用户名: 密码: 验证码:
基于光谱整形的微波光子信号产生及处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波技术在雷达系统、无线通信、射频天文学等多个应用领域的蓬勃发展,对高频微波信号进行实时的产生、处理和操控成为目前学术界及工业界共同面临的问题。微波光子学正是针对这一发展需求所产生的新兴交叉学科,它旨在利用光学技术的高速、高带宽及低损耗等固有优势,解决传统微波技术所面临的带宽及速率瓶颈问题。本论文针对于微波光子学领域中的国际研究热点,围绕微波光子信号产生技术及光载无线信号处理技术两方面展开研究。一方面探索新型的波形构造方法,提高基于全光器件任意波形产生技术的灵活性;另一方面旨在解决光载无线系统中的性能损伤问题,通过全光处理技术提高光载微波信号的传输性能。
     在微波信号的光学产生方面,本论文基于偏光干涉滤波器单元,提出了两种结构方式以构建具有三角形滤波响应的全光滤波器,进而结合频域到时域映射技术实现了三角形微波信号的产生;接着,将串联结构的光谱构造模型推广到任意波形产生领域,并通过理论和实验共同证明了该模型的有效性;进一步通过光谱滤波器结构上的优化设计实现了参数可调的微波信号产生。在光载微波信号的处理方面,搭建了光载无线系统的下行传输线路系统,提出了解决功率衰落效应及调制深度问题的预失真技术,有效增加了系统的接收灵敏度。本文主要的研究内容和成果如下:
     (1)提出了基于并联结构的三角微波脉冲产生方法。结合保偏光纤及偏振片设计了基于偏光干涉的梳状滤波器结构,从理论上分析了该滤波器的实现原理,并给出了滤波响应函数随保偏光纤长度的变化趋势。随后,基于傅里叶级数展开原理,分析了三角波函数的谐波分量构成,并探讨了谐波分量阶数对三角波形质量的影响。在忽略高阶谐波影响的情况下,通过并联的偏光干涉滤波器产生了对应基波及三次谐波的两路正弦形光谱。引入偏振合束器实现了两路正弦光谱的强度叠加,完成了三角光谱构造。最后,研究了频时域映射的理论基础及应用条件,实现了三角光谱到脉冲的映射过程。实验结果表明,产生的三角脉冲频率及脉宽可以通过保偏光纤长度及光纤色散大小调节,符合理论模型期望。
     (2)设计了基于串联型偏光干涉滤波器的任意微波波形产生系统。首先分析了输入光偏振控制对偏光干涉滤波器滤波响应函数的影响,探讨了输出正弦形光谱的消光比系数可调范围。构建了基于串联型偏光干涉滤波模块的系统结构,推导了该结构的输出光谱理论模型。推导公式表明,串联型的偏光干涉滤波模块能产生傅里叶级数式的多分量光谱组合。另外,通过合理的调节模块中各级滤波器的偏振关系,可以实现对各光谱分量的幅度控制,从而完成任意光谱输出。通过仿真证明,输出光谱精确度与滤波器级联个数有关。而级联个数的增加又提高了控制算法复杂度,因此,利用遗传算法解决了各级滤波器偏振关系的复杂计算。实验中使用三级级联结构的偏光干涉滤波器实现了正弦形、三角形及矩形光谱的产生。同样利用色散光纤及高速光电探测器组成的频时域映射模块结合上述串联型构造器实现了三角形微波信号的产生。
     (3)通过加入可调光器件对偏光干涉滤波器系统结构进行优化,以实现二维可调的微波信号产生。取代保偏光纤的可调差分群时延模块用于控制输出光谱的自由谱范围,并采用带宽及波长可调的光学滤波器用以控制输出光谱带宽。基于该光谱构造系统结构并结合频时域映射机制,理论推导了输出微波波形与差分群时延及后级滤波器带宽的关系,并通过实验证明了该理论正确性。实验结果表明,该系统方案能实现频率范围为4GHz-30GHz、信号宽度为0.7nm-3nm的微波信号生成。
     (4)通过在偏光干涉滤波器中引入差分群时延扰动以实现相位编码的微波信号产生。基于偏光干涉滤波器中差分群时延与输出光谱自由谱范围的关系,利用相位调制器引入额外的相位延时,以实现输出光谱的频移调制,结合频时域映射技术将频移调制转换为输出微波信号的相位调制。实验产生了频率为10GHz的相位编码信号,并证明了输出微波信号相位与相位调制器射频输入电压成正比关系。
     (5)提出了用于提高光载无线信号系统传输性能的光学预失真技术。首先从理论上分析了光载无线系统中双边带信号及单边带信号的最优载波边带比,并根据理论结果,通过实验比较了具有最优化载波边带比的双边带信号及单边带信号传输性能,证明了前者具有1.5dB的性能优势。随后研究了光载无线系统中的色散损伤,推导了色散引起的功率衰落机理,分析了功率衰落随微波频率及传输距离的变化趋势。利用预失真技术对双边带信号中的两个边带提前预置相位差,抵消链路中的色散影响,解决双边带信号在系统中的功率衰落问题。实验结果证明了预失真技术的有效性,并表明在光载无线系统中,经预失真处理的双边带信号相比单边带信号具有1.2dB的灵敏度提升。
As the explosive development of microwave technology in the application areas of radar system, wireless transmission and radio astronomy, recently the generation, processing and manipulation techniques of high-frequency microwave signals have been major concerns in academia and industry. Thanks to the inherent characteristics of light, such as high speed, large bandwidth and low loss, photonic techniques are usually used to solve the microwave problems. Under this condition, microwave photonics emerges as an emerging interdiscipline, which is aimed at breaking the bottleneck of traditional microwave technology on bandwidth and processing rate. Aim at the hotspots in microwave photonics, this thesis studies on two aspects including the generation and the all-fiber processing of microwave photonic signals. On one aspect, novel spectral shaping methods have been explored to improve the flexibility of arbitrary waveform generation; on the other aspect, we aim at optimizing the system performance in radio over fiber transmission by suppressing the system impairments using all-fiber techniques.
     In the area of microwave photonic generation, firstly this thesis proposes a filter structure with sinusoidal response based on polarization interference, and established the theoretical model. Based on this model, we present two methods to design an optical filter with triangular-shaped response function. Subsequently, the mechanism of frequency-to-time mapping has been analyzed, and an experimental setup is established based on the mapping principle to generate triangular-shaped signals. Then, we extend the cascaded spectral shaper to the area of arbitrary waveform generation and verify the effectiveness by theoretical and experimental results. Finally, two dimensional tunable microwave signal generation is demonstrated by structure modification of the spectral shaper; for the all-fiber processing of optical microwave signals, the downlink transmission system is experimentally established. A pre-distortion scheme based on spectral shaping is proposed to solve the dispersion-induced power fading effects, which obviously improves the system receiving sensitivity. The main contributions of this dissertation are listed as follows:
     (1) Generation of triangular-shaped microwave signals with parallel filter structure is proposed. A comb filter based on polarization interference (PI) is designed by combining a polarization maintaining fiber and a polarizer. The formula which can illustrate the concept is derived in theory and the variation trend of the filter response as the fiber length is analyzed. Subsequently, based on Fourier expansion theory, we analyze the harmonic components of a triangular waveform and study the effects of the high-order harmonic to the overall envelop. In absence of the high-order harmonic, two sinusoidal-shaped spectra corresponding to the fundamental harmonic and third-order harmonic are generated by parallel PI filters. A polarization beam combiner is employed subsequently to superpose the two spectral components without interference to obtain triangular-shaped spectrum. Finally, theoretical principle of the frequency to time mapping technique is discussed and used to achieve triangular waveform generation. Experimental results verify that the frequency and pulse width of the generated pulses can be tuned with the PMF and single mode fiber, which meets well with the theoretical model.
     (2) Arbitrary waveform generator based on cascaded PI filters is designed. Firstly, we analyze the influences of the input polarization to the response function of the PI filter, and discuss the extinction ratio range of the output sinusoidal spectrum. A cascaded system structure based on PI filters is established and the theoretical expression of its output spectrum is derived, which shows that the system can generate combination of multi-components of the Fourier expansion. Moreover, arbitrary waveform can be obtained by adjust the output amplitude of each spectral component. The simulation results show that the accuracy of the output spectrum is relative to the filter amounts. However, the algorithm flexibility increases with the filter amounts. Consequently, we utilize genetic algorithm to solve the flexible calculation of the polarization relation between each PI filter. By just using three cascaded filters, we achieve the sinusoidal, triangle and rectangle shaped spectrum generation. After that triangular-shaped waveform is obtained by poured the generated spectrum into a frequency-to-time mapping module composed of a dispersive fiber and a photodetector.
     (3) Two-dimensional tunable microwave signal generation is achieved by optimizing the filter structure based on polarization interference. A tunable DGD element replaces the PMF to control the free spectrum range of the output spectrum, and a bandwidth-tunable filter is cascaded subsequently to adjust the spectral bandwidth. The function relationship of the signal frequency and the DGD value is derived. Experimental results verify the effectiveness of this proposed scheme. Microwave signals with frequency range of4GHz-30GHz and pulse width of0.7nm-3nm is generated.
     (4) A photonic scheme to generate phase-coded microwave signals using all-fiber components is proposed. A filter module that is composed of two polarization controllers, a piece of polarization maintaining fiber and a polarizer is employed to generate sinusoidal optical spectrum. The phase modulator is cascaded ahead of the filter module to bring in small variation of the differential group delay in the delay interference process, which can result in frequency shifting of the optical spectrum. Through the frequency to time conversion in a dispersive medium, the frequency shift of the optical spectrum is mapped into the time domain. Consequently, the phase of generated RF signals can be continuously shifted by tuning the applied voltage onto the phase modulator. In out experiment, phase-coded RF signals with symbol periods of0.1-ns and carrier frequency of25-GHz are obtained and the continuous tunability of the generated signal phase is demonstrated.
     (5) An all-fiber predistortion method is presented to improve the performance of optical microwave signals in radio over fiber transmission. The predistortion process includes two approaches based on optical spectral shaping technique. First, we theoretically show that optimal CSR for DSB signals is3dB and this optimal CSR can be achieved via filtering process. Secondly, a pre-distortion operation is used by adding beforehand phase shift between the two sidebands of the transmitted signals to cancel the dispersion effects for RoF systems. The experimental results show that by employing this pre-distortion method the DSB signals with an optimal CSR of3dB achieve1.2dB sensitivity improvements over SSB signals with an optimal CSR of0dB.
引文
[1]J. Seeds. Microwave photonics. IEEE Trans. Microw. Theory Tech.,2002,50(3): 877-887.
    [2]J. Capmany and D. Novak. Microwave photonics combines two worlds. Nature Photon.,2007,1(6):319-330.
    [3]J. Seeds and K. J. Williams. Microwave photonics. J. Lightwave Technol,2006, 24(12):4628-4641.
    [4]J. P. Yao. Microwave Photonics. J. Lightwave Technol,2009,27(1-4):314-335.
    [5]B. Vidal, M. A. Piqueras, and J. Marti. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett.,2007,32(1): 23-25.
    [6]P. Candelas, J. M. Fuster, J. Marti, and J. C. Roig. Optically generated electrical-modulation formats in digital-microwave link applications. IEEE J. Lightwave Technol.,2003,21(2):496-499.
    [7]J. Azana, N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer. Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers Opt. Lett.,2004,29(24):2849-2851.
    [8]C. Wang, F. Zeng and J. P. Yao. All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion. IEEE. Photon. Technol. Lett.,2007,19(3):137-1139.
    [9]J. D. McKinney, D. E. Leaird, and A. M.Weiner. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett.,2002,27(15): 1345-1347.
    [10]X. S. Yao, L. Maleki. Ultralow phase noise dual-loop optoelectronic oscillator, in Optical Fiber Communication Conference,1998, paper:ThT2.
    [11]C. Lim, T. A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, and R. Waterhouse. Fiber-wireless networks and subsystem technologies. J. Lightwave Technol.,2010,28(4):390-405.
    [12]H. Schmuck. Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion. Electron. Lett.,1995,31(21):1848-1849.
    [13]X. S. Yao and L. Maleki. High frequency optical subcarrier generator. Electron. Lett., 1994,30(18):1525-1526.
    [14]X. S. Yao. High-quality microwave signal generation by use of Brillouin scattering in optical fibers. Opt. Lett.,1997,22(17):1329-1331.
    [15]Y. C. Chi, P. C. Peng, and G. R. Lin. Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator. J. Lightwave Technol.,2011,29(11): 1702-1707.
    [16]T. Sakamoto, T. Kawanishi, and M. Izutsu. Optoelectronic oscillator using push-pull Mach-Zehnder modulator biased at point for optical two-tone signal generation. In Conf. Lasers Electro-Optics (CLEO2005),2005, Paper:CTuN5.
    [17]E. Leaird and A. M. Weiner. Femtosecond direct space-to-time pulse shaping. IEEE J. Quantum Electron.,2001,37(4):494-504.
    [18]J. D. McKinney, D. E. Leaird, and A. M. Weiner. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett.,2002,27(15): 1345-1347.
    [19]J. D. McKinney, D. S. Seo, D. E. Leaird, and A. M. Weiner. Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping. J. Lightwave Technol.,2003,21(12): 3020-3028.
    [20]D. E. Leaird and A. M. Weiner. Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration. Opt. Lett.,2004,29(13):1551-1553.
    [21]S. J. Xiao, J. D. McKinney, and A. M. Weiner. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper. IEEE Photon. Technol. Lett.,2004,16(8):1936-1938.
    [22]J. D. McKinney, D. S. Seo, and A. M. Weiner. Photonically assisted generation of continuous arbitrary millimetre electromagnetic waveforms. Electron. Lett.,2003, 39(3):309-311.
    [23]R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman. Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses. J. Opt. Soc. Am. B,2005,22(11):2427-2436.
    [24]J. Azana, N. K. Berger, B. Levit, and B. Fischer. Reconfigurable generation of high repetition-rate optical pulse sequences based on time-domain phase-only filtering. Opt. Lett.,2005,30(23):3228-3230.
    [25]B. Xia and L. R. Chen. A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping. IEEE J. Se1 Topics Quantum Electron., 2005,11(1):165-172.
    [26]J. Azana, N. K. Berger, B. Levit, and B. Fischer. Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers. J. Lightwave Technol.,2006,24(7):2663-2675.
    [27]V. Torres-Company, M. Fernandez-Alonso, J. Lancis, J. C. Barreiro, and P. Andres. Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation. Opt. Express,2006,14(21):9617-9626.
    [28]H. Chi and J. Yao. Waveform distortions due to second-order dispersion and dispersion mismatches in a temporal pulse-shaping system. J. Lightwave Technol, 2007,25(11):3528-3535.
    [29]H. Chi and J. Yao. Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator. Electron. Lett.,2007,43(7):415-417.
    [30]S. Thomas, A. Malacarne, F. Fresi, L. Poti, A. Bogoni, and J. Azana. Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering. Opt. Lett.,2009,34(4):545-547.
    [31]S. Thomas, A. Malacarne, F. Fresi, L. Poti, and J. Azana. Fiber-based programmable picosecond optical pulse shaper. J. Lightwave Technol,2010,28(12):1832-1843.
    [32]T. Jannson. Real-Time Fourier Transformation in Dispersive Optical Fibers. Opt. Lett.,1983,8(4):232-234.
    [33]J. Azana, L. R. Chen, M. A. Muriel, and P. W. E. Smith. Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings. Electron. Lett.,1999,35(25):2223-2224.
    [34]M. A. Muriel, J. Azana, and A. Carballar. Real-time Fourier transformer based on fiber gratings. Opt. Lett.,1999,24(1):1-3.
    [35]J. Azana and M. A. Muriel. Real-time optical spectrum analysis based on the time space duality in chirped fiber gratings. IEEE J. Quantum Electron.,2000,36(5): 517-526.
    [36]J. Azana, M. A. Muriel, and A. Carballar. Real-time Fourier transformer system using transmissive fiber gratings. Fiber Integrated Opt.,2000,19(4):439-453.
    [37]J. Azana and M. A. Muriel. Real-time Fourier transformations performed simultaneously over multiwavelength signals. IEEE Photon. Technol. Lett.,2001, 13(1):55-57.
    [38]X. Li and J. Azana. Simplified system configuration of optical pulses for real-time Fourier transformation in amplitude and phase. Opt. Commun.,2007,274(1):59-65.
    [39]Y. Park, T. J. Ann, J. C. Kieffer, and J. Azana. Optical frequency domain reflectometry based on real-time Fourier transformation. Opt. Express,2007,15(8): 4597-4616.
    [40]E. B. Treacy. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron.,1969, QE-5(9):454-458.
    [41]B. H. Kolner. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron.,1994,30(8):1951-1963.
    [42]A. Papoulis. Pulse-compression, fiber communications, and diffraction-a unified approach. J. Opt. Soc. Am. A,1994,11(1):3-13.
    [43]H. Kobayashi and I. P. Kaminow. Duality relationships among "space," "time," and "wavelength" in all-optical networks. J. Lightwave Technol,1996,14(3):344-351.
    [44]H. Kolner and M. Nazarathy. Temporal imaging with a time lens. Opt. Lett.,1989, 14(12):630-632.
    [45]W. Lohmann and D. Mendlovic. Temporal filtering with time lenses. Appl. Optics, 1992,31(29):6212-6219.
    [46]J. Chou, Y. Han, and B. Jalali. Adaptive RF-photonic arbitrary waveform generator. IEEE Photon. Technol. Lett.,2003,15(4):581-583.
    [47]M. Y. Shen and R. A. Minasian. Toward a high-speed arbitrary waveform generation by a novel photonic processing structure. IEEE Photon. Technol. Lett.,2004,16(4): 1155-1157.
    [48]S. Lin, J. D. McKinney, and A. M. Weiner. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microw. Wireless Compon. Lett.,2005,15(4):226-228.
    [49]M. Weiner. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum.,2000,71(5):1929-1960.
    [50]P. Heritage, A. M. Weiner, and R. N. Thurston. Picosecond pulse shaping by spectral phase and amplitude manipulation. Opt. Lett.,1985,10(12):609-611.
    [51]M. Weiner, J. P. Heritage, and E. M. Kirschner. High-resolution femtosecond pulse shaping. J. Opt. Soc. Am. B,1988,5(8):1563-1572.
    [52]M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert. Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett., 1990,15(6):326-328.
    [53]M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert. Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator. IEEE J. Quantum Electron.,1992,28(4):908-920.
    [54]W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren. Femtosecond laser-pulse shaping by use of microsecond radiofrequency pulses. Opt. Lett.,1994, 19(10):737-739.
    [55]M. A. Dugan, J. X. Tull, and W. S. Warren. High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses. J. Opt. Soc. Am. B,1997,14(9): 2348-2358.
    [56]M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J. K. Rhee, and W. S. Warren. Ultrafast pulse shaping:amplification and characterization. Opt. Express,1998,3(10): 366-375.
    [57]S. Etemad, T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin. Optical-CDMA incorporating phase coding of coherent frequency bins:concept, simulation, experiment, in Optical Fiber Communication Conference,2004, paper:FG5.
    [58]T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett. Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser. IEEE Photon. Technol. Lett.,2002,14(11):1608-1610.
    [59]Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner. Spectral line-by-line pulse shaping. Opt. Lett.,2005,30(12):1557-1559.
    [60]Z. Jiang, D. E. Leaird, and A. M. Weiner. Optical processing based on spectral line-byline pulse shaping on a phase-modulated CW laser. IEEE J. Quantum Electron., 2006,42(7-8):657-666.
    [61]Z. Jiang, D. E. Leaird, C. B. Huang, H. X. Miao, M. Kourogi, K. Imai, and A. M. Weiner. Spectral line-by-line pulse shaping on an optical frequency comb generator. IEEE J. Quantum Electron.,2007,43(11-12):1163-1174.
    [62]Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner. Spectral line-by-line pulse shaping for optical arbitrary pulse-train generation. J. Opt. Soc. Am. B,2007,24(9): 2124-2128.
    [63]Z. Jiang, D. E. Leaird, and A. M. Weiner. Line-by-line pulse shaping control for optical arbitrary waveform generation. Opt. Express,2005,13(25):10431-10439.
    [64]B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner. Spectral line-by-line shaping for optical and microwave arbitrary waveform generations. Laser Photonics Rev.,2008,2(4):227-248.
    [65]B. Huang, D. E. Leaird, and A. M. Weiner. Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions. Opt. Lett., 2007,32(22):3242-3244.
    [66]H. Takahashi, S. Suzuki, K. Kato, and I. Nishi. Arrayed-wave-guide grating for wavelength division multi demultiplexer with nanometer resolution. Electron. Lett., 1990,26(2):87-88.
    [67]H. Takahashi, S. Suzuki, and I. Nishi. Wavelength multiplexer based on Sio2-Ta2o5 arrayed-wave-guide grating. J. Lightwave Technol.,1994,12(6):989-995.
    [68]T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii. Time-space-conversion optical signal processing using arrayed-waveguide grating. Electron. Lett.,1997,33(22):1890-1891.
    [69]H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa. Second-and third-order dispersion compensator using a high-resolution arrayed-waveguide grating. IEEE Photon. Technol. Lett.,1999,11(5):569-571.
    [70]S. Yegnanarayanan, P. D. Trinh, and B. Jalali. Recirculating photonic filter:A wavelength-selective time delay for phased-array antennas and wavelength codedivision multiple access. Opt. Lett.,1996,21(10):740-742.
    [71]S. Yegnanarayanan and B. Jalali. Wavelength-selective true time delay for optical control of phased-array antenna. IEEE Photon. Technol. Lett.,2000,12(8): 1049-1051.
    [72]N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo.32 phase X 32 amplitude optical arbitrary waveform generation. Opt. Lett.,2007,32(7):865-867.
    [73]N. K. Fontaine, R. P. Scott, C. X. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. B. Yoo. Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation. Opt. Lett.,2008,33(15):1714-1716.
    [74]M. Hyodo, K. S. Abedin, and N. Onodera. Generation of arbitrary optical waveforms by Fourier synthesis using three continuous-wave semiconductor lasers. Electron. Lett,2000,36(3):224-225.
    [75]Y. Park, M. H. Asghari, T. J. Ahn, and J. Azana. Transform-limited picosecond pulse shaping based on temporal coherence synthesization. Opt. Express,2007,15(15): 9584-9599.
    [76]R. A. Minasian. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech.,2006,54(2):832-846.
    [77]X. Chen, Y. Wu, J. Hodiak, and P. K. L. Yu. A novel digitally tunable microwavephotonic notch filter using differential group-delay module. IEEE Photon. Technol. Lett.,2003,15(2):284-286.
    [78]V. Polo, B. Vidal, J. L. Corral, and J. Marti. Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines. IEEE Photon. Technol. Lett., 2003,15(4):584-586.
    [79]B. Vidal, V. Polo, J. L. Corral, and J. Marti. Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media. Electron. Lett.,2003,39(6):547-549.
    [80]B. Hunter. Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator. Electron. Lett.,2004,40(14):856-858.
    [81]J. Capmany, J. Mora, D. Pastor, and B. Ortega. High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients. IEEE Photon. Technol. Lett.,2005,17(12):2730-2732.
    [82]R. Chen and V. Page. Tunable photonic microwave filter using semiconductor fibre laser. Electron. Lett.,2005,41(21):1183-1184.
    [83]J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, and S. B. Lee. Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter. Electron. Lett.,2006,42(14):812-814.
    [84]J. Mora, A. Ortigosa-Blanch, D. Pastor, and J. Capmany. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration. Opt. Express,2006, 14(17):7960-7965.
    [85]J. Wang and J. P. Yao. A tunable photonic microwave notch filter based on all-optical mixing. IEEE Photon. Technol Lett.,2006,18(1-4):382-384.
    [86]D. Chen, H. Fu, and S. He. Novel microwave photonic filter based on a mode-locked fiber laser. Laser Phys Lett.,2007,4(8):597-600.
    [87]H. Cheng and S. Aditya. A novel photonic microwave filter with infinite impulse response. IEEE Photon. Technol. Lett.,2007,19(17-20):1439-1441.
    [88]T. Kamisak, T. K.uri, K.. Kitayama, Simultaneous modulation and fiber-optic transmission of 10-Gb/s baseband and 60GHz-band radio signals on a single wavelength, IEEE Transactions on Microwave Theory and Techniques,2001,49(10), 2013-2017.
    [89]Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, G. K. Chang. Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave-band radio-over-fiber systems. IEEE Photon. Technol. Lett.,19(20), 2007,1691-1693.
    [90]J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas. Demonstration of a novel WDM-PON access network compatible with RoF system to provide 2.5Gb/s per channel symmetric data services. OFC,2007, Paper:OThM5.
    [91]C.-T. Lin, E.-Z. Wong, W.-J. Jiang, P.-T. Shin, J. Chen and S. Chi.28-Gb/s 16-QAM OFDM radio-over-fiber system within 7 GHz license free band at 60 GHz employing all-optical upconversion. CLEO,2009, Paper:CPDA8.
    [92]W.-J. Jiang, C.-T. Liu, L.-Y. W. He, C.-C. Wei, C.-H. Ho, Y.-M. Yang, P.-T. Shih, J. Chen, and S. Chi.32.65-Gbps OFDM RoF signal generation at 60GHz employing an adaptive I/Q imbalance correction. ECOC,2010, Paper:Th.9.B.5.
    [93]A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, K-I Kitayama.40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express,2011,19(26):B56-B63.
    [94]X. D. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J-S.Pedersen, L Deng, F. Karinou, F. Roubeau, D. Zibar, X. B. Yu, and I. T. Monroy.100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz). Opt. Express,2011, 25(19):24944-24949.
    [95]S. Koenig, F. Boes, D. Lopez-Diaz, J. Antes, R. Henneberger, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, I. Kallfass, and J. Leuthold.100 Gbit/s wireless link with mm-wave photonics. OFC,2013, Paper: PDP5B.4.
    [96]K. J. Williams and R. D. Esman. Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency. Electron. Lett.,1994,30(23):1965-1966.
    [97]S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas. Stimulated brillouin scattering for microwave signal modulation depth increase in optical links. Electron. Lett.,2000,36(11):944-946.
    [98]J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn. Optical carrier filtering for high dynamic range fibre optic links. Electron. Lett.,1994,30(25): 2157-2158.
    [99]R. D. Esman and K. J. Williams. Wideband efficiency improvement of fiber optic systems by carrier subtraction. IEEE Photon. Technol. Lett.,1995,7(2):218-220.
    [100]H. Toda, T. Yamashita, T. Kuri, and K. Kitayama.25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems, in Proc. Microwave Photon.,2003:287-290.
    [101]H. Schmuck. Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion. Electron. Lett.,1995,31(21):1848-1849.
    [102]U. Gliese, S. Norskov, and T. N. Nielsen. Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Trans. Microw. Theory Tech.,1996, 44(10):1716-1724.
    [103]G. H. Smith, D. Novak, and Z. Ahmed. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electron. Lett.,1997,33(1): 74-75.
    [104]R. A. Griffin, P. M. Lane, and J. J. O'Reilly. Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals. Electron. Lett.,1996,32(24): 2258-2260.
    [105]J. M. Fuster, J. Marti, and J. L. Corral. Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links. Electron. Lett.,1997,33(23): 1969-1970.
    [106]Z. Jia, J. Yu, and G.-K. Chang. A full-duplex radio-over-fiber system based on optical carrier suppression and reuse. IEEE Photon. Technol. Lett.,2006,18(16):1726-1728.
    [107]J. Park, W. V. Sorin, and K. Y. Lau. Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission. Electron. Lett.,1997, 33(6):512-513.
    [108]K. Yonenaga and N. Takachio. A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems. IEEE Photon. Technol. Lett.,1993,5(8):949-951.
    [109]E. Vourch, D. Le Berre, and D. Herve. Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems. IEEE Photon. Technol. Lett.,2002,14(2):194-196.
    [110]J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez. WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances, in Proc. Microw. Photon.,2003:39-42.
    [111]J. Marti, J. M. Fuster, and R. I. Laming. Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings. Electron. Lett.,1997,33(13):1170-1171.
    [112]F. Ramos, J. Marti, V. Polo, and J. M. Fuster. On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems. IEEE Photon. Technol. Lett.,1998,10(10):1473-1475.
    [113]F. Ramos, J. Marti, and V. Polo. Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers. IEEE Photon. Technol. Lett.,1999,11(9):1171-1173.
    [114]C. Won, W. Zhang, and J. A. R. Williams. Self-phase modulation dependent dispersion mitigation in high power SSB and DSB+dispersion compensated modulated radio-over-fiber links. in Proc. IEEE MTTSIMS,2006:1947-1950.
    [115]J. Marti and F. Ramos. Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation. Electron. Lett.,1997,33(9): 792-794.
    [116]T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse. Performance analysis of optimized millimeter-wave fiber radio links. IEEE Trans. Microw. Theory Tech.,2006,54(2):921-928.
    [117]W. H. Chen and W. I. Way. Multichannel single-sideband SCM/DWDM transmission systems. J. Lightwave Technol.,2004,22(7):1679-1693.
    [118]S.-H. Park and Y.-W. Choi. Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter. IEEE Photonics Technol. Lett.,2005,17(6):1280-1282.
    [119]T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds. High-dynamic-range wireless-over-fiber link using feedforward linearization. J. Lightwave. Technol.,2007, 25(11):3274-3282.
    [120]S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han. Linearization of RoF optical source by using light-injected gain modulation, in Proc. Microw. Photon., 2005:265-268.
    [121]L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Cassini. Analog laser predistortion for multiservice radio-over-fiber systems. J. Lightw. Technol.,2003,21(5):1211-1223.
    [122]R. Shah and B. Jalali. Adaptive equalisation for broadband predistortion linearisation of optical transmitters. IEE Proc. Optoelectronics,2005,152(1):16-32.
    [123]A. Djupsjobacka. A linearization concept for integrated-optic modulators. IEEE Photon. Technol. Lett.,1992,4(8):869-872.
    [124]H. Skeie and R. Johnson. Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes. Proc. SPIE-Int. Soc. Opt. Eng.,1991,1583: 153-164.
    [125]S. Korotky and R. DeRidder. Dual parallel modulation schemes for low-distortion analog optical transmission. IEEE J. Sel. Areas Commun.,1990,8:1377-1381.
    [126]L. S. Fock and R. S. Tucker. Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation. Eletron. Lett.,1991,27(14): 1297-1299.
    [127]A. Gamage, A. Nirmalathas, C. Lim, E. Wong, D. Novak, and R. Waterhouse. Experimental demonstration of digitized RF transport over optical fiber links, in Proc. 2008 IEEE Int. Topical Meeting MWP2008/APMP2008,2008:15-18.
    [128]M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera. Direct bandpass sampling of multiple distinct RF signals. IEEE Trans. Commun.,1999,47(7):983-988.
    [129]C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse. Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio. Electron. Lett.,2001,37(16):1043-1045.
    [130]H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri. A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency, in Proc. MWP, 2001:85-88.
    [131]A. Papoulis. Pulse compression, fiber communications, and diffraction:a unified approach. J. Opt. Soc. Am. A,1994:11(1),3-13.
    [132]C.-P. Huang, H. C. Kapteyn, J. W. Mcintosh, and M. M. Mumane. Generation of transform-limited 32-fs pulses from a self-mode-locked Tksapphire laser. Opt. Lett, 1992:17(2),139-141.
    [133]T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta. Optical pulse compression using high-frequency electrooptic phase modulation. IEEE J. Quantum Electron.,1988:24(2),382-387
    [134]T. Komukai, T. Yamamoto, and S. Kawanishi. Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings. IEEE Photon. Technol. Lett, 17(8),1746-1748.
    [135]V. Torres-Company, J. Lancis, and P. Andres. Incoherent frequency-to-time mapping: application to incoherent pulse shaping. J. Opt. Soc. Am. A,2007:24(3),888-894.
    [136]V. Torres-Company, J. Lancis, P. Andres, and L. R. Chen.20 GHz arbitrary radiofrequency waveform generator based on incoherent pulse shaping. Opt. Express, 2008:16(26),21564-21569.
    [137]C. Dorrer. Statistical analysis of incoherent pulse shaping. Opt. Express,2009:17(5), 3341-3352.
    [138]H. Xia, C. Wang, S. Blais, and J. Yao. Ultrafast and rrecise interrogation of fiber bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. J. Lightwave Technol,2010:28(3),254-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700