用户名: 密码: 验证码:
并串联光电稳定平台伺服控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从稳定平台问世以来,一直采用框架式的串联机构形式的稳定平台,由于其结构简单,工作空间大,运动灵活,获得了广泛的应用;相比之下,并联机构稳定平台具有结构刚度好、承受负载强、空间定位精度高、整个机构紧凑等特点。然而,无论是串联稳定平台还是并联稳定平台,都有其难以克服的缺点,如工作空间、承载力等矛盾难以消除。本论文综合它们的优点,深入研究了并串联混合机构。针对本实验室研制的并串联光电稳定平台原理样机,就运动学、动力学、光纤陀螺随机漂移、控制算法以及伺服系统实现等相关关键问题开展了深入研究。论文完成的主要工作和创新如下:
     1、采用矢量法和旋转矩阵法对并串联光电稳定平台进行了的运动学分析。采用三维建模软件UG和多体动力学仿真软件ADAMS相结合建立稳定平台三维模型。根据推导的运动学模型和三维模型,详细分析了工作台输出的滚转、俯仰和偏转角之间耦合关系,并对并串联光电稳定平台运动学模型、三维模型进行仿真实验,并与实际数据进行了对比分析,进一步证明了所建立的运动学模型和三维模型准确有效。
     2、基于Lagrange法和虚功原理建立了并串联光电稳定平台动力学模型。分析了稳定平台各个部分的动能,根据Lagrange法建立了稳定平台适合于控制使用的动力学模型。根据虚功原理对稳定平台进行了广义力分析。根据并串联光电稳定平台三维模型,采用ADAMS软件对各轴的力矩和加速度进行了动力学分析。
     3、基于时间序列建立光纤陀螺随机漂移模型,采用卡尔曼滤波抑制随机漂移。分析了光纤陀螺随机漂移的特性,利用实测数据建立了光纤陀螺随机漂移的静态和动态ARMA模型。依据ARMA模型,采用卡尔曼滤波有效的抑制光纤陀螺随机漂移。
     4、完善动力学模型,设计了一个非线性自适应控制器。详细分析了动力学模型的各项系数。考虑实际系统工作中存在的摩擦、负载扰动和动力学参数误差。分离出动力学模型中的未建模动力学参数、摩擦力参数和负载扰动,建立了关于待辨识参数的线性动力学模。运用Lyapunov方法设计了一个非线性自适应控制器。分别将所提出的控制器与计算力矩控制器分别在跟踪高速和低速情况进行了仿真实验,将实验结果进行了对比分析,实验表明所提出非线性自适应控制器在低速、高速状态下控制效果明显好于传统计算力矩控制。
     5、构建了并串联光电稳定平台伺服系统的软硬件,搭建了实验平台。搭建实验平台为并串联光电稳定平台系统相关技术的研究和验证提供一个有效的、与实际相似的实验环境的平台。将所提出的非线性自适应控制器用于并串联光电稳定平台控制,实验结果证明了本文有关理论分析的正确性和所设计的控制系统的有效性。
Since the inception of stable platform, the frame-type of serial mechanism in stableplatform was widely applied because of its good characteristics of simple structure, largework space and flexible movement. In contrast, parallel stable platform has overwhelmingadvantages as good stiffness of structure, large carrying capacity, high precision in positionand compact conformation etc. However, both of serial and parallel stable platform haveunsolvable shortcomings such as the conflict between work space and carrying capacity andso on. In this paper, the study did comprehensive investigation of serial and parallel hybridplatform and combined both advantages of them. Based on the prototype of the parallel-serialopto-electronic stable platform developed in our lab, the study in this paper was conducted inresearch fields of kinematics, dynamics, random drift of fiber-optic gyroscope (FOG), controlalgorithm, realization of servo system and so on. Main contributions and innovations of thispaper were described as following:
     1、Kinematics analysis of the serial-parallel electro-optical stable platform applying vectormethod and rotation matrix method. Using3D modeling software UG and multibody dynamicssimulation software ADAMS, we constructed3D simulation model of the stable platform. Basedon derived kinemics model and3D model, the study detailedly investigated coupled relationshipbetween output rolling, pitching and yawing angle, which were exported by the platform.Additionally we processed simulation for kinemics model and3D model of the parallel-serialopto-electronic stable platform. Through compared with data from experimental results, kinemicsmodel and3D model were further proved as efficient and accurate models.
     2、Constructing dynamics model of the parallel-serial opto-electronic stable platformbased on Lagrange algorithm and principle of virtual work. Lagrange algorithm is mostsuitable for controller design and practice, since it can solve complicated dynamics equationsby simplest way and represent structural dynamics equation as closed form. In this paper, weanalyzed the kinetic energy of different parts of the stable platform and construct dynamicsmodel for the stable platform. Based on principle of virtual work, we analyzed generalized force, which supplied theory basis for further research and practice of control method.
     3、Constructing random drift model of FOG based on temporal series and applyingKallman filtering to restraint random drift. After analysis of characteristics of random drift ofFOG, we used experimental data to construct ARMA model for random drift. Random driftwas efficiently restrained by applying Kallman filtering in random drift model. Throughtesting data were analyzed, it was confirmed that random drift was dealt with by filteringaccording to ARMA model and good results of filtering were achieved during experiments.
     4、Designing a nonlinear adaptive controller to improve dynamics model. In this paper,different parameters in dynamics model were analyzed in detail. Considering friction, loaddisturbance and kinetic parameters error existing in real system, we separated unmodeleddynamics parameters, friction parameters and effects of load disturbance from dynamicsmodel and obtained linear expressions for parameters to be identified in dynamics model.Lyapunov method was applied for the design of nonlinear adaptive controller. We separatelysimulated our proposed controller and computed torque controller under the conditions oftracking high speed and low speed. Through comparing the experimental results, we can givethe conclusion that our proposed nonlinear adaptive controller has much better control effectsthan traditional computed torque controller under both of conditions.
     5、Building software and hardware of servo system and constructing experimentalplatform. The contribution of this part of work is to supply an efficient simulated platformwhich has similar conditions with the actual environment to investigate and test relatedtechnologies in the parallel-serial opto-electronic stable platform. We applied the newproposed nonlinear adaptive controller to the serial and parallel opto-electronic stableplatform. Experimental results proved the correctness of proposed theoretical analysis in thispaper and the efficiency of designed control system.
引文
[1]毕永利.多框架光电平台控制系统研究[D].博士学位论文,长春:中国科学院研究生院,2006
    [2] H. MacCallion,D.T.Pham,The Analysis of A6-DOF Work Station for Mechanized Assembly,Proceedings of5rd Congress on TMM,Montreal,Canada,1979:611-616
    [3] E.F.Fichter. A Stewart Platform-Based Manipulator:General Theory and Practical Construction,TheInternational Journal of Robotics Research,1968,5(2):157-182
    [4] J.P. Merlet. Parallel Manipulators Part2: Singular Configuration and Grassmann Geometry. Technologyreport. INRIA,Sophia Antipols,France,1988:66-70
    [5]刘长顺,王兵,陈兆兵.车载光电稳定平台外框优化设计[J].中国光学,2011,4(6):606-610
    [6] K.L.Cappel.Motion Simulator,United States,1967,3295224
    [7] J.E. Gwinnett. Amusement Device,United States,1931,1789680
    [8] W.L.V.Pollard.Spray Painting Machine,United States,1940,2213108
    [9] D.Stewart. A Platform with six Degrees of Freedom,IMechE,1965.180(15):371-386
    [10] K.H.Hunt.Kinematic Geoemtry of Mechanisms,Oxford:Claredon Press,1978:10-18
    [11]黄田,曾宪菁.等顶锥角3自由度球面并联机构的全参数解析尺度综合[J].机械工程学报,2000,36(8):15-19
    [12] E.F.Fichter. A Stewart Platform-Based Manipulator:General Theory and Practical Construction,TheInternational Journal of Robotics Research,1968,5(2):157-182
    [13] J.P.Merlet.Parallel Manipulators Part2:Singular Configuration and Grassmann Geometry.Technologyreport. INRIA,Sophia Antipols,France,1988:66-70
    [14]黄真,赵永生,赵铁石.高等空间机构学[M].北京,机械工业出版社,2006
    [15]黄真.空间机构学[M].北京,机械工业出版社,1989
    [16]胡波.基于约束力/矩的少自由度并联机构和串并联[D].博士学位论文,秦皇岛:燕山大学,2010
    [17] K. H. Hunt. Structural kinematics of in-parallel-actuated robot arms.Transmissions and Automation inDesign,1983,105(4):705-712
    [18] R. Clavel. DELTA,a Fast Robot with Parallel Geometry. Proceedings of the8th InternationalSymposium on Industrial Robots,Switzerland,1988:91-100
    [19] L. W. Tsai, G. C. Walsh, R. E. Stamper. Kinematics of a novel three DoF translational platform. IEEEInt. Conf. on Robotics and Automation, Minneapolis, USA,1996,3446-3451
    [20] C. M. Gosselin. On the development of the agile eye: mechanical design,control issues andexperimentation. IEEE Robotics and Automation Magazine,1996,3(4):29-37
    [21] K. E. Neumarm.US Patent No.4732525,Mar,22,1988
    [22] X-Y两轴稳定平台.http:www.chinameasurement.com
    [23]杨蒲,李奇.三轴陀螺稳定平台控制系统设计与实现[J].中国惯性技术学报.2007,4:171-176
    [24]刘义德.基于并联机构的稳定平台建模与控制[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2009
    [25]吴金中.电视导引系统的视轴稳定跟踪技术[J].战术导弹技术,2002,(1):34-38
    [26]邹东明,刘栖山.舰载光电跟踪设备视轴稳定分析[J].武器装备自动化,2003,22(1):15-19
    [27]吴晔,朱晓峰,陈俊山.导引头二轴稳定平台的轴角关系和简化[J].制导与引信,2012,33(1):1-5
    [28] Hamed Khodadadi,Mohammad Reza Jahed Motlagh,Mohammad Gorji.Roust control and modeling a2-DOF inertial stabilized platform[C].IEEE International Conference on Electrical,Control andComputer Engineering,2011,7:223-228
    [29]纪明.多环架光电稳定系统及分析[J].应用光学,1994,15(3):60-64
    [30]纪明.高精度光电二极稳定系统的运动隔离和补偿分析[J].兵工学报,1996,17(4):320-324
    [31]邬昌明,刘忠.两轴四环架稳定系统抗扰性能分析[J].光学与光电技术,2007,5(3):76-78
    [32]严武升,刘宏,过润秋.基于前馈补偿的舰载雷达三轴稳定跟踪的研究[J].西安电子科技大学学报,1998,25(5):650-654
    [33]王小军,李殿璞,赵阳等.舰载三轴雷达波束稳定跟踪的研究[J].哈尔冰工程大学学报,2002,23(1):58-63
    [34]王小军,李殿璞,余宏明等.顶空无盲区跟踪的舰载倾斜三轴雷达的研究[J].哈尔滨工程大学学报,2002,23(2):37-42
    [35]王小军.全空域跟踪的舰载雷达驱动系统研究田[D].博士学位论文,哈尔滨:哈尔滨工程大学,2002
    [36]柳朝军,廖晓钟,张宇河等.捷联式三轴稳定跟踪系统的运动学建模与仿真[J].北京理工大学学报,2002,20(3):313-316
    [37]王楚清,杨冲涛,刘爱东.潜艇潜望镜瞄准线三轴稳定研究[J].舰船科学技术,2004,26(1):50-52
    [38]范大鹏,张智永.光电稳定跟踪装置的稳定机理分析研究[J].光学精密工程,2006,14(4):673-680
    [39]祁载康.制导弹药技术[M].北京:北京理工大学出版社,2002
    [40] Warren T.Burt.WIDE ANGLE SEEKER[P].Unite Stated Patent,4087061,1978-05-02
    [41] Ulrich Hartmann,Jurgen Schnatz,Hartmut Goseberg.SEEKER FOR TARGET TRACKINGMISSILES[P].United States Patent,6978965B1,2005-12-07
    [42]王志伟,祁载康,王江.滚仰式导引头跟踪原理[J].红外与激光工程,2008,37(2):274-277
    [43]肖仁鑫,张聘义,胡海双等.滚俯仰式红外导引头稳定平台控制与仿真[J].红外与激光工程,2007,36:363-365
    [44]朱明超,贾宏光.基于Paden-Kahan子问题求解滚仰式导引头增量角[J].光学精密工程,2011,19(8):1838-1844
    [45]刘慧.滚仰式导引头伺服机构稳定跟踪技术研究[D],博士学位论文,长春:中国科学院长春光学精密机械与物理研究所,2010
    [46]董小萌,张平.两轴稳定平台的过顶盲区问题[J].北京航空航天大学学报,2007,33(7):811-815
    [47]林德福,王志伟,王江.滚-仰式导引头奇异性分析与控制[J].北京理工大学学报,2010,30(11):1265-1269
    [48] Huhai Jiang, Hongguang Jia, Qun Wei. Analysis of zenith pass problem and tracking strategy designfor roll-pitch seeker[J].Aerospace Science and Technology,2012,23:345-351
    [49]孙高.半捷联光电稳定平台控制系统研究[D].博士论文,长春:中国科学院长春光学精密机械与物理研究所
    [50]并联结构的稳定平台.http://Website:www.atrcorp.com
    [51]邱志龙,谈大成,赵明扬.并联机器人研究现状.研究研发.2000,38(28):27-29
    [52] D.Cox. The dynamic modeling and command signal formulation for parallel multi-parameter roboticdevices[PhD Thesis]. University of Florida,1981
    [53] H. Asada,C. Granito. Kinematic and static characterization of wrist joints and their optimal design
    [C].Proceedings of IEEE International Conference on Robotics and Automation,St. Louis,1985:244-250
    [54] C. M. Gosselin,J. Angeles. The optimum kinematics design of a spherical3-DOF parallel manipulator[J]. ASME Journal of Mechanisms Transmissions and Automation in Design,1989,111(2):202-207
    [55] C. M. Gosselin, J. Sefrioui,M. J. Richard. On the direct kinematics of a class spherical3-DOF parallelmanipulator [C]. ASME22nd Biennial Mechanisms Conference, Scottsdale,1992:13-19
    [56] C. M. Gosselin. On the kinematics design of spherical3-DOF parallel manipulators [J]. TheInternational Journal of Robotics Research,1993,12(4):394-402
    [57] C. M. Gosselin,L. Perreault,Ch. Vaillancourt. Simulation and computer-aided kinematic design of3-DOF spherical parallel manipulators [J],Journal of Robotic Systems,1995,12(12):857-869
    [58] C. M. Gosselin,E. St-Pierre. Devolopment and experimentation of a fast3-DOF camara-orientingdevice [J]. International Journal of Robotics Research,1997,16(5):619-630
    [59] C. M. Gosselin,J. Sefrioui,M.J. Richard. On the direct kinematics of spherical3-DOF parallelmanipulator with a coplanar platform [J]. ASME Journal of Mechanical Design,1994,116(2):587-593
    [60] M. Karouia,J.M.Herv.A3-DOF tripod for generating spherical rotation[J]. Academic Publishers,2000,12(20):395-402
    [61] R. Di Gregorio. Kinematics of a new spherical parallel manipulator with three equal legs: the3-URCwrist [J]. Journal of Robotic Systems,2001,18(5):213-219
    [62] R. Di Gregorio.The3-RRS wrist: a new,very simple and not over constrained spherical parallelmanipulator[C]. Proceedings of ASME Design Engineering Technical Conferences,Montreal,2002
    [63] Massimo Callegari. Kinematics of a parallel mechanism for the generation of spherical motions [J].Advances in Robot Kinematics,2004,6(14):449-458
    [64]梅江平,倪雁冰,王辉等,三自由度正交球面并联机构姿态正解[J].机械设计,2002,4(4):8-10
    [65]方鑫.并联跟踪机构的设计与分析[D].硕士学位论文,上海:上海交通大学,2009
    [66]孙高.半捷联光电稳定平台控制系统研究[D],博士学位论文,长春:中国科学院研究生院,2013
    [67]陈益.具有目的域的光电稳定跟踪系统满意控制策略[D],博士学位论文,南京:南京理工大学,2010
    [68]周瑞青,吕善伟,刘新华.捷联式天线平台的稳定性研究[J].北京航空航天大学学报,2003,29(6):509-511
    [69]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].博士学位论文,长春:中国科学院长春光学精密机械与物理研究所,2002
    [70]傅建纲.惯性平台稳定回路的设计研究[D].硕士学位论文,哈尔滨:哈尔滨工程大学,2005
    [71] R.Zaeim,M.A.Nekoui,A.Zaeim. Integration of Imaging Seeker Control in a Visually GuidedMissile[C].IEEE International Conference on Control and Automation,2010,6:46-51
    [72] Peter J.Kennedy,Rhonda L.Kennedy. Direct Versus Indirect Line of Sight Stabilization[J].IEEETRANSACIONSON CONTROL SYSTEMS TECHNOLOGY,2003,11(1):3-15
    [73]庞新良,范大鹏,滕旭东.数字式机载光电伺服系统的视线[J].光电工程,2007,34(3):10-15
    [74]李慧,吴军辉,朱震.速率陀螺式激光导引头稳定跟踪原理分析与仿真[J].红外与激光工程,2011,40(7):1337-1341
    [75]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].博士学位论文,南京:东南大学,2006
    [76]李东明,党纪红,郝颖.惯性平台稳定回路的双闭环控制[J].应用科技,2003,30(8):48-50
    [77]贾琳,孟伟锋.惯性平台稳定回路的双闭环控制[J].科学技术与工程,2009,9(5):1147-1149
    [78]毕永利,刘洵,葛文奇.机载多框架陀螺稳定平台速度稳定环设计[J].光电工程,2004,31(2):16-18
    [79]黎志强,许兆林,徐景硕.机载光电跟踪平台的控制系统设计[J].电光与控制,2009,16(11):60-63
    [80]张黎黎,黄一,吕俊芳.机载光电跟瞄平台伺服系统中电流环的设计与仿真[J].航空计测技术,2003,23(6):15-17
    [81]黄永梅,张桐,马佳光.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19
    [82]牛立,李莉,庄良杰.惯性平台稳定回路的自抗扰控制[J].中国惯性技术学报,2004,12(6):48-51
    [83]贾琳,孟伟锋.滑模变结构控制在惯性平台稳定回路中的应用[J].科学技术与工程,2009,9(2):433-436
    [84]杨蒲,李奇.陀螺稳定平台自适应分层滑模速度控制[J].兵工学报,2008,29(7):864-869
    [85] Ki Ho Kim,Jong Kwang Lee,Byung Suk Park, et al. Chatter-Free Sliding Mode Control for InertialStabilization of OTM(On-the-move) Antenna Driven by Gear andFlexible Shaft[J].INTERNATIONAL JOURNAL OF PRECISION ENGINEERINGAND MANUFACTURING.2012,13(8):1317-1325
    [86]周晓尧,范大鹏,张智勇.光电伺服控制系统多回路内模控制器分析与设计[J].红外与激光工程,2011,40(10):2020-2027
    [87]徐立新,张宇河.用神经网络实现精密伺服系统中扰动力矩的动态补偿[J].自动化学报,1998,24(1):108-112
    [88]高翌阳,齐蓉.舰载天线稳定平台伺服控制器研究[J].计算机测量与控制,2012,20(5):1301-1302
    [89]李红光,鱼云岐.最优控制在车载惯性平台稳定回路中的应用[J].应用光学,2007,28(3):251-256
    [90]卢广山,姜长生.高精度机载光电跟踪系统的自适应模糊控制[J].兵工学报,2002,23(4):533-535
    [91]卢广山,姜长生.机载光电跟踪系统模糊控制的优化设计与仿真[J].航空学报,2002,23(1):85-87
    [92]卢广山.高精度机载光电跟踪系统的自适应算法研究[J].西北工业大学学报,2002,20(4):563-566
    [93]胡大军.基于模糊控制的舰载光电跟踪伺服系统设计[D].硕士学位论文,武汉:武汉工程大学,2012
    [94]董岩.基于神经网络的机载三轴稳定平台控制系统算法应用研究[D].博士学位论文,长春:中国科学院长春光学精密机械与物理研究所,2011
    [95]魏宗康,徐强,夏刚.平台稳定回路H∞鲁棒控制设计[J].中国惯性技术学报,2001,9(3):1-8
    [96]周瑞青,吕善伟,刘新华.捷联式天线稳定平台动力学建模与仿真分析[J].北京航空航天大学学报,2005,31(9):953-957
    [97]周瑞青,吕善伟.刘新华.捷联式天线平台数字稳定技术及仿真研究[J].系统仿真学报,2004,16(10):2234-2236
    [98]付奎生.两轴捷联稳定跟踪平台关键技术分析[J].电光与控制,2009,16(7):53-55
    [99]赵超.弹载捷联天线稳定平台控制与仿真研究[J].制导与引信,2009,30(1):18-23
    [100]李显军,王晓宇,武亚平.捷联雷达导引头天线平台角稳定技术研究[J].弹箭与制导学报,2010,30(6):27-30
    [101]孙娜娜.两轴稳定平台直接控制与间接控制比较研究[D].硕士学位论文,西安:西安电子科技大学,2010
    [102]周瑞青,吕善伟,刘新华.捷联式天线平台的角跟踪系统设计[J].系统工程与电子技术,2003,25(10):1200-1202
    [103]周瑞青,吕善伟,刘新华.弹载捷联式天线平台两种稳定实现方法的比较[J].系统工程与电子技术,2005,27(8):1397-1400
    [104]于晓涛.捷联稳定吊舱控制系统设计[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2010
    [105]申涛.红外成像导引头捷联式稳定平台技术研究[D].硕士学位论文,上海:上海交通大学,2011
    [106]周瑞青,王伟.捷联式天线平台双通道祸合目标跟踪滤波器设计与仿真研究[J].系统仿真学报,2005,17(11):2691-2695
    [107]刘伟,朱斌.跟踪微分算法在半捷联稳定平台中的应用研究[J].弹箭与制导学报,2010,30(2):35-38
    [108]贾晓媛,赵超.半捷联稳定控制方案与制导信息提取方法[J].红外与激光工程,2011,40(12):2474-2479
    [109]赵超.捷联末制导系统的控制与滤波模型研究[J].电光与控制,2009,16(8):44-48.
    [110]刘伟,柯芳,朱斌.半捷联导引头稳定平台的双环滑模变结构控制[J].兵工学报,2010,31(12):1669-1673
    [111]张耀欣.高性能平面二自由度并联机器人研究[D],合肥:中国科学技术大学,2007
    [112]姚苏华,高国琴,周涛.并联机构的对角型模糊变结构控制应用研究[J].机床与液压,2009,4(37):55-57
    [113]尚伟伟,丛爽,张耀欣.平面2自由度冗余驱动并联机构最优控制[J].机械设计,2006.23(8):16-19
    [114]尚伟伟,丛爽.提高控制精度的并联机构速度规划算法[J].中国科学技术大学学报,2006,36(8):822-827
    [115] KimHS,ChoYM,LeeKI.Robustnonlinear task space control for6DOF parallel maniPulator[J].Automatica,2005,41(9):1591-1600
    [116] Vivas A,Poignnet P. Predictive functional control of a parallelrobot[J].ControlEngineering Practice,2005.13(7):863-874
    [117] DuchaineⅤ,Bouchard S,Gosselin C M. Computationally efficient predictive robotconrol[J]. IEEE/ASME Transactions on Mechatronics,2007,12(5):570-578
    [118] FengG,Palaniswami M.Adaptive control of robot manipulator in task space[J].IEEETransactions o nRobotics and Automation,1993,38(1):100-104
    [119] Walker M W.Adaptive controlof manipulator containing closed kinematic loops[J].IEEE Transactionson Roboticsand Automation,1990,6(1):10-19
    [120] M.Honegger,A.Codourey,E.Burdet. Application of a Nonlinear Adaptive Controller to a6-dofParallel Manipulator[C].Proceedings of the2000IEEE International Conference on Robotics&Automation. SanFrancisco,2000,4:1930-1935
    [121] Sirouspour M R,Salcudean S E. Nonlinear control of hydraulic robots[J]. IEEE Transactions onRoboticsand Automation,2001,12(2):173-182
    [122]尚伟伟,丛爽.一种二自由度并联机器人的非线性自适应控制[C].全国博士生学术论坛,2007:563-572
    [123]丛爽,王杨,尚伟伟.自适应控制策略在并联机构上的应用[J].制造业自动化,2007,29(7):45-49
    [124] Tao G L,Zhu XC,Yao B,Cao J. Adaptiverobust posture control o f a pneumatic muscles drivenparallel manipulator with redundancy[C].Proceedings of theAmerican Control Conference,2007,3408-3413
    [125] Ren L,Mills J K,Sun D.Experimentcomparison of controlapproaches on trajectorytracking controlofa3-DOF Parallel robot[J].IEEE Transactionson Control Systems Technology,2007,15(5):982-988
    [126] Sun D,Lu R,Mills J K,Wang C. Synchronous tracking control of parallelmanipulators usingcross-coupling approach[J]. International Journal of Robotics Research,2006,25(11):1137-1147
    [127]高征,肖金壮,王洪瑞,金振林.一种三自由度串并联结构旋转台的动力学分析[J].中国机械工程,2012,23(1)18-21
    [128] Clavel R.Delta:A fast robot with parallel geometry[C].Proceedings of International Symposium onIndustial Robots,1988:91-100
    [129] Tsai L W,Walsh G C,Stamper R E. Kinematics of a novel three dof translational platform[C].Proceedings of IEEE International Conference of Robotics and Automation,1996:3446-3451
    [130] Raffle DG,Vincenzo PC. Mobility analysis of the3-UPU parallel mechanism assembled for a puretranslational motion [J]. Journal of Mechanical Design,2002,124:259-264
    [131] Pierrot F,Reynaud C,Fournier A. Delta: A simple and efficient parallel robot[J]. Robotica,1990,6(2):105-109
    [132] Tsai LW,Walsh GC,Stamper RE. Kinematics of a novel3-DOF translationalplatform[C]. Proc. of theInt. Conf. on Robotics and Automation,1996:3446-3451
    [133]李仕华,黄真.新型三维移动3-RRUR并联平台机构及其位置分析[J].机械设计,2005,22(8):39-42
    [134]赵铁石,黄真.欠秩空间并联机器人输入选取的理论和应用[J].机械工程学报,2000,36(10):81-85
    [135] Fichter,E.F. A Stewart Platform-Based Manipulator:General Theory and Practical Construction[J].International Journal of Robotics Research.1986,5(2):157-263
    [136]赵永生,郑魁敬,李秦川等.5-UPS/PRPU五自由度并联机床运动学分析[J].机械工程学报,2004,40(2):12-16
    [137]王洪波,黄真.六自由度并联机器人拉格朗日动力学方程[J].机器人.1990,12:23-26
    [138] Z.Ji.Dynamics Decomposition for Stewart Platforms[J].ASME Journal of Mechanical Design.1994,116(1):67-69
    [139] W.Q.D. Do, D.C.H. Yang. Inverse Dynamic Analysis and Simulation of aPlatform Type of Robot[J].Journal of Robotic Systems.1988,5(3):209-227
    [140] Z.Ji.Dynamics Decomposition for Stewart Platforms[J].ASAME Journal of Mechanial Design.1994,116(1):67-69
    [141] L.Liu,F.Lewis,G.Lebret,D.Tarlor.The Singularities and Dynamics of a Stewart Platform manipulator[J]. Journal of Intelligent and Robotic Systems.1993,8:287-308
    [142] Fichter,E.F.A Stewart Platform-Based Manipulator:General Theory and Practical Construction [J].International Journal of Robotics Research.1986,5(2):157-263
    [143]黄真等.一种新型三维移动并联机构及其位置分析[J].机器人.1999,21(7):507-513
    [144] Shen H P,Yang T L. A new method and automatic generation for kinematic analysis of complexplanar linkages based on the ordered single-opened-chains[J]. Proc. of ASME Mechanisms Conf.Minneapolis,1994,493-500
    [145]沈惠平,杨廷利.用一维搜索法求解复杂机构的全部位置解[J].机械设计与研究,2001,17(1):37-39
    [146]刘治志,罗玉峰,石志新,杨廷利.平面并联机构运动和动力分析的序单开链法[J].南昌大学学报,2007,29(3):234-238.
    [147] Shen H P,Ting K L and Yang T L. Configuration analysis of complex multi-loop linkages andmanipulator[J]. Mechanism and machine Theory,2000,35(3):353-362.
    [148]杨廷力,金琼,刘安心等.基于单开链单元的三平移并联机器人机构型综合及其分类[J].机械工程学报,2002,38(8):31-36
    [149] B. Dasgupta,T.S. Mruthyunjaya. A Newton-Euler formulation for the inverse dynamics of the Stewartplatform manipulator[J]. Mechanism and Machine Theory,1998,33(8):1135-1152
    [150]王巍,张厚祥,邓志诚等.基于串并联机构的自重构移动机器人[J].机械工程学报,2008,44(5):92-101
    [151]张国伟,宋伟刚.并联机器人动力学问题的Kane方法[J].系统仿真学报.2004,16(7):1386-1391
    [152]刘振宇,陈英林,曲道奎等.机器人标定技术研究[J].机器人,2002,24(5):447-450.
    [153]陈纯,黄玉美,韩旭炤.混联机床并联机构的逆动力学分析[J].中国机械工程,2009,20(7):784-788
    [154] STONE H W,SANDERSON A C,NEUMAN C P. A prototype Arm signature identificationsystem[C].Proc.IEEEInt.Conf.onRoboticsand Automation,Raleigh,1987,1:175182
    [155]马香峰.机器人机构学.[M]北京:机械工业出版社,1991.
    [156] Neil.Barbour,G.Schmidt,Inertial Sensor Tenology Trends[J].IEEE Sensors Journal,2001,1(4):332-339
    [157] Sanders G A, Szafraniec B,LIU Renyong et al. Fiber optic gyros for space, marine, and aviationapplications[J].SPIE.1996,2837:61-67
    [158] Kajioka H, Humagai T, Nakai H, etal. Commercial applications of mass-produced fiber opticgyros[J].SPIE.1996,2837:18-37
    [159]张桂才.光纤陀螺原理与技术[M].北京:国防工业出版社,2008
    [160]张延顺.干涉式光纤陀螺(IFOG)漂移特性的研究[D].博士学位论文,哈尔滨:哈尔滨工程大学,2002
    [161]杨叔子,吴雅,轩建平等.时间序列分析的工程应用[M],武汉:华中科技大学,2007,6(2):175-300
    [162]柳贵福.光学陀螺输入输出特性建模及补偿技术研究[D].硕士学位论文,哈尔滨:哈尔滨工程大学,2002
    [163]朱奎宝,张春熹,张小跃.光纤陀螺随机漂移ARMA模型研究[J].宇航学报,2006,27(5):1118-1121
    [164]刘建锋,江涌,丁传红.基于Kalman光纤陀螺的随机信号处理[J].宇航学报,2009,30(2):604-608
    [165]柳贵福,邢艳丽,张树侠.光纤陀螺零偏稳定性的数据建模方法研究[J].中国惯性技术学报,2001,9(3):48-52
    [166]丁科.卫星激光通信精密跟踪技术研究[D].博士学位论文,成都:中国科学院光电技术研究所,2011
    [167]李焱.舰载光电设备跟踪掠海目标的控制[J].光学精密工程,2010,18(4):935-942
    [168] Herve C.Lefevre,光纤陀螺仪[M],北京:国防工业出版社,1996
    [169]李嘉全,丁策,孔德杰等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程,2011,19(5):998-1004
    [170]博克斯.时间序列分析:预测与控制[M],北京:机械工业出版社,2011
    [171]汪顺亭,邓政.开环光纤陀螺仪特点及应用[J].中国惯性技术学报,2006,14(4):93-96
    [172]张延顺,干涉式光纤陀螺(IFOG)漂移特性的研究[D].博士学位论文,哈尔滨:哈尔滨工程大学,2002
    [173]毕永利,王连明,葛文奇.光电稳定平台控制系统中数字滤波技术研究[J].仪表技术与传感器,2005,4:54-57
    [174]张智永,范大鹏,李凯,张文博.微机电陀螺零点漂移数据滤波方法的研究[J].中国惯性技术学报,2006,14(4):67-69
    [175]刘建锋,江涌,丁传红.基于Kalman光纤陀螺的随机信号处理[J].宇航学报,2009,3:604-606
    [176]从爽,尚伟伟.并联机器人—建模、控制优化与应用[M].北京:电子工业出版社,2010
    [177]宋佐时.基于计算力矩结构的不确定性机器人控制策略研究[D].硕士学位论文,秦皇岛:燕山大学,2002
    [178] Hilkert J M.Inertially stabilized Platform technology concepts and principles,IEEE Control SystemsMagazine,2008,28(1):26-46
    [179]尚伟伟.平面二自由度并联机器人的控制策略及其性能研究[D].博士学位论文,合肥:中国科学技术大学,2008
    [180]陈爱武.小型车载稳定平台控制方法研究[D].博士学位论文,北京:中国矿业大学,2011
    [181]杨蒲,李奇.陀螺稳定平台自适应分层滑模速度控制[J].兵工学报,2008,29(7):864-869
    [182]陈鹏展.交流伺服系统控制参数自整定策略研究[D].博士学位论文,武汉:华中科技大学,2006
    [183] M.Noorbakhsh.A.Yazdizadeh.Adaptive Friction compensation in a Two-Link Planar RobotManipulator Using a New Lyapunov-Based controller[J].IEEE International Conference Control andAutomation,2010:2132-2137
    [184]张智永.光电稳定伺服机构的关键测控问题研究[D].博士学位论文,长沙:国防科技大学,2006
    [185]丁千,翟红梅.机械系统摩擦动力学研究进展[J].力学进展,2013,43(1):112-131
    [186]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2000.6
    [187] Drew J. Rankin. A Hardware-in-the-Loop Simulation Platform for the Verification and Validation ofSafety Control Systems[J]. IEEE Transactions onNuclear Science,2011,58(2):468-478
    [188]崔连虎,董印权.基于Simulink和RTX的导弹半实物仿真技术研究[J].系统仿真学报,2013,25(8):182-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700