用户名: 密码: 验证码:
破碎的图形建模与绘制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物体破碎现象的模拟不仅在游戏开发中备受关注,在其他一些领域,如电影特效制作、材料分析、军事仿真及虚拟战场环境等都有着重要的理论和实际意义。由于人们对于仿真、电影以及游戏中破碎现象模拟的真实感提出越来越高的要求,破碎模拟逐渐成为计算机图形学领域的一大热点问题。本文对破碎特效的图形建模方法及绘制技术进行了广泛而深入的研究,所做的主要工作和取得的成果有:
     (1)针对传统的基于有限元分析的破碎模拟方法需要进行复杂的物理计算,难以满足游戏、仿真中实时性的要求问题,提出了一种基于Voronoi图的刚体破碎模拟方法,通过采用预先破碎计算处理技术,实现了具有较强物理真实感的刚体破碎实时模拟。首先对脆性刚体材料破碎过程进行分析,得到拟合性较好的正态分布种子点,在此基础上采用脱机增量算法和格雷厄姆凸壳生成算法生成刚体破碎的Voronoi多边形。然后,根据能量守恒方程和材料力学分析,得到破碎区和裂纹区的半径,并根据碰撞过程中的能量转换约束条件对破碎后的碎片速度进行推导,最后对碎片间的碰撞检测以及碰撞后的速度、姿态等进行计算。实验结果表明:该方法不仅能在交互性上满足游戏、仿真的实时性需求,同时碎片的产生以及运动符合真实的物理规律,具有较强的真实感。
     (2)提出一种基于粒子和逆向破碎机制的物体受外力冲击破碎实时模拟方法。首先将对象物体离散成空间中的一系列粒子,然后采用扩展离散单元法(EDEM)来计算每个粒子的受力、加速度、速度及位置等属性;采用从微观到宏观的逆向破碎机制,通过聚类分析,将某些粒子重新组合,宏观上形成碎片;采用统一网格的数据结构,将物理计算映射到GPU通过CUDA进行计算。实验结果验证了所提出方法的有效性和鲁棒性。
     (3)提出一种基于移动元胞自动机的非均质物体破碎建模与绘制方法。将对象物体离散成空间中的元胞集合,采用移动元胞自动机方法(Movable CellularAutomata, MCA)模拟物体的材料和物理属性,并决定破碎发生的条件。采用统一网格数据结构在CUDA上实现了基于MCA的破碎模拟计算,模拟计算结果存储在顶点缓冲对象中并直接运用GPU进行绘制。实验结果表明,本文方法能更为真实地模拟非均质材质的破碎现象,同时采用GPU技术大大提高了计算与绘制的效率,与同类方法相比,性能提升了1-2个数量级,绘制帧速率基本满足实时交互需求。
     (4)针对传统无网格法在处理裂纹尖端应力场具有奇异性的问题,提出一种基于局部径向基点插值(LRPIM)的物体变形与破裂无网格模拟算法。在构造无网格法形函数时,对基函数进行径向扩充,添加一个奇异项,有效避免裂纹尖端模拟的奇异性;在此基础上,结合局部径向基点插值无网格法和基于损伤力学的破裂准则,实现了物体变形及破裂的模拟仿真过程。模拟结果由基于点的Splatting绘制技术进行显示。实验结果表明,相比以往的无网格的破碎模拟方法,本文方法解决了模拟裂纹尖端的奇异性问题,同时采用基于点的Splatting绘制技术提高了绘制的效率。
The simulation of the phenomenon of fracture has attracted widespread attention inrecent years. It has important theoretical and practical significance not only in gamedevelopment, but also in other areas, such as the production of movie special effects,materials analysis, military simulation and virtual battlefield environment, etc. As acommon physical phenomenon in everyday life, fracturing effects greatly affect theuser’s experience in virtual reality, computer game and film industry. Thus, thefracturing simulation has become a new hotspot in computer graphics in recent years.This dissertation has done deep research on graphical modeling and renderingtechnology of fracture.
     The main research achievements are detailed as follows:
     (1) Fracturing rigid body has been one of the hotspots and the difficulties in thefield of computer graphics in recent years. The common used finite element analysisalways needs complex physical calculations, which cannot meet the real-timerequirements of game and simulation. In this dissertation, a novel Voronoi diagrambased fracturing rigid body simulation approach is proposed, which gets a result withstrong physical reality in real time, by using the pre-fracture technology. Firstly, withthe analysis of fracturing progress of brittle rigid body, the seed points which fit well ofthe normal distribution are obtained, and the Voronoi polygons are generated throughthe off-line incremental algorithm and Graham Convex Hull algorithm. Secondly,according to the energy conservation equation and mechanical analysis, the radius of thefracture area and the crack area are ascertained, and in accordance with the restriction ofcollision energy conversion, the velocities of fragments are derived. Lastly, the collisiondetection has been realized and the velocity, attitude, etc. of the fragments are calculated.Experimental results show that this method can meet the real-time requirements ofgames and the interactive simulation, while the generation and movement of fragmentsconsistent with the true physical laws, and have a strong sense of reality.
     (2) In this dissertation, a particle-based framework is presented to simulate thefracture phenomenon in computer graphics field. First, the object is represented asdiscrete particles, and then we introduce the Extend Discrete Element Method (EDEM)simulation to describe the interactions between neighbouring particles based on thematerial mechanics analysis. To process the fracture, a reverse idea to traditionalmethod is used to cooperate with auxiliary cone algorithm, which called anti-fracturemechanism. The physical computation is executed on the GPU with CUDA and auniform grid data structure is used in order to search the neighbouring elementseffectively. Experiment results demonstrate the feasibility and effectiveness of ourmethod.
     (3) We introduce a novel method to simulate the fracture of heterogeneousmaterials and implement it efficiently on GPU with CUDA. First, the object isrepresented as discrete particles, named movable cellular automata, and then theMovable Cellular Automata method (MCA) is used to simulate the material andphysical properties as well as to determine when the fracture occurs. The simulation andrendering all run on GPU and the vertex buffer object (VBO) is used to avoid the costlycommunication between CPU and GPU. We demonstrate the feasibility andeffectiveness of the proposed method by the experimental results.
     (4) The traditonal meshless method is difficult to address the singularity problemof the stress field of the crack tips. This dissertation presents an efficient approach tosimulate the deformation and fracture based on the local radial point interpolationmethod (LRPIM). When the shape function is constructed, a singular term is added forthe expansion of the radial basis function. Combining the LRPIM and the fracturecriterion based on the damage mechnism, the simulation process of deformation andfracture has been implemented. And the simulation results are rendered by the splattingtechnology based on point. The experimental results show that, compared to theconventional meshless method, our method can solve the singularity problem of thecrack tips, and the efficiency of rendering has been improved profiting from thesplatting technology.
引文
[1] Burdea G C, Coiffet P (著).魏迎梅,弈悉道等(译).虚拟现实技术(第二版)[M].北京:电子工业出版社,2004.
    [2] Burdea G C. Virtual Reality System and Applications[C]. In Proceedings ofElectro’93International Conference. NJ, Edison,1993.
    [3] Parker E G, O'Brien J F. Real-Time Deformation and Fracture in a GameEnvironment[C]. Proceedings of the2009ACM SIGGRAPH/Eurographics Symposiumon Computer Animation, New Orleans, Louisiana: ACM,2009:165-175.
    [4]王冬平,柳刚《.光荣使命》填补我军军事游戏空白[N].解放军报,2011-5-13.
    [5] Terzopoulos D, Fleischer K. Modeling Inelastic Deformation: Viscolelasticity,Plasticity, Fracture[C]. Proceedings of the15th annual conference on Computergraphics and interactive techniques, ACM,1988:269-278.
    [6] Norton A, Turk G, Bacon B, et al. Animation of Fracture by PhysicalModeling[J]. Vis. Comput.1991,7(4):210-219.
    [7] O'Brien J F, Hodgins J K. Graphical Modeling and Animation of BrittleFracture[C]. Proceedings of the26th annual conference on Computer graphics andinteractive techniques, ACM Press/Addison-Wesley Publishing Co.,1999:137-146.
    [8] O'Brien J F, Bargteil A W, Hodgins J K. Graphical Modeling and Animation ofDuctile Fracture[C]. Proceedings of the29th annual conference on Computer graphicsand interactive techniques, San Antonio, Texas: ACM,2002:291-294.
    [9] Muller M, Mcmillan L, Dorsey J, et al. Real-Time Simulation of Deformationand Fracture of Stiff Materials[C]. Proceedings of the Eurographic workshop onComputer animation and simulation, Manchester, UK: Springer-Verlag New York, Inc.,2001:113-124.
    [10] Muller M, Teschner M, Gross M. Physically-Based Simulation of ObjectsRepresented by Surface Meshes[C]. Proceedings of the Computer GraphicsInternational, IEEE Computer Society,2004:26-33.
    [11] Molino N, Bao Z, Fedkiw R. A Virtual Node Algorithm for Changing MeshTopology During Simulation[C]. ACM SIGGRAPH2004Papers, Los Angeles,California: ACM,2004:385-392.
    [12] Bao Z, Hong J, Teran J, et al. Fracturing Rigid Materials[J]. IEEETransactions on Visualization and Computer Graphics.2007,13(2):370-378.
    [13] Su J, Schroeder C, Fedkiw R. Energy Stability and Fracture for Frame RateRigid Body Simulations[C]. Proceedings of the2009ACM SIGGRAPH/EurographicsSymposium on Computer Animation, New Orleans, Louisiana: ACM,2009:155-164.
    [14] Smith J, Witkin A, Baraff D. Fast and Controllable Simulation of theShattering of Brittle Objects[Z].2001:20,81-91.
    [15]曾亮,吴亚刚.软体多局部破碎特效研究[J].计算机学报.2010(6):1110-1114.
    [16] O'Brien J F, Hodgins J K. Animating Fracture[J]. Commun. ACM.2000,43(7):68-75.
    [17] Kü üky lmaz A, zgü B. An Animation System for Fracturing of RigidObjects[M]. Computer and Information Sciences-ISCIS2005, Yolum P, Güng r T, Gürgen F, et al, Springer Berlin/Heidelberg,2005:3733,688.
    [18] Sifakis E, Der K G, Fedkiw R. Arbitrary Cutting of DeformableTetrahedralized Objects[C]. Proceedings of the2007ACM SIGGRAPH/Eurographicssymposium on Computer animation, San Diego, California: Eurographics Association,2007:73-80.
    [19] Weinstein R, Teran J, Fedkiw R. Dynamic Simulation of Articulated RigidBodies with Contact and Collision[J]. IEEE Transactions on Visualization andComputer Graphics.2006,12(3):365-374.
    [20] Terzopoulos D, Witkin A. Physically Based Models with Rigid andDeformable Components[J]. IEEE Comput. Graph. Appl.1988,8(6):41-51.
    [21] Mazarak O, Martins C, Amanatides J. Animating Exploding Objects[C].Proceedings of the1999conference on Graphics interface '99, Kingston, Ontario,Canada: Morgan Kaufmann Publishers Inc.,1999:211-218.
    [22] Guendelman E, Bridson R, Fedkiw R. Nonconvex Rigid Bodies withStacking[C]. ACM SIGGRAPH2003Papers, San Diego, California: ACM,2003:871-878.
    [23] Aoki K, Dong N H, Kaneko T, et al. Physically Based Simulation of CracksOn Drying3D Solid[C]. Proceedings of the10th Pacific Conference on ComputerGraphics and Applications, IEEE Computer Society,2002:467.
    [24] Desbrun M, Gascuel M. Animating Soft Substances with Implicit Surfaces[C].Proceedings of the22nd annual conference on Computer graphics and interactivetechniques, ACM,1995:287-290.
    [25] Muller M, Keiser R, Nealen A, et al. Point Based Animation of Elastic, Plasticand Melting Objects[C]. Proceedings of the2004ACM SIGGRAPH/Eurographicssymposium on Computer animation, Grenoble, France: Eurographics Association,2004:141-151.
    [26] Muller M, Heidelberger B, Teschner M, et al. Meshless Deformations BasedOn Shape Matching[C]. ACM SIGGRAPH2005Papers, Los Angeles, California: ACM,2005:471-478.
    [27] Pauly M, Keiser R, Adams B, et al. Meshless Animation of FracturingSolids[C]. ACM SIGGRAPH2005Papers, Los Angeles, California: ACM,2005:957-964.
    [28] Guo X, Qin H. Real-Time Meshless Deformation: Collision Detection andDeformable Objects[J]. Comput. Animat. Virtual Worlds.2005,16(3-4):189-200.
    [29] Bell N, Yu Y, Mucha P J. Particle-Based Simulation of Granular Materials[C].Proceedings of the2005ACM SIGGRAPH/Eurographics symposium on Computeranimation, Los Angeles, California: ACM,2005:77-86.
    [30] Imagire T, Johan H, Nishita T. A Fast Method for Simulating Destruction andthe Generated Dust and Debris[J]. Vis. Comput.2009,25(5-7):719-727.
    [31] Zhang N, Zhou X, Sha D, et al. Integrating Mesh and Meshfree Methods forPhysics-Based Fracture and Debris Cloud Simulation[Z].2006:145-154.
    [32] Liu N, He X, Li S, Wang G. Meshless Simulation of Brittle Fracture[J].Comput. Animat. Virtual Worlds.2011,22:115-124.
    [33] Guo X, Li X, Bao Y, et al. Meshless Thin-Shell Simulation Based On GlobalConformal Parameterization[J]. IEEE Transactions on Visualization and ComputerGraphics.2006,12(3):375-385.
    [34] Muller M, Charypar D, Gross M. Particle-Based Fluid Simulation forInteractive Applications[C]. Proceedings of the2003ACM SIGGRAPH/Eurographicssymposium on Computer animation, San Diego, California: Eurographics Association,2003:154-159.
    [35] Tanaka M, Sakai M, Ishikawajima-Harima, et al. Rigid Body SimulationUsing a Particle Method[C]. ACM SIGGRAPH2006Research posters, Boston,Massachusetts: ACM,2006:132.
    [36] Jiangfan Ning, Huaxun Xu, Liang Zeng, Sikun Li. Particle-based FractureSimulation on the GPU[J]. Transactions on Edutainment VI, LNCS6758Springer-Verlag,2011:193-205.
    [37] Jiangfan Ning, Huaxun Xu, Liang Zeng, Sikun Li. Real-time FractureAnimation of Heterogeneous Material on GPU[C]. In Proceedings of ComputerGraphics International,2011.
    [38] Jiangfan Ning, Huaxun Xu, Bo Wu, Liang Zeng, Sikun Li, Yueshan Xiong.MCA-based Animation of Fracturing Heterogeneous Objects[C]. In Proceedings of the12thInternational Conference on CAD/Graphics, IEEE Computer Society,2011:357-364.
    [39] Jiangfan Ning, Huaxun Xu, Bo Wu, Liang Zeng, Sikun Li, Yueshan Xiong.Modeling and Animation of Fracture of Heterogeneous Materials based on CUDA[J].The Visual Computer,2013,29(4):265-275.
    [40] Bo Wu, Jiangfan Ning, Jiawen Ma, Liang Zeng, Sikun Li. Local Deformationand Crack Simulation of Plastic Thin Shell[C]. In Proceedings of2011InternationalConference on Virtual Reality and Visualization, IEEE Computer Society,2011:152-157.
    [41] Liang Zeng, Bo Wu, Jiangfan Ning, Jiawen Ma, Sikun Li. MeshlessSimulation of Plastic Deformation and Crack[J]. Transactions on Edutainment VIII,LNCS7220Springer-Verlag,2012:127-137.
    [42] Raghavachary S. Fracture Generation On Polygonal Meshes Using VoronoiPolygons[C]. ACM SIGGRAPH2002conference abstracts and applications, SanAntonio, Texas: ACM,2002:187.
    [43] Mould D. Image-Guided Fracture[C]. Proceedings of Graphics Interface2005,Victoria, British Columbia: Canadian Human-Computer Communications Society,2005:219-226.
    [44] Oda O, Chenney S. Fast Dynamic Fracture of Brittle Objects[C]. ACMSIGGRAPH2005Posters, Los Angeles, California: ACM,2005:113.
    [45] Oda O, Subramaniam N. Fast Dynamic Fracture of Brittle Objects in3D[C].ACM SIGGRAPH2006Research posters, Boston, Massachusetts: ACM,2006:128.
    [46] Eberle D, Havok O S, O'Sullivan R. A Procedural Approach to ModelingImpact Damage[C]. ACM SIGGRAPH2003Poster. San Diego, California: ACM,2003:1.
    [47] Martinet A, Galin E, Desbenoit B, et al. Procedural Modeling of Cracks andFractures[C]. Proceedings of the Shape Modeling International2004, IEEE ComputerSociety,2004:346-349.
    [48]曾亮,吴亚刚,李思昆.实时刚体破碎特效仿真研究[J].计算机研究与发展.2010(6):1032-1037.
    [49]曾亮,吴亚刚.基于体元刚体破碎特效仿真[J].计算机工程与科学.2009:260-262.
    [50] Steinemann D, Otaduy M A, Gross M. Fast Arbitrary Splitting of DeformingObjects[C]. Proceedings of the2006ACM SIGGRAPH/Eurographics symposium onComputer animation, Vienna, Austria: Eurographics Association,2006:63-72.
    [51] Zheng C, James D L. Rigid-Body Fracture Sound with PrecomputedSoundbanks[C]. ACM SIGGRAPH2010papers, Los Angeles, California: ACM,2010:1-13.
    [52] Wyvill B, Van Overveld K, Carpendale S. Rendering Cracks in Batik[C].Proceedings of the3rd international symposium on Non-photorealistic animation andrendering, Annecy, France: ACM,2004:61-149.
    [53] Irving G, Schroeder C, Fedkiw R. Volume Conserving Finite ElementSimulations of Deformable Models[C]. ACM SIGGRAPH2007papers, San Diego,California: ACM,2007:13.
    [54] Taubman G, Chang E. A Fast Fracture Method for Exploding Structures[C].ACM SIGGRAPH2004Posters, Los Angeles, California: ACM,2004:88.
    [55] Desbenoit B, Galin E, Akkouche S. Modeling Cracks and Fractures[J]. TheVisual Computer.2005,21(8):717.
    [56] Irving G, Teran J, Fedkiw R. Tetrahedral and Hexahedral Invertible FiniteElements[J]. Graph. Models.2006,68(2):66-89.
    [57] Hellrung J, Selle A, Shek A, et al. Geometric Fracture Modeling in Bolt[C].SIGGRAPH2009: Talks, New Orleans, Louisiana: ACM,2009:1.
    [58]张正军,吴慧中,刘伯英.半边结构的爆炸破片生成方法[J].计算机辅助设计与图形学学报.2002(7):671-675.
    [59]张正军,吴慧中,张芹.基于半边结构的爆炸破片模型的随机分类构造法[J].计算机辅助设计与图形学学报.2001(11):991-994.
    [60]周永霞,石教英,郁佳荣.基于物理的烟雾动画[J].计算机辅助设计与图形学学报.2006(9):1367-1371.
    [61]武红霞,严应超.可控制的物体破碎模拟[J].河南理工大学学报(自然科学版).2005(2):126-128.
    [62]吴亚刚.实体破碎特效仿真建模及其渲染技术研究与实现[D].国防科学技术大学,2009.
    [63]吴博.物体变形破碎仿真建模及其绘制技术的研究与实现[D].国防科学技术大学,2011.
    [64]宁江凡,路石,李思昆.基于Voronoi图的实时刚体破碎模拟[J].计算机辅助设计与图形学学报,2011,23(5):825-832.
    [65] Jiangfan Ning, Sikun Li. A Fast Approach to Simulate Fracture of RigidBody[C]. In Proceedings of2010International Conference on Audio, Language andImage Processing, IEEE Computer Society,2010:1301-1305.
    [66] Jiangfan Ning, Shi Lu, Bo Wu, Sikun Li. Research and Implement of RigidBody Fracturing Simulation Based on Ogre and Newton Engine[C]. In Proceedings of2012International Conference on Computer Application and System Modeling, AtlantisPress,2012:1329-1332.
    [67]宁江凡,熊岳山,李思昆.图形学中的破碎模拟动画研究进展[J].系统仿真学报,2012,24(1):1-5.
    [68]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005
    [69]刘土光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008.
    [70]洪范文.结构力学(第五版)[M].北京:高等教育出版社,2005.
    [71] P.查德维克(著).傅依斌(译).连续介质力学[M].天津:天津大学出版社,1992.
    [72]戴天民.张量和连续介质力学[M].沈阳:辽宁大学出版社,1986.
    [73]杨桂通,树学锋.塑性力学[M].太原:中国建材工业出版社,1999.
    [74]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.
    [75] F.V.沃诺克,P.P.本哈姆(著).江秉琛,刘相臣,张汝清,陈泽光,胡国华(译).固体力学和材料强度[M].北京:人民教育出版社,1982.
    [76]钟群鹏,金星,洪延姬,陶春虎.断裂失效的概率分析和评估基础[M].北京:北京航空航天大学出版社,2000.
    [77]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [78]周培德.计算几何—算法设计与分析(第三版)[M].北京:清华大学出版社,2008.
    [79]陈魁.应用概率统计[M].北京:清华大学出版社,2000.
    [80] Hearn D, Baker M P (著).蔡士杰,宋继强,蔡敏(译).计算机图形学(第三版)[M].北京:电子工业出版社,2005.
    [81]邸锐.OGRE3D游戏开发框架指南[M].北京:电子工业出版社,2010.
    [82] Pauly M, Keiser R, Kobbelt L P, et al. Shape Modeling with Point-SampledGeometry[C]. ACM SIGGRAPH2003Papers, San Diego, California: ACM,2003:641-650.
    [83]王国强.郝万军.王继新.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010.5.
    [84]张小红.模糊逻辑及其代数分析[M].北京:科学出版社,2008.
    [85] Pharr M (著).龚敏敏(译).GPU精粹2—高性能图形芯片和通用计算编程技巧[M].北京:清华大学出版社,2007.
    [86] Green S. Cuda Particles[J]. NVIDIA Whitepaper, November.2007.
    [87]张舒,褚艳利,赵开勇,张钰勃.GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2009.
    [88] Hsieh H, Tai W. A Straightforward and Intuitive Approach On Generation andDisplay of Crack-Like Patterns On3D Objects[M]. Advances in Computer Graphics,Nishita T, Peng Q, Seidel H, Springer Berlin/Heidelberg,2006:4035,554.
    [89] Neff M, Fiume E. A Visual Model for Blast Waves and Fracture[C].Proceedings of the1999conference on Graphics interface '99, Kingston, Ontario,Canada: Morgan Kaufmann Publishers Inc.,1999:193-202.
    [90] Selle A, Rasmussen N, Fedkiw R. A Vortex Particle Method for Smoke,Water and Explosions[C]. ACM SIGGRAPH2005Papers, Los Angeles, California:ACM,2005:910-914.
    [91] Yngve G D, O'Brien J F, Hodgins J K. Animating Explosions[C]. Proceedingsof the27th annual conference on Computer graphics and interactive techniques, ACMPress/Addison-Wesley Publishing Co.,2000:29-36.
    [92] Ek L A, Vistnes R, Gundersen O E. Animating Physically Based Explosionsin Real-Time[C]. Proceedings of the5th international conference on Computer graphics,virtual reality, visualisation and interaction in Africa, Grahamstown, South Africa:ACM,2007:61-69.
    [93] Feldman B E, O'Brien J F, Arikan O. Animating Suspended ParticleExplosions[C]. ACM SIGGRAPH2003Papers, San Diego, California: ACM,2003:708-715.
    [94] Iben H N, O'Brien J F. Generating Surface Crack Patterns[C]. Proceedings ofthe2006ACM SIGGRAPH/Eurographics symposium on Computer animation, Vienna,Austria: Eurographics Association,2006:177-185.
    [95] Bashforth B, Yang Y. Physics-Based Explosion Modeling[J]. Graph. Models.2001,63(1):21-44.
    [96] Sifakis E, Shinar T, Irving G, et al. Hybrid Simulation of DeformableSolids[C]. Proceedings of the2007ACM SIGGRAPH/Eurographics symposium onComputer animation, San Diego, California: Eurographics Association,2007:81-90.
    [97] Chentanez N, Feldman B E, Fran, et al. Liquid Simulation On Lattice-BasedTetrahedral Meshes[C]. Proceedings of the2007ACM SIGGRAPH/Eurographicssymposium on Computer animation, San Diego, California: Eurographics Association,2007:219-228.
    [98] Reeves W T. Particle Systems-a Technique for Modeling a Class of FuzzyObjects[J]. ACM Trans. Graph.1983,2(2):91-108.
    [99] Chen J X, Fu X, Wegman J. Real-Time Simulation of Dust BehaviorGenerated by a Fast Traveling Vehicle[J]. ACM Trans. Model. Comput. Simul.1999,9(2):81-104.
    [100] Wei X, Li W, Mueller K, et al. The Lattice-Boltzmann Method forSimulating Gaseous Phenomena[J]. IEEE Transactions on Visualization and ComputerGraphics.2004,10(2):164-176.
    [101] Losasso F, Talton J, Kwatra N, et al. Two-Way Coupled SPH and ParticleLevel Set Fluid Simulation[J]. IEEE Transactions on Visualization and ComputerGraphics.2008,14(4):797-804.
    [102] Chertov M, Smolin A, Sapozhnikov G, et al. The Effect of Surface WavesOn the Interaction of Incident Particles with a Solid Surface[J]. Technical PhysicsLetters.2004,30(12):1009.
    [103] Robinson-Mosher A, Shinar T, Gretarsson J, et al. Two-Way Coupling ofFluids to Rigid and Deformable Solids and Shells[C]. ACM SIGGRAPH2008papers,Los Angeles, California: ACM,2008:1-9.
    [104] Shinar T, Schroeder C, Fedkiw R. Two-Way Coupling of Rigid andDeformable Bodies[C]. Proceedings of the2008ACM SIGGRAPH/EurographicsSymposium on Computer Animation, Dublin, Ireland: Eurographics Association,2008:95-103.
    [105] Psakhie S G, Zavshek S, Jezershek J, et al. Computer-Aided Examinationand Forecast of Strength Properties of Heterogeneous Coal-Beds[J]. Computationalmaterials science.2000,19(1-4):69-76.
    [106] Psakhie S G, Zavshek S, Jezershek J, et al. Computer-Aided Examinationand Forecast of Strength Properties of Heterogeneous Coal-Beds[J]. Computationalmaterials science.2000,19(1-4):69-76.
    [107] Psakhie S G, Horie Y, Korostelev S Y, et al. Method of Movable CellularAutomata as a Tool for Simulation within the Framework of Mesomechanics[J].Russian Physics Journal.1995,38(11):1157.
    [108] Psakhie S, Smolin A, Stefanov Y, et al. Modeling the Behavior of ComplexMedia by Jointly Using Discrete and Continuum Approaches[J]. Technical PhysicsLetters.2004,30(9):712.
    [109] Psakhie S G, Moiseyenko D D, Smolin A Y, et al. The Features of Fractureof Heterogeneous Materials and Frame Structures. Potentialities of Mca Design[J].Computational materials science.1999,16(1-4):333-343.
    [110] Psakhie S G, Korostelev S Y, Smolin A Y, et al. Movable Cellular AutomataMethod as a Tool for Physical Mesomechanics of Materials[J]. PhysicalMesomechanics.1998,1(1):89-101.
    [111] Psakhie S G, Horie Y, Ostermeyer G P, et al. Movable Cellular AutomataMethod for Simulating Materials with Mesostructure[J]. Theoretical and appliedfracture mechanics.2001,37(1-3):311-334.
    [112] Psakhie S, Shilko E, Popov V, et al. Assessment of Nanostructured CeramicCoating Damage. Nanotribospectroscopy[J]. Russian Physics Journal.2009,52(4):380.
    [113] Dmitriev A I, Schargott M, Popov V L. Direct Modelling of SurfaceTopography Development in a Micro-Contact with the Movable Cellular AutomataMethod[J]. Wear.2010,268(7-8):877-885.
    [114] Dmitriev A, Popov V. Numerical Modeling of Processes of Mass Transfer inTribological Contacts by the Method of Movable Cellular Automata[J]. Journal ofFriction and Wear.2009,30(1):12.
    [115] St, Gobron P, Chiba N. Crack Pattern Simulation Based On3D SurfaceCellular Automaton[C]. Proceedings of the International Conference on ComputerGraphics, IEEE Computer Society,2000:153.
    [116] Popov V L, Psakhie S G, Dmitriev A, et al. Quasi-Fluid Nano-Layers at theInterface Between Rubbing Bodies: Simulations by Movable Cellular Automata[J].Wear.2003,254(9):901-906.
    [117]陈克,黄德武.MCA方法在金属材料涂层性能研究中的应用[J].计算力学学报.2003,20(4):472-477.
    [118]陈克,黄德武,何俊.MCA法模拟研究骨料对混凝土靶抗弹性能的影响[J].兵器材料科学与工程.2005,28(1):31-34.
    [119]陈克.MCA方法与弹丸侵彻混凝土过程研究[D].南京理工大学,2005.
    [120]荣光,黄德武,陈克等.MCA方法在长杆弹侵彻土壤及混凝土复合介质中的应用[J].弹箭与制导学报.2005,25(3):60-63.
    [121]陈克,苏向东,黄德武.MCA方法在模拟弹丸侵彻混凝土中的应用[J].弹道学报.2007,19(4):63-66.
    [122]陈克,姚俊,黄德武.弹丸对混凝土板侵彻的MCA方法数值模拟[J].弹箭与制导学报.2006,26(3):117-120.
    [123]何俊,黄德武,陈克.弹丸侵彻土壤及混凝土介质的MCA方法研究[J].沈阳工业学院学报.2004,23(3):68-71.
    [124]陈克,黄德武,刘焜.基于MCA方法研究高速冲击下混凝土高压状态方程[J].弹箭与制导学报.2008,28(6):123-125.
    [125]黄德武,陈克.模拟材料损伤的移动元胞自动机法[J].南京理工大学学报:自然科学版.2005,29(3):292-295.
    [126]陈克,黄德武,Psakhie S. G.模拟长杆弹侵彻混凝土靶的MCA方法[J].爆炸与冲击.2004,24(2):127-132.
    [127] Nguyen H (著).杨柏林,陈根浪,王聪(译).GPU精粹3[M].北京:清华大学出版社,2010.
    [128] Chopard B, Droz M (著).祝玉学,赵学龙(译).物理系统的元胞自动机模拟
    [M].北京:清华大学出版社,2003.
    [129]任全.基于元胞自动机容灾系统模型的研究[D].华中科技大学,2008.
    [130]谭云亮,周辉,王泳嘉,马志涛.模拟细观非均质材料破坏演化的物理元胞自动机理论[J].物理学报.2001,50(4):704-710.
    [131] Harada T, Koshizuka S, Kawaguchi Y. Sliced Data Structure forParticle-Based Simulations On GPUs[C]. Proceedings of the5th internationalconference on Computer graphics and interactive techniques in Australia and SoutheastAsia, Perth, Australia: ACM,2007:55-62.
    [132] Harris M J, Coombe G, Scheuermann T, et al. Physically-Based VisualSimulation On Graphics Hardware[C]. Proceedings of the ACMSIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Saarbrucken,Germany: Eurographics Association,2002:109-118.
    [133] Georgii J, Westermann R. Mass-Spring Systems On the GPU[J]. SimulationModelling Practice and Theory.2005,13(8):693-702.
    [134] Liu W, Schmidt B, Voss G, et al. Accelerating Molecular DynamicsSimulations Using Graphics Processing Units with Cuda[J]. Computer PhysicsCommunications.2008,179(9):634-641.
    [135]多相复杂系统国家重点实验室多尺度离散模拟项目组.基于GPU的多尺度离散模拟并行计算[M].北京:科学出版社,2009.
    [136]徐华勋.复杂流场特征提取与可视化方法研究[D].国防科学技术大学,2011.
    [137] Carlson M, Mucha P, Van Horn III B, Turk G. Melting and Flowing[C]. InProceedings of the2002ACM SIGGRAPH Symposium on Computer Animation,2002
    [138] Nguyen D Q, Fedkiw R, Jensen H W. Physically Based Modeling andAnimation of Fire[C]. In Proceedings of the29thannual conference on computergraphics and interactive techniques, ACM Press,2002:721-728.
    [139] Fedkiw R, Stam J, Jensen H W. Visual Simulation of Smoke[C]. InSIGGRAPH2001, Computer Graphics Proceedings, ACM Press,2001:15-22.
    [140]严默非.无网格法及其应用研究[D].大连理工大学,2009.
    [141]宋卫峰.基于径向基点插值无网格法(RPIM法)研究及应用[D].西安理工大学,2009.
    [142]张雄,刘岩(著).无网格法[M].北京:清华大学出版社,2004.8.
    [143]刘桂荣,顾元通(著).王建明,周学军(译).无网格法理论及程序设计[M].济南:山东大学出版社,2007.1.
    [144]李银平,王汉元.关于损伤力学的哲学思考[J].力学与实践.2003,25(4):73-74.
    [145]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [146] J.勒迈特(著).倪金刚,陶春虎(译).损伤力学教程[M].北京:科学出版社,1996.
    [147] Grady D E, Kipp M E. Continuum modelling of explosive fracture in oilshale[J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts1980,17(3):147–157.
    [148]李兆霞,钱济成.损伤力学的现状和发展[J].河海大学科技情报.1998.01:58-70.
    [149] Levoy M, Whitted T. The Use of Points as Display Primitives[R]. TechnicalReport, CS Department, University of North Carolina at Chapel Hill,1985.
    [150]高秀芬,陈福民.基于点的图形绘制技术[J].计算机工程与应用.2005.09:20-22.
    [151]冯月萍,钟慧湘,庞云阶.基于点的绘制方法研究[J].吉林大学学报(理学版).2005,43(5):617-621.
    [152]张武,黄争舸,张桢夏.点绘制技术的研究[J].计算机工程.2007,33(5):197-199.
    [153]张扬之.基于点的图形绘制技术综述[J].科技信息.2010,36:248
    [154]田海山,何援军,蔡鸿明.基于点的计算机图形学综述[J].系统仿真学报.2006,18(S1):42-45.
    [155] J.P. Grossman and W.J. Dally. Point Sample Rendering[C]. EurographicsRendering Workshop,1998:181-192.
    [156] H. Pfister, M. Zwicker, J.V. Baar, M. Gross. Surfels: Surface Elements asRendering Primitives [C]. ACM SIGGRAPH2000Proceedings,2000:335-342.
    [157] Gross M, Pfister H. Point-Based Graphics[M]. MORGAN KAUFMANN,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700