用户名: 密码: 验证码:
基于黄蜂群算法的群机器人区域覆盖问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群机器人系统是由数量众多,功能和结构相对简单的自主移动机器人所组成的系统,可通过有限的感知和交互,协作完成单个机器人所不能胜任的任务,具有鲁棒性、灵活性和规模可伸缩等特点。其协调控制策略受启发于生物群体的自组织行为,具有规则简单,分散控制,适应复杂环境等优点。本文围绕区域覆盖问题,受启发于黄蜂群响应阈值模型,进行群机器人控制策略及仿真研究。所进行的工作和取得的研究成果如下:
     (1)在综述机器人区域覆盖的研究现状的基础上,形式化描述了区域覆盖问题。建立固定响应阈值模型与区域覆盖问题之间的映射关系,提出了基于固定响应阈值模型的黄蜂群区域覆盖算法。通过将环境建模为无障碍的封闭栅格环境,机器人根据单元格的刺激量使用响应函数决定移动方向。在自由环境下的仿真实验,表明了该法的可行性。
     (2)对黄蜂群区域覆盖算法进行微观和宏观的数学分析,从而更有效地指导参数的选择。采用概率平均方法分析黄蜂群区域覆盖算法的覆盖率和重复覆盖次数。通过考察响应阈值、刺激量、刺激量修改参数等参数对覆盖性能的影响,结果表明,机器人群体的平均移动概率理论分析可在一定条件下适用。为该算法的研究和应用提供可靠的数学基础。
     (3)采用离散随机过程的分析方法对基于响应阈值模型的区域覆盖算法的覆盖性能进行分析和计算。结果表明该分析方法在一定条件下,不仅灵活而且有效。这种离散随机过程方法的优点是可以分析各参数的作用以及指导各参数的选取。
     (4)提出障碍环境下的基于固定响应阈值模型的黄蜂群区域覆盖移动策略,具体说明了机器人的建模,移动决策和避障等。在仿真实验中设置不同形状的障碍,分析和验证黄蜂群区域覆盖算法在障碍环境下的覆盖效率。说明在不同的障碍环境下算法参数对覆盖性能的影响。仿真实验的结果表明该移动策略的有效性。
     (5)在分析固定响应阈值模型的区域覆盖算法所存在的不足的基础上,提出改进的黄蜂群区域覆盖算法。改进的黄蜂群区域覆盖算法受启发于自强化模型,机器人在覆盖过程中根据外界信息和自身状态自主调节响应阈值,从而更灵活地响应外界任务,提高算法的性能,仿真结果表明,该方法可有效提高覆盖性能。
     (6)针对群机器人多目标搜索的任务分配问题,提出基于黄蜂群响应阈值模型的任务分配策略。群机器人的多目标搜索问题可分解为全局搜索和局部搜索,以及机器人的目标选取问题。针对目标选取问题,将机器人的状态分为漫游、搜索、等待、决策等状态,源于黄蜂群劳动分工的启发,提出基于黄蜂群的响应阈值模型的任务分配策略,用于目标选取。在仿真实验中,在局部搜索阶段采用扩展微粒群算法,在全局搜索阶段采用随机搜索,结合基于响应阈值的任务分配策略,实现了群机器人的多目标搜索,仿真结果表明了所提出的的任务分配方法能够有效地适用于群机器人多目标搜索。
Swarm robotic system is composed of numerous of autonomous mobile robots, which functions and structure are relatively simple. Robots with limited sense and interaction can fulfill tasks cooperatively that a single robot can not be undertaken. Such a system has the characters of robust, flexibility and scalability, etc. The coordination strategy of the system, which is inspired of the self-organization behavior of biological society, has advantages of (a) simple rule,(b) decentralized control,(c) adapt to the complex environment, etc. In this thesis, it is mainly focus on the problem of terrain coverage on swarm robotics, prompted the control strategy of swarm robot and simulation research, which is inspired of response threshold model of wasp swarm. The detailed research work and results are as follows:
     (1) Formal description of terrain coverage problem is presented on the basis of the review on the state-of-art on terrain coverage on robotics. Due to the similarities and differences between wasp and robot, terrain coverarge can be mapped to response threshold model based on the common working mechanism. After the problem description of terrain coverage, the terrain coverage algorithm based on fixed response threshold model on swarm robotics is depicted. In this "algorithm, terrain is modeled as free closed grid environment, and robots decide their moving directions in term of stimuli of its neighbor cells.
     (2) In order to guide the selection of parameters in terrain coverage algorithm based on fixed response threshold, the performance of the algorithm should be anlysized. The performances of algorithm are evaluated by microscopic anlysis and probabilistic macroscopic anlysis. The macroscopic anlysis considers the effects of parameters, such as response threshold, stilumus, modified stimulus parameter etc. Verified by simulation results, the anlytic result is reliable under some conditions. This method provides us with a mathematical foundation of the research and application of the terrain coverage algorithm.
     (3) Another analytic method to evaluate the performance of this algorithm is stochastic discrete process. We set up this model to analyze the coverage performance of algorithm, such as mathematical expectation of average coverage rate. Results show that this analysis method is flexible and effective under certain conditions. This method based on probobalitic discrete process has the advantage of analyzing the effect of various parameters and guiding the selection of the parameters.
     (4) Obstacle avoidance is an important issue in automatic robotics. The moving strategy of swarm robots based on fixed response threshold under obstacle environment is put forward. In order to make the research more detailed, the modeling of the robot, and obstacle avoidance is presented. The coverage performance of the algorithm is tested through various shapes of obstacle in simulation experiments. Simulation results show the method is effective and feasible.
     (5) On the basis of the analysis of the advantage and disadvantage of terrain coverage algorithm based on fixed response threshold model, we introduces self-reinforcement model of response threshold and puts forward terrain coverage algorithm based on self-adjustable response threshold. The moving directions of robots are decided by the external stimuli and response threshold, which will be adjusted by robots based on the previous experience. The coverage performances of the algorithm are analyzed and tested in the simulation experiments which are conducted in free closed environments and obstacle environments. Final results show that this method can improve the coverage performance effectively.
     (6) Task allocation of multi-target search in swarm robotics is how to coordinate the tasks of searching targets among robots. The formal description of the problem of multi-target search and task allocation are presented^Inspired of division labor of wasp swarm, the strategy of task allocation of multi-target search based on the response threshold model in swarm robotics is prompted. The states of robots are divided into wander, decision, waiting, marking target and etc. Robots adopts random search in global search phase and particle swarm algorithm in local search in order to illustrate the effectiveness of the strategy. Simulation results show that the proposed task allocation method can be effectively applied to multi-target search.
引文
[1]Low K H, Leow W K, Ang Jr M H. Reactive, Distributed Layered Architecture for Resource-bounded Multi-robot Cooperation:Application to Mobile Sensor Network Coverage. Proceedings of the IEEE International Conference on Robotics and Automation(ICRA), New Orleans:IEEE Press.2004,3747-3752
    [2]郝宗波,洪炳镕.多简单机器人协作覆盖规划研究.机器人,2007,29(1):18-22
    [3]Murphy R. Human-robot Interaction in Rescue Robotics. IEEE Transactions on Systems, Man and Cybernetics. Part C, Appl. Rev.,2004,34(2):138-153
    [4]Huntsberger L, Pirjanian E, Trebi-Ollennu A, Nayar Das H, Aghazarian H, Ganino AJ, GarrettM, Joshi S S, Schenker P S. CAMPOUT:a Control Architecture for Tightly Coupled Coordination of Multi-robot Systems for Planetary Surface Exploration. IEEE Transactions on Systems, Man and Cybernetics, Part A,2003, 33(5):550-559
    [5]Weisbin C R, Rodriguez G. NASA Robotics Research for Planetary Surface Exploration. IEEE Transactions on Robotics and Automation.2000,7(4):25-34
    [6]Fiorini P and Prassler E. Cleaning and House Hold Robots:a Technology Survey. Autonomous Robots.2000,9(3),227-235
    [7]Gelenbe E and Cao Y. Autonomous Search for Mines, European Journal of Operational Research,1999,319-333
    [8]ThrunS, Hahnell D, Ferguson D-Montemerlo M, Triebel R, Burgard W, Baker C, Omohundro Z, Thayer S, Whittaker W. A System for Volumetric Robotic Mapping of Abandoned Mines. Proceedings of the IEEE International Conference On Robotics and Automation(ICRA).2003,4270-4275
    [9]Sariel S and Akin H L. A Novel Search Strategy for Autonomous Search and Rescue Robots. Lecture Notes in Computer Science,2005,3276,459-466
    [10]Kantor G, Singh S, Peterson R, et al. Distributed Search and Rescue with Robot and Sensor Teams. Springer Tracts in Advanced Robotics,2006,24(2):529-538
    [11]Hayes A T. Self-Organized Robotic System Design and Autonomous Odor Localization. California,USA:California Institute of Technology,2002
    [12]Cui X, Hardin T, Ragade R K, et al. A Swarm Approach for Emission Sources Localization. The 16th IEEE International Conference on Tools with Artificial Intelligence,2004, Boca Raton,Florida,USA,424-430
    [13]谢丽萍,曾建潮.面向群机器人目标搜索的拟态物理学方法.模式识别与人工智能,2009,22(4):647-652
    [14]宋勇.机器人群体行为数学建模与定量分析方法研究,山东大学,2012
    [15]Bayindir L, Sahin E. A Review of Studies in Swarm Robotics. Turkish Journal of Electrical Engineering and Computer Sciences,2007,15(2):115-147
    [16]Sahin E, Winfield A. Special Issue on Swarm Robotics. Swarm Intelligence,2008, 2,69-72
    [17]Beni G. From Swarm Intelligence to Swarm Robotics, Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA, Lecture Notes in Computer Science Springer-Verlag, Berlin,2004,3342:1-9
    [18]薛颂东,曾建潮.群机器人研究综述.模式识别与人工智能,2008,21(2):177-185
    [19]蓝艇,刘士荣.受生物群体智能启发的多机器人系统研究.机器人,2007,29(3):298-304
    [20]薛颂东.面向目标搜索的群机器人协调控制及仿真研究.兰州理工大学,2009
    [21]Sahin E. Swarm Robotics:from Sources of Inspiration to Domains of Application. Swarm Robotics Workshop:State-of-the Art Survey, Berlin, Germany, Lecture Notes in Computer Science,2005,3342,10-20
    [22]Navarro I, Matia F. An Introduction to Swarm Robotics. Robotics,2012,2013: 1-8
    [23]Balch T. Communication, Diversity and Learning:Cornerstones of Swarm Behavior. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA,3342:21-30
    [24]Balch T. Hierarchic Social Entropy:an Information Theoretic Measure of Robot Group Diversity. Autonomous Robots,2000 (8):209-238
    [25]Sugawara K, Sano M. Cooperative Acceleration of Task Performance:Foraging Behavior of Interacting Multi-robots System. Physical D,1997,100(3):343-354
    [26]Rothermich J, Ecemis M I, and Gaudiano P. Distributed Localization and Mapping with a Robotic Swarm. Swarm Robotics,2005,3342:58-69
    [27]Matari M. Learning in Behavior-Based, Multi-Robot Systems:Policies, Models and Other Agents. Cognitive Systems Research,2001,2,81-93
    [28]Martinoli A. Swarm Intelligence in Autonomous Collective Robotics:From Tools to the Analysis and Synthesis of Distributed Collective Strategies, Thesis Nr.2069, DI-EPFL, Lausanne, Switzerland,1999
    [29]Parker L. Current State of the Art in Distributed Autonomous Mobile Robotics, Distributed autonomous robotic systems,2000,3-12
    [30]谭民,范永,徐国华.机器人群体协作与控制的研究.机器人,2001,23(2):178-182
    [31]任孝平,蔡自兴,陈爱斌.多移动机器人通信系统研究进展.控制与决策,2010,25(3):327-338
    [32]Wagner I, Lindenbaum M, Bruckstein M. Distributed Covering by Ant-robots Using Evaporating Traces. IEEE Transactions on Robotics and Automation, 1999,15(5):918-933
    [33]Fukuda T, Kawauchi Y, Asama H. Analysis and Evaluation of Cellular Robotics (CEBOT) as a Distributed Intelligent System by Communication Amount. IEEE/RSJ IROS,1990:827-834
    [34]Aveek D, John S, Vijay K. Ad Hoc Networks for Localization and Control. Proc of the 41st IEEE Confernce on Decision and Control. Las Vegas,2002,3:2978-2983.
    [35]Paul E R, Amy L, H arini V, et al. Performance Evaluation of a Multi-robot Search and Retrieval System:Experiences with MinDART. Journal of Intelligent and Robotic Systems,2008,52(3/4):363-387
    [36]Martinoli A, Easton K. Modeling Swarm Robotic System Experimental Robotics VIII,2003,297-306
    [37]Michel O. Webots:Professional Mobile Robot Simulation. ArXiv preprint csRO/ 0412052.2004
    [38]Lerman K, Galstyan A. Mathematical Model of Foraging in a group of Robots: Effects of Interference. Autonmous Robots.2002,13(2):127-141
    [39]Ijspeert A J, Martinoli A, et al. Collaboration through the Exploitation of Local Interactions in Autonomous Collective Robotics:The Stick Pulling Experiment. Autonomous Robots,2001,11(2):149-171
    [40]Lerman K, Martinoli A, Galstyan A. A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA, Lecture Notes in Computer Science, Springer-Verlag, Berlin,2005,3342:143-152,
    [41]Lerman K, Galstyan A. Macroscopic Anlaysis of Adptive Task Allocation in Robots. Proceeding of International Conference on Intelligent Robots and Systems.2003,1951-1956
    [42]Agossounon W, Martinoli A. A Macroscopic Model of an Aggregation Experiment Using Embodied Agents in Groups of Time-varying Sizes. Proceeding of IEEE Conference on System, Man and Cybernetics,2002,250-255
    [43]Correll N, Martinoli A. Modeling and Analysis of Beaconless and Beacon-based Polices for a Swarm-Intelligent Inspection System. IEEE International Conference on Robotics and Automation,2005.2488-2493
    [44]Correll N, Martinoli A. Towards Optimal Control of Self-organized Robotics Inspection System.8th international IFAC Symoium on Robot Control,2006, 527-532
    [45]Shen W, Will P, Galstyan A, Chuong C. Hormone-inspired Self-Organization and Distributed Control of Robotic Swarms, Autonomous Robots,2004,17:93-105
    [46]Soysal O, Sahin E. Probabilistic Aggregation Strategies in Swarm Robotic Systems. Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, California, 2005,325-332
    [47]Shi Z G, Tu J, Zhang Q, Liu L, Wei J M. A Survey of Swarm Robotics System. Advances in Swarm Intelligence, Lecture Notes in Computer Science 2012,7331: 564-572
    [48]Spears W M, Heil R, Spears D F, et al. Physicomimetics for Mobile Robot Formations. AAMAS'04 Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, IEEE Computer Society Washington, DC, USA, Vol 3:1528-1529
    [49]Desai J. A Graph Theoretic Approach for Modeling Mobile Robot Team Formations. Journal of Robotic System,2002,19,511-525
    [50]Li L, Martinoli A, AbuMostafa A. Learning and Measuring Specialization in Collaborative Swarm Systems. Adaptive Behaviour,2004,12,199-212
    [51]Dorigo M, Tuci E. The SWARM-BOTS Project. Proceedings of the First International Workshop on Swarm Robotics, LNCS 3342, Springer-Verlag, Berlin, Germany,2004:26-40
    [52]Seyfried J, Szymanski M, Bender N, Estana R, Thiel M, Worn H. The I-SWARM Project:Intelligent Small World Autonomous Robots for Micromanipulation. Swarm Robotics:SAB 2004 International Workshop. Santa Monica, CA, USA: Springer
    [53]Kube C R, Bonabeau E. Cooperative Transport by Ants and Robots. Robotics and Autonomous Systems,2000,30(1-2):85-101
    [54]Lynne E. Parker. Designing Control Laws for Cooperative Agent Teams. Proceedings of the IEEE International Conference on Robotics and Automation, 1993,582-587
    [55]Wei H X, Liu M, Li D Z, et al. A Novel Self-assembly Modular Swarm Robot: Docking Mechanism Design and Self-assembly Control. Robot.2010,32, 614-621
    [56]Wei H X, Li N, Tao Y, et al. Docking System Design and Self-Assembly Control of Distributed Swarm Flying Robots. International Journal of Advanced Robotic Systems,2012(9):186-195
    [57]喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展与分析.控制理论与应用,2003,20(4):485-491
    [58]任宗伟,庞明,朱延河.自重构机器人重构运动规划策略研究,华中科技大学学报,2011,(4):10-14
    [59]Zhou Pucheng, Hong Bingrong. Hybrid Multi-agent Reinforcement Learning Approach:The Pursuit Problem. Information Technology Journal.2006,5(6): 1006-1011
    [60]Beni G, Wang J. Swarm Intelligence in Cellular Robotic Systems. Proceedings of the NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy. 1989,26-30
    [61]Bonabeau E, Dorigo M, Theraulaz G. Inspiration for Optimization from Social Insect Behaviour. Nature,2000,406(6791):39-42
    [62]Brutschy A. Task Allocation in Swarm Robotics:Towards a Method for Self-organized Allocation to Complex Tasks. Technical Report Brussels, Bel-gium: Universite Libre de Bruxelles 2009,3-4
    [63]DetrainC, Deneubourg J L. Self-Organized Structures in a Super-organism:Do Ants "Behave" Like Molecules? Physics of Life Reviews,2006,3(3):162-187
    [64]Reynolds C, W. Flocks, Herds, and Schools:a Distributed Behavioral Model. Computer Graphics,1987,21(4):25-34
    [65]Grunbaum D, Viscido S, Parrish J K. Extracting Interactive Control Algorithms from Group Dynamics of Schooling Fish. Lecture Notes in Control and Information Sciences,2004,309:103-117
    [66]Ben-Jacob E, Cohen I, Levine H. Cooperative Self-organization of Microorganisms. Advance in Physics,2000,49(4):395-554.
    [67]Dorigo M. Stutzle T. Ant Colony Optimization. MIT Press, Cambridge, MA.2004
    [68]Abraham A, Grosan C, Ramos V. Swarm Intelligence in Data Mining. Springer Verlag, Berlin/Heidelberg, Germany,2006
    [69]Di Caro G, Dorigo M. Antnet:Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research,1998.9: 317-365
    [70]Kisdi A, Tatnall A R L. Future Robotic Exploration Using Honeybee Search Strategy:Example Search for Caves on Mars. Acta Astronautica,2011,68(11): 1790-1799.
    [71]Robinson G E. Regulation of Division of Labor in Insect Societies. Annual Review of Entomology,1992,37,637-65
    [72]Beshers S N and Fewell J H. Models of Division of Labor in Social Insects. Annual review of entomology,2001,46:413-40
    [73]Torres V O, Montagna T S, Raizer J, et al. Division of Labor in Colonies of the Eusocial Wasp, Mischocyttarus consimilis. Journal of Insect Science,2012, 12(21):1-18
    [74]O'Donnell S, Jeanne R L.1995. The Roles of Body Size and Dominance in Division of Labor among Workers of the Eusocial Wasp Polybia occidentalis (Olivier) (Hymenoptera:Vespidae). Journal of the Kansas Entomological Society 68(1):43-50
    [75]Lenoir A. Factors Determining Polyethism in Social Insects, From Individual to Collective Behaviour in Social Insects. Experientia Supplementum,1987,54: 219-241
    [76]Jeanne R. L. Polytheism. The Social Biology of Wasps, Cornell, Ithaca, NY: Comstock,1991:389-425
    [77]O'Donnell S. RAPD Markers Suggest Genotypic Effects on Forager Behavior in Polybia Aequatorialis. Behavioral Ecology and Sociobiology 1996,38:83-88
    [78]Naug D, Gadagkar R. The Role of Age in Temporal Polyethism in a Primitively Eusocial Wasp. Behavioral Ecology and Sociobiology,1998,42(1):37-47
    [79]Franks N R, Tofts C M N. Foraging for Work:how Tasks Allocate workers. Animal Behavior,1994,48(2):470-472
    [80]Tofts C. Algorithms for Task Allocation in Ants (a Study of Temporal Polyethism: Theory). Bull. Math. Biol.1993,55:891-918
    [81]Tofts C, Franks NR. Doing the Right Thing Ants, Honeybees and Naked Molerats. Trends Ecol. Evol.1992,7:346-49
    [82]Robinson G E, Page R E, Huang Z Y. Temporal Polyethism in Social Insects is a Developmental Process. Animial Behaviours,1994,48:467-69
    [83]Robinson G E, Page R E J. Genetic Basis for Division of Labor in an Insect Society. The Genetics of Social Evolution,1989:61-80
    [84]Page Jr R, Mitchell S. Self-organization and the Evolution of Division of Labor. Apidologie,1998,29:171-190
    [85]Bonabeau E, Theraulaz G, Deneubourg J L. Quantitative Study of the Fixed Threshold Model for the Regulation of Division of Labour in Insect Societies. Proceedings:Biological Sciences,1996,263(1376),1565-1569.
    [86]P. Lichocki, D. Tarapore, L. Keller and D. Floreano. Limitations of response thresholds models of division of labor. Artificial Life 13, the Thirteenth International Conference on the Simulation and Synthesis of Living Systems, East Lansing, Michigan, USA, July 19-22,2012,561-562
    [87]Bonabeau E, Theraulaz G and Deneubourg J L. Fixed Response Thresholds and the Regulation of Division of Labor in Insect Societies. Bulletin of Mathematical Biology,1998,60:753-807
    [88]Seeley T D. Social Foraging in Honey Bees:How Nectar Foragers Assess Their Colony's Nutritional Status. Behavioral Ecology and Sociobiology,1989,24: 181-199
    [89]Collins A M, Rothenbuler W C. Laboratory Test of the Response to an Alarm Chemical, Isopentyl Acetate, by Apis Mellifera. Annals of the Entomological Society of America,1978,71:906-909
    [90]Page R E, Mitchell S D. Self Organization and Adaptation in Insect Societies. In PSA East Lansing, MI:Philos. Sci. Assoc.1991,2:289-298
    [91]Robinson G E,Page R E J. Genetic Basis for Division of Labor in an Insect Society. The Genetics of Social Evolution, Boulder, CO:Westview,1989.61-80
    [92]Page R E, Robinson G E. The Genetics of Division of Labor in Honey Bee Colonies. Advanced Insect Physiology,1991,23:117-69
    [93]Page R E, Mitchell S D. Self-organization and the Evolution of Division of Labor. Apidologie,1998,29:171-190
    [94]Few ell J H, Page R E J. Genotypic Variation in Foraging Responses to Environ-mental Stimuli by Honey Bees, Apis Mellif-era. Experientia 1993,49:1106-1112
    [95]Fewell J H, Winston M L. Colony State and Regulation of Pollen Foraging in the Honey Bee, Apis Mellifera L. Behav. Ecol. Sociobiol.1992,30:387-393
    [96]Deneubourg J L, Goss S, Pasteels J M, Fresneau D, Lachaud J P. Self-organization Mechanisms in Ant Societies II. Learning in Foraging and Division of Labor. Exp. Suppl.1987,54:177-196
    [97]Plowright R C, Plowright C M S. Elitism in Social Insects:a Positive Feed-back Model. Interindividual Behavioral Variability in Social Insects, Boulder, CO:Westview,1988,419-431
    [98]Theraulaz G, Bonabeau E, Deneubourg J L. Response Threshold Reinforcement and Division of Labor in Insect Societies. Proceedings of the Royal Society of London Biological Sciences,1998,265(1393):327-332
    [99]Spencer A J, Couzin I D, Franks N R.. The Dynamics of Specialization and Generalization within Biological Populations. Adv. Complex Syst.1998, 1:115-27
    [100]Pankiw T, Waddington K D, Page R E Modulation of Sucrose Response Thresholds in Honey Bees (Apis mellifera L.):Influence of Genotype, Feeding, and Foraging Experience. Journal of Comparative Physiology A,2001,187(4): 293-301
    [101]Weidenmuller A. The Control of Nest Climate in Bumblebee (Bombus Terrestris) Colonies:Interindividual Variability and Self Reinforcement in Fanning Response. Behavioral Ecology,2004,15(1):120-128
    [102]Theraulaz G, Gervet J, Thon B, Pratte M, Semenoff S. The Dynamics of Colony Organization in the Primitively Eusocial Wasp Polistes Dominulus (Christ). Ethology,1992,91:177-202
    [103]Fewell J H, Bertram S M. Division of Labor in a Dynamic Environment: Response by Honeybees (Apis Mellifera) to Graded Changes in Colony Pollen Stores. Behavioral Ecology and Sociobiology.1999,46:171-179
    [104]Beshers S, Huang Z, Oono Y, Robinson G. Social Inhibition and the Regulation of Temporal Polyethism in Honey Bees. J. Theor. Biol.2000,213(3):461-479
    [105]Huang Z Y, Robinson G E. Social Control of Division of Labor in Honey Bee Colonies. Information Processing in Social Insects 1999,165-186
    [106]Huang Z Y, Robinson G E, Borst D W. Physiological Correlates of Division of Labor among Similarly Aged Honey Bees. Journal of Comparative Physiology A, 1994,174(6):731-739
    [107]Huang Z Y, Robinson GE. Regulation of Honey Bee Division of Labor by Colony Age Demography. Behavioral Ecology and Sociobiology.1996.39: 147-58
    [108]Naug D, Gadagkar R. Flexible Division of Labor Mediated by Social Interactions in an Insect Colony:a Simulation Model. J. Theor. Biol.1999, 97:123-33
    [109]Gordon D M, Goodwin B C, Trainor LEH. A Parallel Distributed Model of the Behavior of Ant Colonies. J. Theor. Biol.1992,156:293-307
    [110]Pacala S W, Gordon D, Godfray H C J. Effects of Social Group Size on Information Transfer and Task Allocation. Evolution Ecology 1996,10:127-165
    [111]杨进,马良.解决复杂优化问题的一个有效工具-蜂群优化算法.计算机应用研究,2010,27(12):4410-4413
    [112]Theraulaz G, Gervet J, Semenoff S. Social Regulation of Foraging Activities in Polistes Dominulus Christ:a Systemic Approach to Behavioral Organization. Behaviour,1991,116:292-320
    [113]Theraulaz G, Goss S, Deneubourg J L. Task Differentiation in Polistes Wasps Colonies:A Model for Self-organizing Groups of Robots. From Animals to Animats:Proceedings of the First International Conference on Simulation of Adaptive Behavior, (MIT Press) 1991,346-355
    [114]Bonabeau E, Theraulaz G, Deneubourg J L. Dominance Orders in Animal Societies:the Self-organization Hypothesis Revisited. Bull. Math. Biol.1999,61: 727-57
    [115]Reeve H K, Gamboa G J. Queen Regulation of Worker Foraging in Paper Wasp: a Social Feedback Control System (Polistes Fuscatus, Hymenoptera:Vespidae). Behaviour,1987,106:147-167
    [116]Jha S, Casey-Ford R G, Pedersen J S, et al. The Queen is not a Pacemaker in the Small-colony Wasps Polistes Instabilis and P. Dominulus. Animal Behaviour, 2006,71:1197-1203
    [117]Theraulaz G, Bonabeau E, Deneubourg J L. The Origin of Nest Complexity in Social Insects. Complexity,1998,3(6),15-25
    [118]Deneubourg J L, Pasteels J M, Verhaege J C. Probabilistic Behaviour in Ants:a Strategy of Errors? Journal of Theoretical Biology,1983,105:259-271
    [119]Theraulaz G, Bonabeau E. A Brief History of Stigmergy. Artificial Life,1999,5, 97-116
    [120]Gamier S, Gautrais J, Theraulaz G. The Biological Principles of Swarm Intelligence, Swarm Intelligence,2007,1(1):3-31
    [121]Karsai I, Theraulaz G. Nest Building in a Social Wasp:Postures and Constraints. Sociobiology,1995, (26):83-114
    [122]Theraulaz G, Bonabeau, E. Coordination in Distributed Building. Science,1995, 269(5224):686-688
    [123]Theraulaz G, Bonabeau E. Modeling the Collective Building of Complex Architectures in Social Insects with Lattice Swarms. Journal of Theoretical Biology,1995,177:381-400
    [124]Cicirello V, Smith S. Distributed Coordination of Resources via Wasp-like Agents. Innovative Concepts for Agent-Based Systems,2003,2564:71-80
    [125]Circirello V, Smith S. Improved Routing Wasps for Distributed Factory Control. Workshop on Artificial Intelligence and Manufacturing, Seattle; 2001,26-32
    [126]Pinto P, Runkler T, Sousa J. Wasp Swarm Algorithm for Dynamic MAX-SAT Problems. Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, Warsaw, Poland,2007, Part Ⅰ,250-357
    [127]Circirello V. Smith S. Wasp-like Agents for Distributed Coordination. Journal of Autonomous Agents and Multi-Agent Systems,2004,8(3):237-266
    [128]Pinto P, Runkler T A, Sousa J M. Wasp Swarm Optimization of Logistic Systems. International Conference on Adaptive and Natural Computing Algorithms, Coimbra, Portugal, March 2005:264-267
    [129]Runkler T, Wasp Swarm Optimization of the C_means Clustering Model. International Journal of Intelligent Systems,2008,23(3):269-285
    [130]Cicirello V A, Smith S F. Wasp Nests for Self-configurable Factories. Proceedings of the Fifth International Conference on Autonomous Agents (2001). ACM Press, May-June,2001,473-480
    [131]Campos M, Bonabeau E, Theraulaz G, Deneubourg J L. Dynamic Scheduling and Division of Labor in Social Insects. Adaptive Behavior,8(3):83-96
    [132]Krieger M J B, Billeter J B. The Call of Duty:Self-organised Task Allocation in a Population of up to Twelve Mobile Robots. Robotics and Autonoums systems, 2000,30(1-2):65-84
    [133]Krieger M J B, Billeter J B, Keller L, Ant-like Task Allocation and Recruitment in Cooperative Robots. Nature,406,992-995
    [134]Gage D. Command Control for Many-robot Systems. Unmanned Systems,1992> 10(4):28-34
    [135]Spears D, Kerr W, et al, Physics-based Robot Swarms for Coverage Problems, International Journal on Intelligent Control and Systems,2006,11(3):24-40
    [136]王燕莉,安世全.无线传感器网络的覆盖问题研究.传感技术学报,2005,18(2):307-312
    [137]Choset H. Coverage for Robotics-a Survey of Recent results. Annals of Mathematics and Artificial Intelligence,2001,31(1-4):113-126
    [138]蔡自兴,崔益安.多机器人覆盖技术研究进展.控制与决策,2008,23(5):481-486
    [139]Wagner I A, Lindenbaum M, Bruckstein A M. MAC vs PC-Determinism and Randomness as Complementary Approaches to Robotic Exploration of Continuous Unknown Domains. International Journal of Robotics Research,2000, 20(1):12-31
    [140]Gage D, Randomized Search Strategies with Imperfect Sensors. Proceedings SPIE Mobile Robots VIII,1993,270-279
    [141]Raschke U, Borenstein J. A Comparison of Grid-type Map-building Techniques by Index of Performance. Proc. of the IEEE International Conference on Robotics and Automation,1990,1828-1832
    [142]Wong S C, MacDonald B A. A Topological Coverage Algorithm for Mobile Robots. IEEE/RSG International Conference on Intelligent Robots and Systems, 2003:1685-1690
    [143]Yeap W K, Jefferies M E. Computing a Representation of the Local Environment. Artificial Intelligence,1999,107(2):265-301
    [144]Rekleitis I, New A P, Rankin E S, and Choset H. Efficient Boustrophedon Multi-Robot Coverage:an Algorithmic Approach. Annals of Mathematics and Artificial Intelligence,2009,52(2-4):109-142
    [145]Rekleitis I, Lee-Shue V, etc. Limited Communication, Multi-robot Team Coverage.2004 IEEE International Conference on Robotics and Automation.
    [146]Wong S C, MacDonald B A. Complete Coverage by Mobile Robots Using Slice Decomposition Based on Natural Landmarks. Lecture Notes in Computer Science. 2004,357:683-692
    [147]刘罡,刘玉斌,赵杰.基于可视切线图的未知环境建模新方法研究.高技术通讯,2010,20(5):505-510
    [148]崔益安.多机器人协同覆盖技术研究.中南大学,2008:61-66
    [149]Butler Z, Rizzi A, Hollis R. Cooperative Coverage of Rectilinear Environments. Proceeding of IEEE International Symposium on Intelligent Control.2000
    [150]Oh J S, Choi Y H, Park J B, Zheng Y. Complete Coverage Navigation of Cleaning Robots Using Triangular-cell-based Map. IEEE Transactions on Indusrial Electronics.2004,51(3),718-726
    [151]Gabriely Y, Rimon E. Spanning-tree Based Coverage of Continuous Areas by a Mobile Robot. Annals of Mathematics and Artificial Intelligence,2001, (1-4): 77-98
    [152]Hazon N, Kaminka G. Redundancy, Efficiency, and Robustness in Multi-robot Coverage[A]. Proceedings of the International Conference on Robotics and Automation, Hongkong and Maeau:China,2005,689-693
    [153]Agmon N, Hazon N, et al. Constructing Spanning Trees for Efficient Multi-robot Coverage. Proceedings 2006 IEEE International Conference on Robotics and Automation,2006,1698-1703
    [154]Zheng X, Jain S. Multi-Robot Forest Coverage, Proceedings of IEEE international Conference on Intelligent Robots and Systems (IROS) Edmonton: Canada,2005,406-412
    [155]Butler Z J. Distributed Coverage Of Rectilinear Environments, Carnegie Mellon University,2000
    [156]Maxim A B, Gaurav S S. Spreading Out:a Local Approach to Multi-robot Coverage. Proceedings of the 6th International Symposium on Distributed Autonomous Robotics Systems Fukuoka, Japan, June 25-27,2002:373-382
    [157]Reif J, Wang H, Social Potential Fields:a Distributed Behavioral Control for Autonomous Robots. Robtoics and Autonomous Systems 1999,27(3):171-194
    [158]Bruemmer D, Dudenhoeffer D, McKay M, Anderson M. A Robotic Swarm for Spill Finding and Perimeter Formation. Spectrum 2002
    [159]Menezes R, Martins F, Braga M. A Model for Terrain Coverage Inspired by Ant's Alarm Pheromones. Proceedings of the 2007 ACM symposium on Applied computing, Seoul, Korea, March 2007,728-732
    [160]Koenig S, Liu Y. Terrain Coverage with Ant Robots:a Simulation Study. Agents 2001,600-607
    [161]Spears W M, Spears D F, Hamann J C, Heil R. Distributed, Physics-Based Control of Swarms of Vehicles. Autonomous Robots,2004,17(2/3):137-162
    [162]Spears W M, Spears D F. Using Artificial Physics to Control Agents. Proc of the IEEE International Conference on Information, Intelligence and Systems. Washington, USA.1999:281-288
    [163]Borenstein J, Koren Y. Real Time Obstacle Avoidance for Fast Mobile Robots. IEEE Transactions on System, Man and Cybernetics,1989,19(5):1179-1187
    [164]Borenstein J, Koren Y. Real-time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments. IEEE International Conference on Robotics and Automation Cincinnati,Chio,1990,572-577
    [165]徐玉华,张崇巍,徐海琴.基于激光测距仪的移动机器人避障新方法.机器人,2010,32(2):179-183
    [166]Morlok R, Gini M. Dispersing Robots in an Unknown Environment. Proceedings of the 7th International Symposium on Distributed Autonomous Robotic Systems, Toulouse, France, June 2004. Springer-Verlag
    [167]张寒松,贾瑞清,王廷军等.基于实际意义隶属函数的机器人避障模糊算法.农业机械学报,2006,37(3):84-86
    [168]徐家,基于卡尔曼滤波预测的移动机器人矢量场矩形法避障研究.武汉理工大学,2009
    [169]Svennebring J, Koenig S. Building Terrain-Covering Ant Robots. Autonomous Robots,2004,16, (3),313-332
    [170]Theraulaz G, Bonabeau E, Deneubourg J L Self-organization of Hierarchies in Animal Societies:the Case of the Primitively Eusocial Wasp Polistes Dominulus Christ. Journal of Theoretical Biology 1995,174(3):313-323
    [171]Bonabeau E, Sobkowski A, Theraulaz G, et al. Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects. Biocomputing and Emergent Computation:Proceedings of BCEC97,1997,36-45
    [172]Gautrais J, Theraulaz G, Deneubourg J L, Anderson C. Emergent Polyethism as a Consequence of Increased Colony Size in Insect Societies. Journal of Theoretical Biology,2002,215(3):363-373
    [173]Karsai I, Wenzel J W. Productivity, Individual-level and Colony-level Flexibility, and Organization of Work as Consequences of Colony Size. Proceeding of the National Academy of Sciences,1998,95(15):8665-8669
    [174]Jarvis R A, Marzouqi M S. Efficient Robotic Search Strategies for Finding Disaster Victims Proceedings of the 3rd International Conference on Autonomous Robots and Agents. Palmerston North, New Zealand,2006: 515-520.
    [175]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005
    [176]蔡云飞,唐振民,阎岩.一种新的基于SOA的多机器人协作分层体系结构.机器人,2010,32(6):805-811
    [177]Kurt Derr, Milos Manic. Multi-robot, Multi-target Particle Swarm Optimization Search in Noisy Wireless Enviroments. Proceedings of the 2nd conference on Human System Interactions, USA,2009,81-86
    [178]周浦城,洪炳镕,蔡则苏.多机器人运动目标搜索策略研究.哈尔滨工业大学学报,2005,37(7):879-882
    [179]Hollinger G, Singh S, Djugash J, Kehagias A. Efficient Multi-robot Search for a Moving Target. The International Journal of Robotics Research,2009,28(2): 201-219
    [180]Meng Y, Cao K. Multi-robot Searching for a Target using Game Theory. Proceedings of Robotics and Applications, ISBN:0-88986-597-3. Honolulu, Hawaii, USA,2006
    [181]Hauert S, Zufferey J C, Floreano D. Evolved Swarming without Positioning Information:an Application in Aerial Communication Relay. Autonomous robots, 2009,26(1):21-32
    [182]Saeedi P, Sorensen S A. An Algorithmic Approach to Generate After-Disaster Test Fields for Search and Rescue Agents. Lecture Notes in Engineering and Computer Science,2009, vol.2176
    [183]Marques L. Nunes U, Almeida A T. Particle Swarm Based Olfactory Guided Search. Autonomous Robotics.2006,20(3):277-287
    [184]Krishnanand N K, Ghose H. Theoretical Foundations for Rendezvous for Glowwarm-inspired Agent Swarms at Multiple Locations, Robtics and Autonomous Systems,2008,56,549-569
    [185]Gerkey B P. On Multi-robot Task Allocation. Los Angele:University of Southern California,2003
    [186]Gerkey B P, M J Mataric, A Formal Analysis and Taxonomy of Task Allocation in Multi-robot Systems. International Journal of Robotics Research,2004,23(9): 939-954
    [187]Dahl T S, Matari M, Sukhatme G S. Multi-robot Task Allocation through Vacancy Chain Scheduling. Robotics and Autonomous Systems,2009,57(6-7): 674-687
    [188]张嵛,刘淑华.多机器人任务分配的研究与进展,智能系统学报,2008,3(2):115-120
    [189]Zhang D, Xie G, Yu J, Wang L. Adaptive Task Assignment for Multiple Mobile Robots via Swarm Intelligence Approach. Robotics and Autonomous Systems, 2007,55(7):572-588
    [190]McLurkin J, Yamins D. Dynamic Task Assignment in Robot Swarms, Proceedings of Robotics:Science and Systems, June 2005,129-136
    [191]Oliveira D D, Jr. P R F, Bazzan A L C. A Swarm Based Approach for Task Allocation in Dynamic Agents Organizations, Proceedings of Autonomous Agents and Multi-agent Systems.2004,1252-1253
    [192]Ducatelle F, Forster A, et al. Task Allocation for Robotic Swarms:New Methods and Comparisons. Technical Report, University of Lugano (USI), January 2009, http://www.idsia.ch/-gianni/Papers/IDSIA-01-09.pdf
    [193]肖潇,方勇纯,贺锋,马博军.未知环境下移动机器人自主搜索技术研究.机器人,2007,29(3):224-229
    [194]Millonas M. Swarms, Phase Transitions, and Collective Intelligence. Artificial Life III. Los Alamos National Lab, NM (United States),1992
    [195]薛颂东,曾建潮.用群体智能原则控制群机器人搜索.系统仿真学报,2008,20(13):3449-3454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700