用户名: 密码: 验证码:
介质阻挡放电图像识别方法及均匀性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电(DBD)是一种典型的能够在常温常压下产生大量高能量密度的非平衡等离子体源,目前已被广泛应用于臭氧制备、高功率激光器、等离子体流动控制等诸多领域。由于工业应用的需要,放电的均匀性一直是研究的热点问题。目前所谓均匀放电仅指的是短时间尺度上(ns级)无任何微放电细丝的绝对均匀放电,但实际上工业应用并不需要限制在这种绝对均匀的放电上。相反,更为需要的是由大量微放电细丝构成的长时间尺度上相对均匀的放电。由此引出这种放电的均匀性如何定量评价的问题,如何产生不同均匀性的放电及提高均匀性的问题,以及均匀放电和绝对均匀放电的物理机制问题。本文以DBD均匀性为主要研究对象,通过采用数字图像处理技术并结合电气参数测量手段及近似解析计算方法对其开展了研究,所取得的成果如下:
     提出了一种利用数字图像处理技术中的灰度直方图(GLH)来定量识别DBD均匀性的新方法。该方法克服了传统方法复杂、繁琐及价格昂贵等缺点,能够简单和有效地识别丝状和均匀放电模式并定量评价放电均匀性。GLH方法的有效性得到了能产生绝对均匀放电的低气压实验和一般采用的电流波形区别方法的验证。在此基础上,通过采用信赖域算法求解非线性最小二乘问题得到双高斯及单高斯概率模型的参数,建立了丝状和均匀放电的灰度概率模型并将该模型应用于DBD放电特性的研究。
     提出了通过数字图像处理技术中的傅里叶能量谱(FES)、空间自相关函数(ACF)及灰度共生矩阵(GLCM)来定量识别DBD图像空间结构的方法。ACF方法具有噪声抑制能力强、对象识别能力强、不需要任何预处理过程等明显优点,有效识别了丝状、周期性及均匀放电图像的空间结构。该方法的有效性通过对DBD斑图空间结构的识别得到验证。
     研究了丝网电极对DBD均匀性的影响。(1)实现了具有空间周期特征丝网电极的均匀放电,部分特征尺度下的均匀性要好于平板电极。实验结果表明:如果丝网电极的孔径L足够大(L≥1.5mm),周期性的放电点将在每一个网格点上出现;如果L相对较小(1.25mm≥L≥0.6mm),周期性的放电点将交替出现;如果L≤0.5mm,放电点将随机分布在电极表面,且其密集程度会超过平板电极,其中放电点没有产生在每一个网格点上的原因与电子崩尺寸大小有关。FES及ACF分析验证了上述实验结果。(2)提出了定量评价DBD均匀性的指标——图像的灰度变异系数(CV):CV越小,放电越均匀,反之,则越不均匀。研究结果表明,在一定程度上,随着L的减小,CV逐渐减小,放电均匀性逐渐增加。(3)提出了控制丝网放电均匀性的标度不变量h来分析导致相对均匀DBD的物理机制,其中h包含了L及归一化的电子崩头部电场变化率的综合效应。研究结果表明,不同丝网电极h的变化趋势和CV的变化趋势基本一致,意味着采用h可以从理论上较好地解释导致丝网电极放电均匀性的物理机制。
     研究了气体成分对DBD均匀性的影响。(1)发现采用GLH方法可以识别不同性质气体放电的均匀性。研究结果表明,非惰性气体(空气和氮气)放电图像对应的GLH及CV与外电压的关系曲线与惰性气体(氦气和氩气)存在明显不同,前者分别具有更大的半高宽及产生了明显的向右偏移。(2)发现氮气中加入氩气有利于提高放电均匀性。CV计算结果表明,空气、氮气、氦气、氮气/氩气混合气体及氩气放电图像对应的CV依次减小,放电均匀性依次增加。(3)DBD微放电扩展等效电气模型的计算结果表明,具有较小击穿电压的气体,所产生的微放电更容易扩展到整个电极表面,越容易形成均匀放电。另外,由于氩原子亚稳态能量明显高于氮分子亚稳态的能量,氮气中氩气的加入使得混合气体更容易通过彭宁电离产生种子电子,因此相比氮气更容易形成均匀放电。
     研究了均匀DBD形成的物理机制。(1)在综合考虑电子崩头部扩散和静电排斥作用的基础上,建立了多电子崩径向扩展动力学模型,提出了一个与外电场、气压、电子温度、预电离非均匀性及阀值有关的形成均匀放电所需最小种子电子密度的表达式,相关实例验证了该模型的有效性。(2)在此基础上,对单一气隙介质及DBD中的电子崩发展过程进行了近似解析计算。结果表明,当电子崩发展到一定阶段时,崩头的扩展机制将由扩散扩展过渡到静电排斥扩展。另外,通过提高种子电子数以减小电子崩的初始间距将有利于实现相邻电子崩之间的耦合,从而提高了放电均匀性。上述结果较好地验证了电子崩径向扩展动力学模型的正确性,同时也有助于加深对均匀DBD物理机制的理解。
Dielectric barrier discharge (DBD) is a typical non-equilium plasma source atatmospheric pressure, which has been extensively used for various industrial applications,such as ozone production, high power lasers and the plasma flow control. The uniformity ofdischarge has been a research focus due to the needs of industrial applications. Now theso-called uniform discharge only refers to the absolute uniform discharge without anymicrodischarges in a short timescale (ns). But in fact the uniform discharge used inindustrial applications does not need to be limited to the absolute uniform discharge. On thecontrary, the relative uniform discharge consisted by a large number of microdischarges ina long timescale may meet the needs of more industrial applications. Therefore, theproblems on how to evaluate this discharge uniformity quantitatively, how to produce thedischarge with different uniformity, how to improve discharge uniformity, and the physicalmechanisms of uniform and absolutely uniform discharge are raised. This paper studied theuniformity of DBD by using digital image processing technology, electrical measurementsand approximate analytical calculation method, the research results are as follows:
     A new method—gray level histogram (GLH) based on the digital image processingtechnology was proposed to classify the uniformity of DBD quantitatively. Thedisadvantages of complex, cumbersome and expensive can well be overcome by using theGLH method instead of the conventional method. So it can be used to classify thefilamentary and uniform discharge and evaluate the discharge uniformity quantitatively in asimple and effective way. In addition, the effectiveness of the GLH method in classifyingthe different discharge modes was validated by the experiments under low pressure whichcan produce absolutely uniform discharge and the distinguishing method of currentwaveform which commonly used by researchers. Moreover, the gray level probabilitymodel of filamentary and uniform discharge were established by obtaining the parametersof double Gaussian and single Gaussian probability model, which were obtained by solvingnonlinear least squares problems using trust region algorithm. Furthermore, the model wasapplied to study the discharge characteristics of DBD.
     Fourier energy spectrum (FES), autocorrelation function (ACF) and gray levelco-occurrence matrix (GLCM) method based on the digital image processing technologywere proposed to identified quantitatively the spatial structure of the discharge image in DBD. The spatial structure of filamentary, periodic and homogeneous discharge wereidentified effectively by using thev ACF method for the obvious advantages of suppressingthe noise, high object recognition ability and requiring not any preprocessing. Theeffectiveness of the ACF method was validated by identifying the spatial structure ofpatterns in DBD.
     The influences of mesh electrodes on the uniformity of DBD were studied.(1) Theuniform discharge was produced by using the mesh electrodes with a characteristic ofspatial period, and the discharge uniformity produced by some mesh electrodes with certaincharacteristic lengths was better than plate electrode. If the aperture of the mesh electrodewas long enough (L≥1.5mm), those periodic discharge spots will be produced on every gridnode of the mesh electrode. If the aperture was slightly smaller (1.25mm≥L≥0.6mm), thoseperiodic discharge spots will not be produced on every grid node, but on alternate gridnodes. If L≤0.5mm, the discharge spots will be distributed randomly and even more denselythan when produced by a planar electrode.The reason that these periodic spots were notproduced on every grid node should be related to the size of an avalanche. Theexperimental results mentioned above were validated by analysis of the FES and ACF.(2)A coefficient of variation (CV) of discharge image was proposed to evaluate the uniformityof the discharge qualitatively. The smaller the CV, the more uniform the discharge will be.The research results show that the CV decreases gradually as the aperture of the electrodedecreases to a certain extent, thus the uniformity increases.(3) A new dimensionless scaleinvariant (h) was introduced to analyze the physical mechanisms leading to the relativelyuniform DBD, which includes the combined effect of the aperture and the normalizedchange rate of the field strength of the avalanche head. The research results show that thevariations of CV and h for the different electrodes have almost the same trends. This meansthat the physical mechanisms leading to the uniform discharge in mesh electrode can bewell explained by using the h.
     The influences of gaseous species on the uniformity DBD were studied.(1) It wasfound that the discharge uniformity in different types of gases can be classified by using theGLH method. The research results show that the GLH and the dependence of the CV onapplied voltage for non-noble gases (Air, N2) were much different from the noble gas (He,Ar).(2) The addition of Ar to N2can help to improve the discharge uniformity. Thecalculated results of the CV for different gases show that the CV decreases in the order Air,N2, He, N2/Ar gas mixture and Ar, thus the discharge uniformity increases successively.(3)The calculation results of the equivalent electrical model of microdischarge expand in DBD show that the gas with smaller breakdown voltage can make the microdischarge easier toexpand the entire electrode surface and form uniform discharge. Moreover, the energy ofatomic metastables in argon was significantly higher than the energy of moleculesmetastable in nitrogen, so more seed electrons can be produced through penning ionizationwhen the addition of Ar to N2, which was beneficial to forming uniform discharge in N2/Argas mixture.
     The physical mechanisms leading to the uniform DBD were studied.(1) A multipleelectron avalanches radial expansion dynamic model was established by considering theeffects of electron diffusion and electrostatic repulsion in the avalanche head. Theminimum required preionization level for the formation of multiple electron avalanchescoupling was found to be dependent on electric field strength, gas pressure, electrontemperature, the heterogeneity of preionization level and threshold value. Moreover, theeffectiveness of the model was validated by a relevant application example.(2) Theapproximate analytical calculation on the development of electron avalanches in pure gasdielectric and DBD were carried out. The results show that the expansion mechanisms inthe avalanche head will transit from free electron diffusion to electrostatic repulsion whenthe electron avalanche develops to a certain stage. Moreover, reducing the initial spacingbetween electron avalanches by improving the seed electron is beneficial to coupling theadjacent electron avalanches, thus improving the discharge uniformity. The above resultsvalidate the self-consistency of the electron avalanche radial expansion dynamic model,which can help us better understand the physical mechanisms leading to the uniform DBD.
引文
[1] Crookes W. Contributions to molecular physics in high vacua magnetic deflection ofmolecular trajectory. Laws of magnetic rotation in high and low vacua.Phosphorogenic properties of molecular discharge[J]. Philosophical Transactions ofthe Royal Society of London,1987,170:641-662.
    [2] Langmuir I. Oscillations in ionized gases[J]. Proceedings of the National Academyof Sciences of the United States of America,1928,14(8):627-637.
    [3] Roth J R. Industrial Plasma Engineering Vol II-Applications to Nonthermal PlasmaProcessing[M]. Bristol: Institute of Physics Publishing,1995.
    [4] Morent R, Geyter N D, Verschuren J, et al. Non-thermal plasma treatment of textiles[J]. Surface&Coatings Technology,2008,202(14):3427-3449.
    [5] Laroussi M. Low-temperature plasmas for medicine[J]. IEEE Transactions onPlasma Science,2009,37(6):714-725.
    [6] Kunhardt E E. Generation of large-volume atmospheric-pressure nonequilibriumplasmas[J]. IEEE Transactions on Plasma Science,2000,28(1):189-200.
    [7] Fridman A, Chirokov A and Gutsol A. Non-thermal atmospheric pressure discharges[J]. Journal of Physics D: Applied Physics,2005,38(2):R1-R24.
    [8] Kogeleschatz U. Dielectric barrier discharges: their history, discharge physics andindustrial applications[J]. Plasma Chemistry and Plasma Processing,2003,23(1):1-46.
    [9]李兴旺,李纪文,吴云飞,等.丝网辅助气液两相体介质阻挡放电及在水处理中的应用[J].高电压技术,2010,36(3):752-756.
    [10]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11.
    [11] Stange S, Kim Y, Ferreri V, et al. Flame images indicating combustion enhancementby dielectric barrier discharges[J]. IEEE Transaction on Plasma Science,2005,33(2):316-317.
    [12]聂万胜,程钰锋,车学科.介质阻挡放电等离子体流动控制研究进展[J].力学进展,2012,42(6):722-734.
    [13] Kogeleschatz U. Filamentary, patterned and diffuse barrier discharges[J]. IEEETransactions on Plasma Science,2002,30(4):1400-1408.
    [14] Massines F and Gouda G. A comparison of polypropylene-surface treatment byfilamentary, homogeneous and glow discharges in helium at atmospheric pressure[J].Journal of Physics D:Applied Physics,1998,31(24):3411-3420.
    [15] Fang Z, Lin J G, Yang H, et al. Polyethylene terephthalate surface modification byfilamentary and homogeneous dielectric barrier discharges in air[J]. IEEETransaction on Plasma Science,2009,37(5):659-667.
    [16] Trunec D, Navrati L Z, Stahel P, et al. Deposition of thin organosilicon polymerfilms in atmospheric pressure glow discharge[J]. Journal of Physics D:AppliedPhysics,2004,37(15):2112-2120.
    [17] Starostin S A, Premkumar P A, Creatore M, et al. High current diffuse dielectricbarrier discharge in atmospheric pressure air for the deposition of thin silica-likefilm[J]. Applied Physics Letters,2010,96(6):061502.
    [18] Roth J R, Sherman D.M, Gadri R B, et al. A remote exposure reactor (RER) forplasma processing and sterilization by plasma active species at one atmosphere[J].IEEE Transactions on plasma science,2000,28(1):56-63.
    [19] Gadri R B, Roth J R, Montie T C, et al. Sterilization and plasma processing of roomtemperature surfaces with a one atmosphere uniform glow discharge plasma(OAUGDP)[J]. Surface and Coatings Technology,2000,131(1-3):528-541.
    [20] Manley T C. The electrical characteristics of the ozonator discharge[J]. Transactionsof Electrochemical Society,1943,84(1):83-96.
    [21] Okazaki S, Kogoma M, Uehara M, et al. Appearance of stable glow discharge in air,argon, oxygen and nitrogen atmospheric pressure using a50Hz source[J]. Journal ofPhysics D:Applied Physics,1993,26(5):889-892.
    [22] Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of aglow discharge at atmospheric pressure controlled by dielectric barrier[J]. Journal ofApplied Physics,1998,83(6):2950-2957.
    [23] Gherardi N, Gouda G, Gat E, et al. Transition from glow silent discharge tomicro-discharges in nitrogen gas[J]. Plasma Sources Science Technology,2000,9(3):340-346.
    [24] Radu I, Bartnikas R, Czeremuszkin G, et al. Diagnostics of dielectric barrierdischarges in noble gases: atmospheric pressure glow and pseudoglow dischargesand spatiotemporal patterns[J]. IEEE Transactions on Plasma Science,2003,31(3):411-421.
    [25] Massines F, Segur P, Gherardi N, et al. Physics and chemistry in a glow dielectricbarrier discharge at atmospheric pressure: diagnostics and modeling[J]. Surface andCoatings Technology,2003,174/175(9):8-14.
    [26]徐旭,欧琼荣,舒兴胜,等.大气压介质阻挡放电三种模式的电学特征[J].高电压技术,2006,32(1):63-64.
    [27] Aldea E, Peeters T P, Vries H D, et al. Atmospheric glow stabilization. Do we needpre-ionization?[J]. Surface&Coatings Technology,2005,200(1-4):46-50.
    [28] Yu G, Huang B S. Gap-dependent transitions of atmospheric microplasma in openair[J]. Physics of Plasmas,2011,18(4):043501.
    [29]罗海云,王新新,毛婷,等.用PET薄膜覆盖金属丝网电极实现大气压空气中均匀放电[J].物理学报,2008,57(7):4298-4303.
    [30] Kozlov K V, Brandenburg R, Wagner H E, et al. Investigation of the filamentaryand diffuse mode of barrier discharges in N2/O2mixtures at atmospheric pressure bycross-correlation spectroscopy[J]. Journal of Physics D:Applied Physics,2005,38(4):518-529.
    [31] Zhang Y T, Wang D Z. Two-dimensional simulation of a low-current dielectricbarrier discharge in atmospheric helium[J]. Journal of Applied Physics,2005,98(11):113308-113308.
    [32]张燕,顾彪,王文春,等.常压He气和N2气均匀介质阻挡放电的伏安特性[J].物理学报,2009,58(8):5532-5538.
    [33] Dong L F, Song Q, Li Y Y, et al. Study on evolution of patterns in dielectric barrierdischarge by image analysis[C]. International Conference on Electrical and ControlEngineering, Wuhan, China,2010:2088-2091.
    [34] Dong L F, Li Y Y, Song Q, et al. Analysis of spatial distribution of hexagonalpatterns based on Fourier spectra and spatial correlation function[C]. InternationalConference on Electrical and Control Engineering, Wuhan, China,2010:437-440.
    [35] Dong L F, Chen J Y, Xiao H, et al. Processing of images in gas discharge by spatialcorrelation function and fast Fourier transform[C]. International Conference onElectrical and Control Engineering, Wuhan, China,2010:1507-1510.
    [36] Yang X H, Liu S H. Application of image processing on analyzing the structure ofspatial-temporal pattern[C]. International Symposium on Photoelectronic Detectionand Imaging, Beijing, China,2008:662505..
    [37] Li X C, Zhao N, Yin Z Q, et al. Image processing of discharge pattern by spatialFourier Transform method[C]. Congress on Image and Signal Processing, Sanya,China,2008:603-607.
    [38]高旭东,孙保民,肖海平,等.介质阻挡放电脱除NOx反应器的评价方法及运行流量特性分析[J].中国电机工程学报,2010,30(11):27-32.
    [39] Tomasz C, Chobei Y, Satoshi I, et al. Ozone generation using plate rotatingelectrode ozonizer-effect of electrode rotation and discharge analysis method[J].Ozone:Science&Engineering,2000,22(6):563-574.
    [40] Toshiyuki H, Takahisa H, Norio N. Ozone generator with cylindrical type ofrotating electrode[J]. Ozone:Science&Engineering,2005,27(1):53-57.
    [41] Liu C Z, Brown N M D, Meenan B J. Uniformity analysis of dielectric barrierdischarge (DBD) processed polyethylene terephthalate (PET) surface[J]. AppliedSurface Science,2006,252(6):2297-2310.
    [42] Sonnenfeld A, Thun T M, Zajichova L, et al. Deposition process based onorganosilicon precursors in dielectric barrier discharges at atmospheric pressure—acomparison[J]. Plasmas and Polymers,2001,6(4):237-266.
    [43] Guimond S and Wertheimer M R. Surface degradationand hydrophobic recovery ofpolyolefins treated by air corona and nitrogen atmospheric pressure glowdischarge[J]. Journal of Applied Polymer Science,2004,94(3):1291–1303.
    [44] De Geyter N, Morrent R, Leys C, Gengembre L, et al. DBD treatment ofpolyethylene terephthalate: atmospheric versus medium pressure treatment[J].2008,Surface and Coatings Technology,202(13):3000-3010.
    [45] Stauss S, Ebato N, Oshima F, et al. Uniform, filamentary, and striped patterns inhelium dielectric barrier discharge cryoplasmas[J]. IEEE Transactions on PlasmaScience,2011,39(11):2184-2185.
    [46] Duan X X, He F and Ouyang J T. Various plasma patterns in planardielectric-barrier discharge[J]. IEEE Transactions on Plasma Science,2008,36(4):1332-1333.
    [47] Dong L F, Fan W L, He Y F, et al. Self-organized gas-discharge patterns in adielectric-barrier discharge system[J]. IEEE Transactions on Plasma Science,2008,36(4):1356-1357.
    [48] Dong L F, Fan W L, Wang S, et al. Pattern formation in dielectric barrier dischargeswith different dielectric materials[J]. Physics of Plasmas,2011,18(13):033506.
    [49] Purwins H G. Self-oganized patterns in planar low-temperature AC gas discharge[J].IEEE Transactions on Plasma Science,2011,39(11):2112-2113.
    [50] Bartnikas R. Note on discharges in helium under a.c. conditions[J]. Journal ofPhysics D:Applied Physics,1968,1(5):659-661.
    [51] Wagner H E, Brandenburg R, Kozlov K V, et al. The barrier discharge: basicproperties and applications to surface treatment[J]. Vacuum,2003,71(3):417-436.
    [52] Von Engel A, Seeliger R, Steenbeck M. On the glow discharge at high pressure[J].Zeit Fuer Physik,1933,85:144-160.
    [53] Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmosphericpressure[J]. Journal of Physics D:Applied Physics,1988,21(5):838-840.
    [54] Radu I, Bartnikas R and Wertheimer M R. Dielectric barrier discharges in helium atatmospheric pressure:experiments and model in the needle-plane geometry[J].Journal of Physics D:Applied Physics,2003,36(11):1284-1291.
    [55] Radu I, Bartnikas R and Wertheimer M R. Dielectric barrier discharges inatmospheric pressure helium in cylinder-plane geometry: experiments and model[J].Journal of Physics D:Applied Physics,2004,37(3):449-462.
    [56] Celestin S, Canes-Boussard G, Guaitella O, et al. Influence of the charges depositionon thespatio-temporal self-organization of streamers in a DBD[J]. Journal of PhysicsD:Applied Physics,2008,41(20):205214.
    [57] Morenta R, De Geytera N, Van Vlierbergheb S, et al. Influence of operatingparameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectricbarrier discharge[J]. Progress in Organic Coatings,2011,70(4):336-341.
    [58] Trunec D, Brablec A, Stastny F. Experimental study of atmospheric pressure glowdischarge[J]. Contributions to Plasma Physics,1998,38(3):435-445.
    [59] Golubovskii Y B, Maiorov V A, Behnke J F, et al. Study of the homogeneousglow-like discharge in nitrogen at atmospheric pressure[J]. Journal of PhysicsD:Applied Physics,2004,37(9):1346-1356.
    [60] Wang X X, Luo H Y, Liang Z, et al. Influence of wire mesh electrodes on dielectricbarrier discharge[J]. Plasma Sources Science Technology,2006,15(4):845-848.
    [61] Fang Z, Qiu Y, Zhang C, et al. Factors influencing the existence of thehomogeneous dielectric barrier discharge in air at atmospheric pressure[J]. Journalof Physics D:Applied Physics,2007,40(5):1401-1407.
    [62] Buntat Z, Smith Ivor R, Razali Noor A M. Generation of a homogeneous glowdischarge: A comparative study between the use of fine wire mesh and perforatedaluminium electrodes[J]. Applied Physics Research,2011,3(1):15-28.
    [63] Wang C Q, Zhang G X, Wang X X. Comparisons of discharge characteristics of adielectric barrier discharge with different electrode structures[J]. Vacuum,2012,86(7):960-964.
    [64] Lu X P and Laroussi M. Atmospheric pressure glow discharge in air using a waterelectrode[J]. IEEE Transactions on Plasma Science,2005,33(2):272-273.
    [65] Baroch P,Saito N,Takia O,et al. Special type of plasma dielectric barrier dischargereactor for direct ozonization of water and degradation of organic pollution[J].Journal of Physics D:Applied Physics,2008,41(8):3722-3727.
    [66] Garamoon A A and El-zeer D M. Atmospheric pressure glow discharge plasma inair at frequency50Hz[J]. Plasma Sources Science and Technology,2009,18(4):045006
    [67] Osawa N and Yoshioka Y. Generation of low-frequency homogeneous dielectricbarrier discharge at atmospheric pressure[J]. IEEE Transactions on Plasma Science,2012,40(1):2-8.
    [68] Mangolini L, Orlov K, Kortshagen U, et al. Radial structure of a low-frequencyatmospheric-pressure glow discharge in helium[J]. Applied Physics Letters,2002,80(10):1722-1724.
    [69] Shin J and Raja Laxminarayan L. Dynamics of pulse phenomena in heliumdielectric-barrier atmospheric-pressure glow discharges[J]. Journal of AppliedPhysics,2003,94(12):7408-7415.
    [70] Nersisyan G and Graham W G. Characterization of a dielectric barrier dischargeoperating in an open reactor with flowing helium[J]. Plasma Sources Science andTechnology,2004,13(4):582-587.
    [71] Massines F, Gherardi N, Naude N, et al. Glow and Townsend dielectric barrierdischarge in various atmosphere[J]. Plasma Physics and Controlled Fusion,2005,47(12B):B577-B588.
    [72] Navratil Z, Brandenburg R, Trunec D, et al. Comparative study of diffuse barrierdischarges in neon and helium[J]. Plasma Sources Science and Technology,2006,15(1):8-17.
    [73] Trunec D, Brablec A and Buchta J. Atmospheric pressure glow discharge in neon[J].Journal of Physics D:Applied Physics,2001,34(11):1697-1699.
    [74] Somekawa T, Shirafuji T, Sakai O, et al. Effects of self-erasing discharges on theuniformity of the dielectric barrier discharge[J]. Journal of Physics D:AppliedPhysics,2005,38(12):1910-1917.
    [75] Ran J X, Luo H Y and Wang X X. A dielectric barrier discharge in neon atatmospheric pressure[J]. Journal of Physics D:Applied Physics,2010,44(33):335203.
    [76] Luo H Y, Liang Z, Wang X X, et al. Homogeneous dielectric barrier discharge innitrogen at atmospheric pressure[J]. Journal of Physics D:Applied Physics,2010,43(15):155201.
    [77] Kozakov R, Sonnenfeld A, Behnke J F, et al. Investigation of the dielectric barrierdischarge properties in different gas mixtures[J]. Czechoslovak Journal of Physics,2000,50(S3-Supplement):324:328
    [78] Trunec D, Stahel P, Slavicek P, et al. The different types of dielectric barrierdischarge in gas mixtures[J]. Acta Physica Slovaca,2004,54(3):273-276.
    [79] Brandenburg R, Navratil Z, Jansky J, et al. The transition between different modesof barrier discharges at atmospheric pressure[J]. Journal of Physics D:AppliedPhysics,2009,42(8):085208.
    [80] Okazaki S, Kogoma M and Uchiyama H. Proceedings of the3th InternationalSymposium on High Pressure Low Temperature Plasma Chemistry, HAKONE III,Strasbourg,3-5September,1991.
    [81] Liu P, Zhan R J, Wen X H, et al. An experimental study on atmospheric pressureglow discharge in different gases[J]. Plasma Science and Technology,2002,14(3):1323-1328.
    [82] Fateev A, Leipold F, Kusano Y, et al. Plasma chemistry in an atmospheric pressureAr/NH3dielectric barrier discharge[J]. Plasma Processes and Polymers,2005,2(3):193-200.
    [83] Kloc P, Wagner H E, Trunec D, et al. An investigation of dielectric barrier dischargein Ar and Ar/NH3mixture using cross-correlation spectroscopy[J]. Journal ofPhysics D:Applied Physics,2010,43(34):345205.
    [84] Brenning N, Axnas I, Nilsson J O, et al. High-pressure pulsed avalanche discharges:formulas for required preionization density and rate for homogeneity[J]. IEEETransactions on Plasma Science,1997,25(1):83-88.
    [85] Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasmas[J].IEEE Transactions on Plasma Science,1991,19(2):309-323.
    [86]罗海云,冉俊霞,王新新.大气压不同惰性气体介质阻挡放电特性的比较[J].高电压技术,2012,38(5):1070-1077.
    [87] Brandenburg R, Maiorov V A, Golubovskii Y B, et al. Diffuse barrier discharges innitrogen with small admixtures of oxygen:discharge mechanism and transition to thefilamentary regime[J]. Journal of Physics D:Applied Physics,2005,38(13):2187-2197.
    [88] Martens T, Bogaerts A, Brok W J M. The influence of impurities on theperformance of the dielectric barrier discharge[J]. Applied Physics Letters,2010,96(9):091501.
    [89] Massines F, Gherardi N, Naude N, et al. Recent advances in the understanding ofhomogeneous dielectric barrier discharges[J]. The European Physical JournalApplied Physics,2009,47(2):22805.
    [90] Qi B, Ren C S, Wang D Z, et al. Uniform glowlike plasma source assisted bypreionization of spark in ambient air at atmospheric pressure[J]. Applied PhysicsLetters,2006,89(13):131503.
    [91] Palmer A J. A physical model on the initiation of atmospheric-pressure glowdischarges[J]. Applied Physics Letters,1974,25(3):138-140.
    [92] Levatter J I and Lin S C. Necessary condition for the homogenious formation ofplused avalanche discharges at high gas pressures[J]. Journal of Applied Physics,1980,51(1):210-222.
    [93] Li Q, Pu Y K, Lieberman M A. Dynamic model of streamer coupling for thehomogeneity of glow-like dielectric barrier discharges at near-atmosphericpressure[J]. Physical Review E,2011,83(4):046405.
    [94] Roth J R. Industrial Plasma Engineering Vol I-Principles[M]. Bristol: Institute ofPhysics Publishing,1995.
    [95] Roth J R, Rahel J, Dai X, et al, The physics and phenomenology of one atmosphereuniform glow discharge plasma (OAUPGDP) reactors for surface treatmentapplications[J]. Journal of Physics D:Applied Physics,2005,38(4):555-567.
    [96]王新新,卢明哲,蒲以康.空气中大气压下均匀辉光放电的可能性.物理学报,2002,51(12):2778-2785.
    [97] Yokoyama T, Kogoma M, Moriwaki T, et al. The mechanism of the stabilization ofglow plasma at atmospheric pressure[J]. Journal of Physics D:Applied Physics,1990,23(8):1125-1128.
    [98] Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction betweencharged particles and dielectric surface over a homogeneouss barrier discharge innitrogen[J]. Journal of Physics D:Applied Physics,2002,35(8):751-761.
    [99] Kriegseis J, S. Grundmann S and Tropea C. Power consumption, dischargecapacitance and light emission as measures for thrust production of dielectric barrierdischarge plasma actuators[J]. Journal of Applied Physics,2011,110(1):013305.
    [100] Raizer Y P. Gas Discharge Physics[M]. Berlin, Germany: Springer-Verlag,1991.
    [101] Nikonov V, Bartnikas R, Wertheimer M R. Surface charge and photoionizationeffects in short air gaps undergoing discharges at atmospheric pressure[J]. Journal ofPhysics D:Applied Physics,2001,34(19):2979-2986.
    [102] Scott S J, Figgures C C, Dixon D G. Dielectric barrier discharge processing ofaerospace materials[J]. Plasma Sources Science and Technology,2004,13(3):461-465.
    [103] Rahel J, Sherman D M. The transition from a filamentary dielectric barrier dischargeto a diffuse barrier discharge in air at atmospheric pressure[J]. Journal of PhysicsD:Applied Physics,2005,38(4):547-554.
    [104] Cho J H, Lee K W, Park S J, et al. Coplanar ac discharges between cylindricalelectrodes with a nanoporous alumina dielectric:modular dielectric barrier plasmadevices[J]. IEEE Transactions on Plasma Science,2005,33(2):378-379.
    [105]王勇,谭毅华,田金文.基于阴影消除和混合高斯模型的视频分割算法[J].光电工程,2008,35(3):21-25.
    [106] Chow C K, Kaneko T. Automatic boundary detection of the left ventricle fromcineangiograms[J]. Computers and Biomedical Research,1972,5(4):388-410.
    [107] Thomas E M, Temko A, Lightbody G. Gaussian mixture models for classification ofneonatal seizures using EEG[J]. Physiological Measurement,2010,31(7):1047-1064.
    [108]黄国宏,刘刚.一种新的基于高斯混合模型的线性判别分析[J].计算机工程与应用,2007,43(27):72-77.
    [109] Fletcher R.实用最优化方法[M].天津:天津科技翻译出版公司,1990.
    [110]刘西陲,沈炯,李益国.系统边际电价概率分布检验及模型研究[J].中国电机工程学报,2009,29(4):72-77.
    [111]刘西陲,沈炯,李益国.基于加权双高斯分布的广义自回归条件异方差边际电价预测模型[J].电网技术,2010,34(1):139-144.
    [112]章毓晋.图像工程(中册)[M].北京:清华大学出版社,2007.
    [113] Sergey N A, Tatsuru S, Kunihide T. Submillimeter dielectric barrier discharges atatmospheric pressure: edge effect[J]. IEEE Transactions on Plasma Science,2005,33(2):941-948.
    [114] Wu Y F, Ye Q Z, Li X W, et al. Classification of dielectric barrier discharges usingdigital image processing technology[J]. IEEE Transactions on Plasma Science,2012,40(5):1371-1379.
    [115]吴云飞,叶齐政,李兴旺,等.利用不同曝光时间放电图像的灰度直方图识别介质阻挡放电模式[J].高电压技术,2012,38(5):1120-1125.
    [116]吴云飞,叶齐政,陈田,等.介质阻挡放电灰度直方图的高斯混合概率模型研究[J].中国电机工程学报,2013,33(1):179-187.
    [117] Xu B G. IdeIdentifying Fabric Structures with fast fourier transform techniquesidentifying fabric structures with fast fourier transform techniques[J]. TextileResearch Journa,1996,66(8):496-506.
    [118] LI W X, Zhang D, Xu Z Q. Palmprint identification by fourier transform[J].International Journal of Pattern Recognition and Artificial Intelligence,2002,16(4):417-432.
    [119]黄战华,刘正,罗文斌,等.基于频谱滤波的多纹理提取算法[J].光电工程,2008,35(8):51-55.
    [120]陈杰,邓敏,肖鹏峰,等.纹理频谱分析的高分辨率遥感影像最佳尺度选择[J].遥感学报,2011,15(3):502-511.
    [121]董丽芳,杨玉杰,范伟丽,等.介质阻挡放电中放电丝结构相变过程研究[J].2010,59(3):1917-1922.
    [122] Ye Q Z, Yu D H, Yang F Y, et al. Application of the gray-level standard deviation inthe analysis of the uniformity of DBD caused by the rotary electrode[J]. IEEETransactions on Plasma Science,2013,41(3):540-544.
    [123] Gonzalez R C, Woods E D. Digital Image Processing (Third Edition)[M]. Beijing,China: Electronic Industry Press,2010.
    [124] Soh L K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray levelco-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):780-795.
    [125] Ravanidi S A H, Pan N. Automatic detection of sound knots and loose knots on sugiusing gray level co-occurrence matrix parameters[J]. The Journal of The TextileInstitute,2011,102(4):315-321.
    [126] Nie F Y, Gao C, Cai Y, et al. Two-dimensional minimum local cross-entropythresholding based on co-occurrence matrix[J]. Computers&Electrical Engineering,2011,37(5):757-767.
    [127] Hu C S, Min X, Yun H, et al. The influence of gray-level co-occurrence matrixvariables on the textural features of wrinkled fabric surfaces[J]. Annals of ForestScience,2011,68(6):1077-1083.
    [128] Lin H C, Wang L L, Yang S N. Extracting periodicity of a regular texture based onautocorrelation functions[J]. Pattern Recognition Letters,1997,18(5):433-443.
    [129] Heilbronner R. Analysis of bulk fabrics and microstructure variations usingtessellations of autocorrelation functions[J]. Computers&Geosciences,2002,28(4):447-455.
    [130] Chiang T F, Wu W W, Cheng S L, et al. Auto-correlation function analysis ofcrystallization in amorphous SiGe thin films[J]. Applied Surface Science,2003,212-213:339-343.
    [131] Wald M J, Vasilic B, Saha P K, et al. Spatial autocorrelation and mean interceptlength analysis of trabecular bone anisotropy applied to in vivo magnetic resonanceimaging[J]. Medical Physics,2007,34(3):1110-1120.
    [132] Garboczi E J, Bentz D P, Martys N S. Digital images and computer modeling[J].Experimental Methods in the Physics of Porous Media,1999,35(1):1-41.
    [133] Fujii K, Sugi S, Ando Y. Textural properties corresponding to visual perceptionbased on the correlation mechanism in the visual system[J]. Psychological Research,2003,67(3):197-208.
    [134] Wald M J, Vasilic B, Saha P K, et al. Study of trabecular bone microstructure usingspatial autocorrelation analysis[C]. Proceedings of the International Society forOptical Engineering,2005,5746:291-302.
    [135] Berryman G J. Measurement of spatial correlation functions using image processingtechniques[J]. Journal of Applied Physics,1985,57(7):2374.
    [136] Haralick R M, Shanmugam K, Dinstein I. Textural features for imageclassification[J]. IEEE Transactions on Systems, Man and Cybernetics,1973,3(6):610-621.
    [137] Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of theIEEE,1979,67(5):786-804.
    [138] Yurgelenas Y V and Wagner H E. A computational model of a barrier discharge inair at atmospheric pressure the role of residual surface charges in microdischargeformation[J]. Journal of Physics D:Applied Physics,2006,39(18):4031-4043.
    [139] Wu Y F, Ye Q Z. Identifying three kinds of dielectric barrier discharges with fastfourier transform techniques[C]. Proceedings of the19th InternationalConference on Gas Discharges and Their Application, Beijing, China,2012:268-271.
    [140] Ye Q Z, Zhang T, Lu F, et al. Dielectric barrier discharge in a two-phase mixture[J].Journal of Physics D:Applied Physics,2008,41(2):025207.
    [141] Fridman A. Plasma Chemistry[M]. Cambridge: Cambridge University Press,2008.
    [142] Ye Q Z, Wu Y F, Li X W, et al. The uniformity of dielectric barrier discharges usingmesh electrodes[J]. Plasma Sources Science and Technology,2012,21(6):065008.
    [143] Wu Y F, Ye Q Z, Li X W, et al. Applications of autocorrelation function method forspatial characteristics analysis of dielectric barrier discharge[J]. Vacuum,2013,91:28-34.
    [144] Cohine J. Gaseous Conductors[M]. New York: Dover,1958.
    [145] Reichen P, Sonnenfeld A and Rohr P R V. Discharge expansion in barrier dischargearrangements at low applied voltages[J]. Plasma Sources Science and Technology,2011,20(5):055015.
    [146] El-Zeer D M, Dawood N, Elakshar F, et al, The influence of the addition of argongas to air DB discharge[J]. The European Physical Journal Applied Physics,2012,58(3):30801.
    [147] Gomez A, Flores L, Torres C, et al. Diagnostic studies of N2-O2-Ar glow dischargemixture[C]. Proceedings of the29th International Conference on Phenomena inIonized Gases, Cancun, Mexico,2009:284-287.
    [148] Tawde N R, Desai D D. Role of argon in the production of swan bands[C].Proceedings of the Indian Academy of Sciences.Section A,1937,6(5):266-280.
    [149] Rehman N U, Khan F U, Khattak N A D, et al. Effect of neon mixing on vibrationaltemperature of molecular nitrogen plasma generated at13.56MHz[J]. PhysicsLetters A,2008,372(9):1462-1468.
    [150] Pugnin V I, Seldimirov M, Tekuchev A N. Investigation of the excitation of nitrogenmolecules in the positive column of a discharge in a mixture of CO2and N2[J].Soviet Physics Journal,1972,15(10):1425-1428.
    [151] Tochikubo F, Chiba T and Watanabe T. Structure of low-frequency helium glowdischarge at atmospheric pressure between parallel plate dielectric electrodes[J].Japanese journal of applied physics,1999,38(9A):5244-5250.
    [152] Boyers D G and Tiller W A. Plasma bubble domains: A magnetic bubble analog[J].Applied Physics Letters,1982,41(1):28-31.
    [153] Ammelt E, Schweng D and Purwins H G.. Spatio-temporal pattern formation in alateral high-frequency glow discharge system[J]. Physics Letters A,1993,179(4-5):348-354.
    [154] Breazeal W, Flynn K M and Gwinn E G. Static and dynamic two-dimensionalpatterns in self-extinguishing discharge avalanches[J]. Physical Review E,1995,52(2):1503-1515.
    [155]范伟丽,董丽芳,李雪辰,等.介质阻挡放电中正方形斑图的特性研究[J].2007,56(3):1467-1470.
    [156] Astrov Yu A, Logvin Y A. Formation of clusters of localized states in a gasdischarge system via a self-completion scenario[J]. Physical ReviewLetters,1997,79(16):2983-2986.
    [157] Parekh H, Srivastava K D. Effect of avalanche space charge field on the calculationof corona onset voltage[J]. IEEE Transactions on Electrical Insulation,1979,EI-14(4):181-192.
    [158] Hepworth J K, Klewe R C and Tozer B A. Calculation of electron avalanche growthtowards an isolated sphere[C]. International Conference on Ionized Phenomena inGases, Oxford,1971:90.
    [159] Honda K. Streamer breakdown criterion for a uniform air gap[J]. ElectricalEngineering in Japan,1965,85(8):43-50.
    [160] Hopwood W. The positive streamer mechanism of spark breakdown[J]. Proceedingsof the Physical Society. Section B,1949,62(10):657-664.
    [161] Lozanskii E D and Firsov O B. Theory of Sparks (in Russian)[M], Atomizdat,Moscow,1975.
    [162] Lozanskil E D. Development of electron avalances and streamers[J]. Soviet PhysicsUspekhi,1975,18(11):893-908.
    [163] Babich L P. Radial expansion of electron avalanche[J]. Radiophysics and QuantumElectronics,1985,28(2):163-167.
    [164]黄飚,王欲知. TEA CO2激光器中均匀脉冲放电的预电离条件[J].中国激光,1993, A20(6):426-429.
    [165] Bollanti S, Letardi T and Zheng C. Effect of preionization on uniformity ofphoto-triggered XeCl laser discharges modeling and comparison with experimentalresults[J]. IEEE Transactions on Plasma Science,1991,19(2):361-368.
    [166] Nikonov V, Bartnikas R and M R Wertheimer. Surface charge and photoioniza tioneffects in short air gaps undergoing discharges at atmospheric pressure [J]. Journalof Physics D:Applied Physics,2001,34(19):2979-2986.
    [167] Liu W Z, Jia L Y, Yan W, et al. Study on the glow discharge in the atmosphericpressure[J]. Current Applied Physics,2011,11(5-Supplement):S117-S120.
    [168] Deng X T and Kong M G. Frequency range of stable dielectric-barrier discharges inatmospheric He and N2[J]. IEEE Transactions on Plasma Science,2004,32(4):1709-1715.
    [169] Gherardi N and Massines F. Mechanisms controlling the transition from glow silentdischarge to streamer discharge in nitrogen[J]. IEEE Transactions on PlasmaScience,2004,29(3):536-544.
    [170]严璋,朱德恒.高电压与绝缘技术[M].北京:中国电力出版社(第二版),2007.
    [171] Panousis E, Papageorghiou L, Spyrou N, et al. Numerical modelling of anatmospheric pressure dielectric barrier discharge in nitrogen: electrical and kineticdescription[J]. Journal of Physics D:Applied Physics,2007,40(14):4168-4180.
    [172] Novak J P and Bartnikas R. Density profiles, electric field and energy dissipation ina short gap breakdown: a twodimensional model[J]. Journal of Physics D: AppliedPhysics,1988,21(6):896-903.
    [173] Rafatov I R, Akbar D, Bilikmen S. Modelling of non-uniform DC driven glowdischarge in argon gas[J]. Physics Letters A,2007,367(1-2):114-119.
    [174] Rizk F A M, Masetti C and Comsa R P. Particle-initiated breakdown in SF6insulated systems under high direct voltage[J]. IEEE Transactions on PowerApparatus and Systems,1979, PAS-98(3):825-836.
    [175] Ye Q Z and Tan D. The mechanical vibration phenomenon in a50-Hz dielectricbarrier discharge[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(1):247:252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700