, which were used as a novel material standard for quality control in testing of IAV nucleic acid.
     1. Development of two rRT-PCR assays for detection of H1-and H3-subtype IAVs
     Primers and TaqMan probes (LNA or MGB) were designed, respectively, based on the nucleotide sequences of HA gene of H1-and H3-subtype IAVs. rRT-PCR reaction systems have been successfully optimized. The specificities of two rRT-PCR assays were evaluated in this study. Our results indicated that all HI subtype IAVs, including human seasonal H1IAV, classical swine H1N1IAV, avian-like swine H1N1IAV and pandemic A (HIN1)2009virus could be accurately detected by the rRT-PCR assay for H1IAV we developed. As for rRT-PCR for H3IAV, all H3IAVs originated from different species could be detected, including H3N8equine IAVs, H3avian IAVs and swine IAVs. All other viruses as well as all other subtype IAVs, excepting H1and H3, were detected negative employing these two methods. The sensitivity of the two assays were evaluated and the results showed that46copies of H1cRNA and69copies of H3cRNA in each reaction could be detected respectively, indicating high sensitivity of the approach. Reproducibility test showed that coefficient variability of both assays was lower than5%. To evaluate the applicability of the methods,612clinical specimens were tested using the two assays, and the results were compared with conventional RT-PCR from GB/T27521-2011. The consistency is still greater than95%between rRT-PCR and RT-PCR, and rRT-PCR is10-fold and100-fold more sensitive than conventional RT-PCR. Our results suggested that rRT-PCR were suitable for detection of IAVs in practice.
     2. Validation of the rRT-PCR assays as GB for detection of animal IAV H1and H3subtypes
     Based on the validations of the two assays as described above, two drafts, titled "Real-time RT-PCR Assay for the Detection of H1Subtype Influenza Virus" and "Real-time RT-PCR Assay for the Detection of H3Subtype Influenza Virus" have been completed for standardization of H1and H3AIV detection. Detailed and specific information regarding these two assays were indicated in the drafts, including sampling, sample pretreatments, extraction of nucleic acids, formulating of reaction system, sample loading, setting of reaction parameters, result analysis, sequences of primers and probes, etc. A total of1519clinical samples were analyzed in13independent domestic laboratories using the two assays to evaluate these two GB methods. In addition, we consulted a number of experts from13scientific institutions before we submitted the drafts to the official authorities.
     3. Expression of virus like particles (VLPs) of bacteriophage MS2containing cRNA of influenza virus M (Armored RNA)
     To develop a novel reference material for detection of IAV RNA, the cDNA fragment of maturation protein (A-protein), coat protein, packaging sites of MS2, and the matrix (M) gene of IAV was cloned into vector pET32a to prokaryotically express fusion proteins. The armored RNA (AR-M), encapsidated with M gene in the presence of bacteriophage coat proteins, was purified by cellufine sulfate mini-column and subsequently identified by RT-PCR and rRT-PCR. The stability test indicated that AR-M particles were resistant to RNase degradation and could be reproducibly used in rRT-PCR for90days when stored at-20℃or4℃. AR-M resembled authentic IAV, noninfectious, stable, RNase-resistant. Accordingly, AR-M was an idea reference control for testing of IAV nucleic acids and monitoring the entire detection process.
     4. Armored RNA served as standard material for nucleic acid testing of IAV
     Based on the quantitation of AR-M using rRT-PCR for IAV, a new RNA standard for influenza virus was prepared using AR-M. The homogeneity test indicates that the prepared recombinant RNA materials were homogenously distributed, confirmed by a vial-viral variation which was lower than5%when10randomly selected vials were examined. Our data demonstrated that AR-M particles were stable, evidenced by the results that AR-M could be stored for at least14days at room temperature,3months at2-8℃or6months at-20℃without any degradation. The quantitation standard of AR-M was (3.54±0.34)×106copies/μL and the averaged uncertainty value was0.34×106copies/μL, which were verified by our collaborative laboratories. This suggested that the AR-M particles could be used for quantitative assay of positive samples.
     In summary, in the present study two rRT-PCR assays have successfully been developed for detection of H1or H3subtype IAVs. Consequently, the corresponding GB drafts have been completed and submitted. Additionally, a phage packaging systems, containing armored RNA and genome of IAV was established. The GB drafts and nucleic acid standards obtained in this study would enhance capability of quality control for nucleic-acid testing of IAV.
引文
[1]Shoham D. Influenza type A virus:an outstandingly protean pathogen and a potent modular weapon. Crit Rev Microbiol,2013,39(2):123-38.
    [2]Fouchier RA, Osterhaus AD, Brown IH. Animal influenza virus surveillance Vaccine,2003,21(16): 1754-7.
    [3]Lee CW, Suarez DL. Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. J Virol Methods,2004,119:151-8.
    [4]Poddar S K. Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RT-PCR) and agarose gel electrophoresis. J Virol Methods,2002,99:63-70.
    [5]OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Avian influenza.2009,2.3.4 www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.04_AI.pdf.
    [6]WHO. Real-time RT-PCR Protocol for the Detection of Avian Influenza A(H7N9) Virus.2013, http://www.who.int/influenza/gisrs_laboratory/cnic_realtime_rt_pcr_protocol_a_h7n9.pdf.
    [7]WHO. CDC protocol of realtime RTPCR for swine influenza A(H1N1).2009, http://www.who.int/csr/resources/publications/swineflu/CDCrealtimeRTPCRprotocol_20090428.p df
    [8]常宏伟,李开春,范玉珍,等.流感病毒RT-PCR核酸检测及流行病学特点.中华疾病控制杂志,2010,14(8):701-704.
    [9]李金明.RNA病毒扩增检测的质控品和标准品研究进展.中华检验医学杂志,2004,27(12):873-874.
    [10]Fronhoffs S, Totzke G, Stier S, et al. A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Molecular and Cellular Probes,2002,16:99-110.
    [11]Shan S, Ko LS, Collins RA, et al. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Biochem Biophys Res Commun,2003,302(2):377-83.
    [12]Claude MF, Mayo MA, Maniloff J, et al. Virus Taxonomy. Ⅷth Report of the International Committee on Taxonomy of Viruses.2005.
    [13]Potter CW. A history of influenza. J Appl Microbio,2001,191(4):572-9.
    [14]甘孟侯.禽流感.第二版.北京:中国农业出版社.2002.
    [15]Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats. ProcNatl Acad Sci USA,2012,109(11):4269-74
    [16]Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog,2013, 9(10):e1003657.
    [17]LakadamyaliM, RustMJ, BabcockHP, ZhuangX. Visualizing infection of individual influenza viruses. Proc. Natl. Acad. Sci. USA,2003,100:9280-9285.
    [18]Bouvier NM. The biology of influenza viruses. Vaccine,2008,26(Suppl 4):49-53.
    [19]Fouchier RAM, Besterbroer TM, Herfst S, et al. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol,2000, 38:4096-101.
    [20]Nattakarn Thippamom, Donreuthai Sreta, Pravina Kitikoon, et al. Genetic variations of nucleoprotein gene of influenza A viruses isolated from swine in Thailand.Virology Journal,2010, 7:1-9
    [21]Chen J, Deng YM. Influenza virus antigenic variation, host antibody production and new approach to control epidemics. Virol J,2009,13;6:30.
    [22]Ito, T. Interspecies transmission and receptor recognition of influenza A viruses. Microbiol Immunol,2000,44(6):423-30.
    [23]兰德增,时福礼,畅青霞,等.高致病性禽流感.生命科学,2005,17(1):60-3.
    [24]李海燕,于康震,华英佐.猪流感病毒的种间传播及分子进化.中国兽医学报,2004,24(3):304-309.
    [25]徐百万,田克恭.猪流感.中国农业出版社,2009,166-174.
    [26]Shope RE. An Intermediate Host for the Swine Influenza Virus. Science,1939,89(2315):441-442.
    [27]赵文成,许娇娜.我国马流感的研究现状.畜牧兽医科技信息,2008,6:5-7.
    [28]Sovinova O, Tumova B, Pouska F, et al. Isolation of a virus causing respiratory disease in horses. Acta Virol,1958,2:51-61.
    [29]Waddell GH, Teigland MB, Sigel MM. A new influenza virus associated with equine respiratory disease. J Am Vet Med Assoc,1963,143:587-590.
    [30]Hinshaw VS, Webster RG, Bean WJ, et al. The ecology of influenza viruses in ducks and analysis of influenza viruses with monoclonal antibodies. Comp Immunol Microbiol Infect Dis,1980, 3(1-2):155-64.
    [31]Hinshaw VS, Webster RG, Easterday BC, et al. Replication of avian influenza A viruses in mammals. Infect Immun,1981,34(2):354-61.
    [32]Nestorowicz A, Kawaoka Y, Bean WJ, et al. Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza viruses:role of passerine birds in maintenance or transmission? Virology,1987,160(2):411-8.
    [33]Webster RG, Hinshaw VS, Bean WJ, et al. Characterization of an influenza A virus from seals. Virology,1981,113(2):712-24.
    [34]Leneva IA, Goloubeva O, Fenton RJ, et al. Efficacy of zanamivir against avian influenza A viruses that possess genes encoding H5N1 internal proteins and are pathogenic in mammals. Antimicrob Agents Chemother,2001,45(4):1216-24.
    [35]Gibbs EP, Anderson TC. Equine and canine influenza:a review of current events. Anim Health Res Rev,2010,11(1):43-51.
    [36]Harder TC, Vahlenkamp TW. Influenza virus infections in dogs and cats. Vet Immunol Immunopathol,2010,134(1-2):54-60.
    [37]MacDonald MR, Veniamin SM, Guo X, et al. Genomics of antiviral defenses in the duck, a natural host of influenza and hepatitis B viruses. Cytogenet Genome Res,2007,117(1-4):195-206.
    [38]Kovacova A, Ruttkay-Nedecky G, Haverlik IK, Janecek S. Sequence similarities and evolutionary relationships of influenza virus A hemagglutinins. Virus Genes,2002,24(1):57-63.
    [39]Braasch DA, Corey DR. Locked nucleic acid (LNA):fine-tuning the recognition of DNA and RNA.Chem Biol,2001,8(1):1-7.
    [40]Kutyavin IV, Afonina IA, Mills A, et al.3'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res,2000,28(2):655-61.
    [41]Letertre C, Perelle S, Dilasser F, et al. Evaluation of the performance of LNA and MGB probes in 5'-nuclease PCR assays. Mol Cell Probes,2003,17(6):307-11.
    [42]Moore C, Telles JN, Corden S, et al. Development and validation of a commercial real-time NASBA assay for the rapid confirmation of influenza A H5N1 virus in clinical samples. J Virol Methods,2010,170(1-2):173-6.
    [43]Collins RA, Ko LS, Fung KY, et al. Rapid and sensitive detection of avian influenza virus subtype H7 using NASBA. Biochem Biophys Res Commun,2003,300(2):507-15.
    [44]Mahony J, Chong S, Bulir D, et al. Multiplex loop-mediated isothermal amplification (M-LAMP) assay for the detection of influenza A/H1, A/H3 and influenza B can provide a specimen-to-result diagnosis in 40 min with single genome copy sensitivity. J Clin Virol,2013,58(1):127-31.
    [45]Bao H, Wang X, Zhao Y, et al. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7. J Virol Methods, 2012,179(1):33-7.
    [46]Yamanaka K, Saito M, Kondoh K, et al. Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor.Analyst,2011,136(10):2064-8.
    [47]Sun Y, Dhumpa R, Bang DD, et al. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip,2011,11(8):1457-63.
    [48]杨忠苹,王秀荣,石霖,等.区分禽流感病毒亚型诊断基因芯片的构建.中国动物检疫,2008,25(10):29-32.
    [49]OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Equine influenza.2.5.7. 2012. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.05.07_EQ_INF.pdf
    [50]OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Swine influenza.2.8.8. 2012.http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.08.08_SWINE_INFLUEN ZA.pdf
    [51]WHO. WHO Manual on Animal Influenza Diagnosis and Surveillance.2002. http://www.who.int/csr/resources/publications/influenza/en/whocdscsrncs20025rev.pdf
    [52]Baleriola C, Johal H, Jacka B, et al. Stability of hepatitis C virus, HIV, and hepatitis B virus nucleic acids in plasma samples after long-term storage at-20℃ and-70℃. J Clin Microbiol,2011, 49(9):3163-7.
    [53]Halfon P, Khiri H, Gerolami V, et al. Impact of various handling and storage conditions on quantitative detection of hepatitis C virus RNA. J Hepatol,1996,25(3):307-11.
    [54]Aguilar-Setien A, Aguila-Tecuatl H, Tesoro-Cruz E, et al. Preservation of rabies virus RNA from brain tissue using glycerine. Trans R Soc Trop Med Hyg,2003,97(5):547-9.
    [55]刘洪波,刘晓雷,罗小铭.核酸提取方法进展.现代生物医学进展,2011,11(16):3187-3190.
    [56]Kelly A, Boesenberg-Smith, Mohammad M, et al. Assessment of DNA Yield and Purity:an Overlooked Detail of PCR Troubleshooting. Clinical Microbiology Newsletter,2012, 34(1):20121-6.
    [57]Roberta M, Madej Jack Davis, Marcia J Holden, et al. International Standards and Reference Materials for Quantitative Molecular Infectious Disease Testing. Journal of Molecular Diagnostics, 2010,12(2):133-143.
    [58]Hietala SK, Cmssley BM. Armored RNA as Virus Surrogate in a Real-Time ReverseTranscriptase PCR Assay Proficiency Panel. J Clin Microbiol,2006,44(1):67-70.
    [59]李兴.应用PCR检测丙型肝炎病毒RNA的影响因素.国外医学-临床生物化学与检验学分册,1996,1:1-3.
    [60]Deng MY, Wang H, Gordon B, et al. Comparison of six RNA extraction methods for the detection of classical swine fever virus by real-time and conventional reverse transcription-PCR. J Vet Diagn Invest,2005,17:574-578.
    [61]Barragan Gonzalez E, Lopez Guerrero JA, Bolufer-GilabertP, et al. The type of reverse transcriptase affects the sensitivity of some reverse transcription PCR methods. ClinChimActa, 1997,260(1):73-83.
    [62]Blain SW, Gofr SP. Differential effects of Mooney murine leukemia virus reverse transcriptase mutations on RNase H activity in Mg2+ and Mn2+. J BiolChem,1996,271(3):1448-1454.
    [63]李金明.我国临床分子诊断质量管理和标准化的现状、问题及对策.临床检验杂志,2012,30(10):742-745.
    [64]荣玲玲,赫翠珍,赵敬勇,等.PCR结果判定中若干现象的解释及对策.临床检验杂志,1996,14(6):305.
    [65]Marcelo D, Golemba Viviana Parreno, Leandro R Jones. Simple procedures to obtain exogenous internal controls for use in RT-PCR detection of bovine pestiviruses. Molecular and Cellular Probes, 2008,22:212-214.
    [66]邓俊花,林祥梅,吴绍强.假病毒在RNA病毒检测中的应用研究进展.中国动物检疫,2009,26(11):67-69.
    [67]Pickett GG, Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Research,1993,21(19):4621-4626.
    [68]Pasloske BL, Walkerpeach C, Obermoeller RD, et al. Armored RNA Technology for Production of Ribonuclease-Resistant Viral RNA Controls and Standards. Journal of clinical microbiology,1998, 36(12):3590-3594.
    [69]Saldanha J, Lelie N, Heath A. Establishment of the First International Standard for Nucleic Acid Amp lification Technology (NAT) Assays for HCV RNA.VoxSanguinis,1999,76:149-158.
    [70]Dhanasekaran S, Doherty TM, Kenneth J, et al. Comparison of different standardsfor real-timePCR-based absolute quantification. Journal of Immunological Methods,2010,354:34-39.
    [71]张括,魏玉香,李金明.RNA噬菌体病毒样颗粒包装机制及其应用研究进展.微生物与感染,2008,3(2):111-114.
    [72]Zhan S, Li J, Xu R, et al. Armored Long RNA Controls or Standards for Branched DNA Assay for Detection of Human Immunodeficiency Virus. Journal of clinical microbiology,2009,8: 2571-2576.
    [73]Fryer JF, Minor PD.Standardisation of nucleic acid amplification assays used in clinical diagnostics:A report of the first meeting of the SoGAT Clinical Diagnostics WorkingGroup. Journal of Clinical Virology,2009,44 (2):103-105.
    [74]高风华,郭中敏,陆家海.病毒样颗粒技术的研究进展.国际病毒学杂志,2012,19(1):39-42.
    [75]Markus S, Jorg B. Internal Control DNA for PCR Assays Introduced into Lambda Phage Particles Exhibits Nuclease Resistance.Clinical Chemistry,2004,50(11):2163-2166.
    [76]Antje G, Andreas S, Armin B, et al. Nuclease-Resistant Single-Stranded DNA Controls for Nucleic Acid Amplification Assays. Journal of clinical microbiology,2007,45(8):2570-2574.
    [77]Meng S, Zhan S, Li J. Nuclease-resistant double-stranded DNA controls or standards for hepatitis B virus nucleic acid amplification assays. Virology Journal,2009,6:226.
    [78]Dubois. Ribonuclease resistant virual RNA standards. United States Patent,5677124.
    [79]李金明,宋如俊,王露楠,等.耐核糖核酸酶病毒样颗粒的构建和表达.中华检验医学杂志,2003,26(2):86-88.
    [80]贾盘兴.噬菌体分子生物学-基本知识和技能.北京:科学出版社,2001.
    [81]Peabody DS. The RNA binding site of bacteriophage MS2 coat protein. The EMBO Journal,1993, 12(2):595-600.
    [82]Peabody DS. Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2.Mol Gen Genet,1997,254:358-364.
    [83]窦敏,张国广,于广福,等.含口蹄疫病毒IRES RNA病毒样颗粒表达载体的构建.中国生物工程杂志,2007,27(9):31-35.
    [84]Pasloske BL, DuBois DB, Brown D, et al. Ribonuclease resistant RNA preparation and utilization. US Patent:6214982,2001.
    [85]Walker PCR, Winkler M, DuBois DB, et al. Ribonuclease-resistant RNA Controls (Armored RNA) for Reverse Transcription-PCR, Branched DNA, and Genotyping Assays for Hepatitis C Virus. Clinical Chemistry,1999,45(12):2079-2085.
    [86]Donia D, Divizia M, Pana A, et al. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.Journal of Virological Methods,2005,126:157-163.
    [87]Zhao L, Ma Y, Zhao S, et al. Armored RNA as positive control and standard for quantitative reverse transcription-polymerase chain reaction assay for rubella virus. Arch Virol,2007,152: 219-224.
    [88]Villanova, Daniela G, Miguel A. Strategic Approach To Produce Low-Cost, Efficient, and Stable Competitive Internal Controls for Detection of RNA Viruses by Use of Reverse Transcription-PCR_GabrielaV. Journal of clinical microbiology,2007,12:3555-3563.
    [89]Song L,Sun S, Li B, et al. External Quality Assessment for Enterovirus 71 and Coxsackievirus A16 Detection by Reverse Transcription-PCR Using ArmoredRNA as a Virus Surrogate. Journal of clinical microbiology,2011,49(10):3591-3595.
    [90]李振勇,景建洲,刘明霞,等.SARS CoV内对照RNA病毒样颗粒的构建和表达.离子交换与吸附,2006,22(1):68-76.
    [91]Beld M, Minnaar R, Weel J, et al. Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control.J ClinMicrobiol, 2004,42(7):3059-64.
    [92]Yu XF, Pan JC, Ye R, et al. Preparation of armored RNA as a control formultiplex real--time reverse transcription PCR detection of influenza virus and severe acute respiratory syndrome coronavirus. J ClinMicrobiol,2008,46(3):837-841.
    [93]申子瑜,李金明.临床基因扩增检验技术.北京:人民卫生出版社,2002,136-160.
    [94]Yassine HM1, Lee CW, SaifYM. Interspecies transmission of influenza a viruses between Swine and poultry. Curr Top Microbiol Immunol,2013,370:227-40.
    [95]Centers for Disease Control and Prevention, USA. Overview of Influenza Surveillance in the United States.2013. http://www.cdc.gov/flu/pdf/weekly/overview.pdf.
    [96]Trevennec K, Cowling BJ, Peyre M, et al. Swine influenza surveillance in East and Southeast Asia: a systematic review. Anim Health Res Rev,2011,12(2):213-23.
    [97]Hoffmann B, Beer M, Reid SM, et al. A review of RT-PCR technologies used in veterinary virology and disease control:sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol,2009,139(1-2):1-23.
    [98]Wang Q, Wang X, Zhang J, Song G. LNA real-time PCR probe quantification of hepatitis B virus DNA. Exp Ther Med,2012,3(3):503-508.
    [99]Chen NH, Chen XZ, Hu DM, et al. Rapid differential detection of classical and highly pathogenic North American Porcine Reproductive and Respiratory Syndrome virus in China by a duplex real-time RT-PCR. J Virol Methods,2009,161(2):192-8.
    [100]张翠,刘亚民,张忠玲,等.Taq DNA聚合酶及镁离子浓度对PCR扩增产率的影响.国外医学(临床生物化学与检验学分册),2003,24(4):236.
    [101]Spackman E, Senne DA, Myers TJ, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes.J Clin Microbiol,2002,40(9):3256-60.
    [102]Wang C, Yu E, Xu B, et al. Epidemiological and clinical characteristics of the outbreak of 2009 pandemic influenza A (H1N1) at a middle school in Luoyang, China. Public Health,2012, 126(4):289-94.
    [103]Belak S, Thoren P, LeBlanc N, et al. Advances in viral disease diagnostic and molecular epidemiological technologies. Expert Rev MolDiagn,2009,9(4):367-81.
    [104]Huang Q, Cheng Y, Guo Q, et al. Preparation of a chimeric armored RNA as a versatile calibrator for multiple virus assays. ClinChem,2006,52(7):1446-1448.
    [105]Cheng Y, Niu J, Zhang Y, et al. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus. J ClinMicrobiol,2006,44(10):3557-3561.
    [106]Pasloske, BL, DuBois DB, Brown D, et al. Methods of quantifying viral load in an animal with a ribonuclease resistant RNA preparation. US patent 6399307,2002.
    [107]Matthews, Chung M, Matyas RJ. Persistent DNA contamination in competitive RT--PCR using cRNAintemal standards:identity, quantity, andcontrol. Biotechniques,2002, 32(6):1412-1414,1416-1417.
    [108]Labella AM, Merel SE. Influenza. Med Clin North Am,2013,97(4):621-45.
    [109]Ma W, Oberst R, Li X, Clouser D, et al. Rapid detection of the pandemic 2009 H1N1 virus M gene by real-time and gel-based RT-PCR assays.Influenza Other Respi Viruses,2010, 4(6):397-403.
    [110]Barbas MG, Gallego SV, Castro GM, et al. Performance of a commercial assay for the diagnosis of influenza A (H1N1) infection in comparison to the Centers for Disease Control and Prevention protocol of real-time RT-PCR. Rev Argent Microbiol,2012,44(1):26-9.
    [111]Francoise P, Stephane Q, Stephane G, et al. Validation of commercial real-time RT-PCR kits for detection of influenza Aviruses in porcine samples and differentiation of pandemic (H1N1) 2009virus in pigs.Journal of Virological Methods,2011,171:241-247.
    [112]高志强,张鹤晓,乔彩霞,等.2009大流行H1N1流感病毒与经典H1N1猪流感病毒核酸扩增检测标准物质研究.计量学报,2010,31(5A):4-8.
    [113]Di TL, Bedini B, Donatelli I, et al. A sensitive one-step real-time PCR for detection of avian influenzaviruses using a MGB probe and an internal positive control. BMC Infectious Diseases, 2006,6:87:1-8.
    [114]高志强,张鹤晓,乔彩霞,等.流感病毒H1/H3亚型通用双重短探针实时RT-PCR检测技术与标准质控品研究.中国兽医杂志,2012,48(9):3-7.
    [115]Centers for Disease Control and Prevention (CDC).New laboratory assay for diagnostic testing of avian influenza A/H5 (Asian Lineage).MMWR Morb Mortal Wkly Rep,2006, 55(5):127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700