用户名: 密码: 验证码:
二频机抖激光陀螺双轴旋转惯性导航系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,以二频机抖激光陀螺为核心惯性元件的船用激光陀螺惯性导航系统在以美国为首的军事发达国家得到大量的应用,在水面舰艇和潜艇等高精度导航领域占据着重要地位。长航时、高精度船用惯导系统普遍采用旋转调制技术。对于采用单轴旋转调制的惯导系统,沿旋转轴方向的器件误差不可被调制,从根本上限制了系统精度;采用双轴旋转调制的惯导系统由于能够调制三个方向的器件误差,具备了从根本上抑制惯导系统误差随时间积累的特性。论文以二频机抖激光陀螺双轴旋转惯性导航系统的若干关键技术为研究目标,旨在进一步提高我国激光陀螺惯导系统的长航时导航精度,解决我国海军走向深蓝的瓶颈问题。主要研究工作包括以下五个方面内容:
     1.双轴旋转惯导系统的转位优化方案设计与分析。从捷联惯导系统的误差方程出发,详细分析了对旋转惯导系统中陀螺零偏、标度因数误差、安装误差的调制机理,并提出了判断误差调制效果的准则。在仿真比较了现有的十六次序转位方案和六十四次序转位方案的调制效果的基础上,提出了改进六十四次序的双轴旋转转位方案,指出改进六十四次序的转位方案是合理和实用的转位方案。
     2.双轴旋转惯导系统中的核心惯性元件——二频机抖激光陀螺的滤波算法与随机误差研究。基于本单位研制的二频机抖激光陀螺的实测数据,针对时间序列建模方法提出了一种基于新陈代谢GM(1,1)模型的灰色时序建模方法,完成在线建立漂移数据的二阶自回归AR(2)模型,通过Kalman滤波有效抑制激光陀螺的随机漂移;针对滤波消噪方法提出了一种结合谐波小波预滤波的RBF神经网络非参数辨识滤波的方法,以充分训练后的RBF神经网络对陀螺漂移信号滤波,提高了机抖激光陀螺的测量精度。研究了高精度二频机抖激光陀螺性能的评价方法,指出了Allan方差分析法的缺点,提出了采用动态Allan方差对高精度二频机械抖动激光陀螺实测数据进行分析的新方法。
     3.二频机抖激光陀螺惯导的系统级温度补偿技术的研究。结合船用惯导系统的实际应用环境,设计了合理的系统温度补偿实验。实验比较了采用多元线性回归法和稳健回归法对系统中惯性元件进行温度建模补偿的效果,指出存在粗差干扰的情况下采用稳健回归法建模后的补偿精度明显优于多元线性回归法。探讨了将最小二乘支持向量机用于二频机抖激光陀螺的温度补偿的可行性,通过实验指出LS-SVM具有很好的非线性拟合能力,可解决传统最小二乘或迭代最小二乘对惯性元件零偏随温度非线性变化的拟合能力有限的问题。
     4.二频机抖激光陀螺双轴旋转惯导系统标定技术的研究。通过详细推导系统级标定旋转方案中各次旋转前后的速度变化率之差的表达式,清晰地说明了标定误差激励与分离的数学原理。设计了一个30维的Kalman滤波器,完成滤波法标定实验,取得了较好的实验效果。探讨了双轴旋转惯导系统的海上自标定技术,设计了一种双轴旋转标定的位置编排方案,指出除了三个安装误差无法标出,其余误差均可标出。同时指出,在充分利用载体机动的基础上,双轴旋转惯导系统也可以实现全参数标定。
     5.二频机抖激光陀螺双轴旋转惯导系统的算法设计和导航实验。通过对姿态提取算法的分析,指出双轴旋转惯导系统采用绕横摇轴和方位轴而不采用绕纵摇轴和方位轴进行旋转的原因。进行了系统无旋转静态导航实验、单轴旋转导航实验、双轴旋转导航实验以及阻尼实验。50型二频机抖激光陀螺双轴旋转惯导系统的纯惯性导航达到了120小时导航全程最大定位误差为1.02海里的精度,且系统整体定位误差并无发散的趋势。进行了50型二频机抖激光陀螺双轴旋转惯导系统的水平阻尼和全阻尼离线仿真实验,120小时水平阻尼导航最大定位误差为0.6海里,120小时全阻尼导航最大定位误差为0.56海里。90型二频机抖激光陀螺双轴旋转惯导系统的纯惯性导航达到了14天导航全程最大定位误差优于0.6海里的精度。
At present,the marine inertial navigation system with mechanically dithered ringlaser gyroscope as the core inertial sensors has been widely used in those militarydeveloped countries led by the U.S., and it plays an important role in the field ofhigh-precision navigation of surface ships and submarines. Rotating modulationtechnique has been universally adopted in long-endurance, high-precision marineinertial navigation systems. For the single axis rotation modulation INS, errors along therotation axis can not be modulated, which limit the system accuracy. However, thedouble-axis rotation modulation can modulate the apparatus error in three directions;therefore, it inhibits the time accumulated navigation errors. Based on some keytechnologies of double-axis rotation modulation INS with mechanically dithered RLG isdiscussed, aiming to enhance the long-endurance accuracy of the RLG INS with somedegrees and solve the bottleneck problem of Chinese Navy heading for the ‘dark blue’.The research work includes the following five aspects:
     1.The design and analysis of the optimization scheme of double-axis rotationmodulation INS. Based on the SINS error equations, the modulation mechanism of gyrobias, scale factor error, installation error is analyzed in detail, and judgment rules of theerror modulation effects are put forward. On the comparison of the modulation effectsof the sixteen-sequence scheme and sixty-four-sequence scheme, an improved schemeof sixty-four-sequence is presented, which is far more reasonable and practical.
     2.Study on the filtering algorithm and random errors of mechanically ditheredRLG which is the core inertial sensor in double-axis rotation modulation INS. A newmethod named grey-time series modeling is proposed, which has integrated themetabolic GM(1,1) model and Time series model, and completed the online AR(2)modeling of drift data, then the random drift of gyro’s output is inhibited effectively byKalman filter. A filtering method of RBF neural network which combines HarmonicWavelet pre-filtering is proposed. This kind of filtering method using trained RBFneural network improves the accuracy of mechanically dithered RLG. The evaluation ofthe performance of high-accuracy mechanically dithered RLG is studied, the demerit ofthe Allan variance have been pointed out, and a new method of analyzing the collectingdata of high-accuracy mechanically dithered RLG using Dynamic Allan variance(DAVAR) has been proposed.
     3.Study on system-level temperature compensation technology of INS withmechanically dithered RLG. Combined with the practical application environment ofthe marine INS, a reasonable experiment of system temperature compensation has beendesigned. The effects of temperature compensation to inertial sensors adopting multiple linear regression method and robust regression method are compared. Wheninterference appears, the compensation accuracy using robust regression method issignificantly better than that adopting multiple linear regression method. The feasibilityof LS-SVM method for temperature compensation of mechanically dithered RLG isdiscussed. Experiments indicate that the LS-SVM has a optimazed ability of nonlinearfitting, so it is useful for resolving the problem that the limited fitting ability oftraditional least squares or iterative least squares.
     4.Study on calibration technique of INS with mechanically dithered RLG. Thispaper clearly illustrates the mathematical principles of the error actuation and separationby detailed derivation of the expression of the difference of speed change rate beforeand after each rotation. This paper designed a30-dimensional Kalman filter to completethe calibration experiment, and achieves excellent experimental results. Throughexploring the double-axis rotation INS self-calibration technology in the marineenvironment, this paper designed a double-axis rotation self-calibration program, andpointed out that in addition to three installation errors, the rest errors all can becalibrated out. By taking advantage of the vehicle maneuver, the double-axis rotationINS also realizes full parameter calibration.
     5.The algorithm design and navigation experiments of double-axis system. Byanalyzing the attitude extraction algorithm, the reason why the double-axis rotationadopts rotation around the roll and heading axis, not the pitching and heading axis, hasbeen pointed out. The non-rotating static navigation experiment、single-axis rotationnavigation experiment、 double-axis rotating navigation experiment and dampingexperiment have all been done. The double-axis rotating navigation experiment using50-type RLG has achieved the accuracy of maximum error1.02nm/120hours, andthere is no divergent trends in the position errors. During off-line simulation ofhorizontal damping and full damping of the double-axis rotation system, the maximumhorizontal damping navigation positioning error is0.6nautical mile during the120hours, the maximum full damping navigation positioning error is0.56nautical mileduring the120hours. The double-axis rotating navigation experiment using90-typeRLG has overmatched the accuracy of0.6nm/14days.
引文
[1]于旭东.二频机抖激光陀螺单轴旋转惯性导航系统若干关键技术研究[D].长沙:国防科技大学博士学位论文,2011.
    [2]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984.
    [3]姜亚南,环形激光陀螺[M].北京:清华大学出版社,1984.
    [4] Aronowitz F, M Ross. The laser gyro, Laser Applications, Academic Press[M].NewYork,1971:134~198.
    [5]杨培根等.光电惯性技术[M].北京:兵器工业出版社,1999.
    [6]张惟叙,邓兆炯.激光陀螺抖动偏频研究[J].北京航空航天大学学报,1990(3):15~20.
    [7]汤建勋.机械抖动激光陀螺抖动偏频系统的研究与设计[D].长沙:国防科学技术大学博士学位论文,2000.
    [8]谢元平.机械抖动激光陀螺鉴相解调与稳频技术的研究[D].长沙:国防科技大学博士学位论文,2000.
    [9]黄国荣,张宗麟,韩宗虎.激光陀螺角随机游走分析方法[J].中国惯性技术学报,2000(1):30~35.
    [10] GJB2427-95,激光陀螺仪测试方法[S].
    [11]冯先旺.机抖陀螺闭锁阈值测量与性能预评估方法研究[D].长沙:国防科学技术大学硕士学位论文,2008.
    [12] http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/GG1320AN_Digital_Laser_Gyro.pdf.
    [13] Robert W Jr, William G M. The Next Frontier For Strapdown RLG Systems:Precision Navigation[J]. IEEE Position Location and Navigation Symposium,1990:20~-23.Mar1990:537~542.
    [14] Honeywell Inc,GG1342datasheet,[EB/OL].http://www.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/GG1342.pdf.
    [15] Hibbard R, Wylie B, Levison E. Sperry Marine MK-49, The World’s Best RingLaser Gyro Ship’s Inertial Navigation System[C]//JSDE Proceedings, Orlando, FL,November1996.
    [16] Levison E, Horst J, Willcocks M. The Next Generation Marine Inertial Navigator isHere Now [J].IEEE Position Location and Navigation Symposium,1994:121~127.
    [17] MK39.pdf.http://www.sperrymarine.northropgrumman.com/Downloads/354/Product%20Brochure.pdf.
    [18] Hays K M, Schmidt R G, Wilson W A, et al. A Submarine Navigation for the21stCentury[J]. IEEE Position Location and Navigation Symposium,2002:179~188.
    [19] Vajda S, Zorn A. Survey of Existing and Emerging Technologies for StrategicSubmarine Navigation[J].IEEE Position Location and Navigation Symposium,1998:309~315.
    [20] Gurey R K, Ash M E, Thielman L O, et al. Proposed IEEE Inertial SystemsTerminology Standard and Other Inertial Sensor Standards[J]. IEEE Position Locationand Navigation Symposium,2004:83~90.
    [21] Tucker T, Levison E. The AN/WSN-7B Marine Gyrocompass/Navigator[J]. IONNTM2000, Anaheim, CA,26-28January,2000:348~357.
    [23] Levinson E, Giovanni C S, Jr. Laser Gyro Potential for Long Endurance MarineNavigation[J]. IEEE Position Location and Navigation Symposium,1980:115~129.
    [24] Levinson E, Majure R. Accuracy Enhancement Techniques Applied to the MarineRing Laser Inertial Navigation(MARLIN)[J]. Navigation: Journal of The Institute ofNavigation,1987,34(1):64~86.
    [25] Lahham J I, Wigent D J, Coleman A L. Tuned Support Structure forStructure-borne Noise Reduction of Inertial Navigator with Dithered Ring Laser Gyros(RLG)[J]. IEEE Position Location and Navigation Symposium,2000:419~428.
    [26] Lahham J I, Brazell J R. Acoustic Noise Reduction in the MK49Ship’s InertialNavigation System(SINS)[J]. IEEE Position Location and Navigation Symposium,1992:32~39.
    [27] Titterton D H,Weston J L. Strapdown Inertial Navigation Technology [M].SecondEdition, United Kingdom: Institution of Electrical Engineers,2004.
    [28]袁保伦.四频激光陀螺旋转式惯导系统研究[M].长沙:国防科技大学博士学位论文,2007.
    [29]徐海刚.旋转调制式捷联惯导系统研究[M].北京:北京航空航天大学博士学位论文,2009.
    [30]王国臣.空间环路四频激光陀螺及其组成的双轴旋转惯导系统关键技术研究[M].长沙:国防科技大学博士学位论文,2011.
    [31]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998.
    [32] Self J, Baum R and Neue M. Attenuation of Navigation Errors by means ofStrapdown IMU Rotation Fourth Inertial Guidance Test Symposium Proceedings(6Nov),1968.
    [33]张树侠,闫威.激光陀螺漂移的数据建模和滤波[J].中国惯性技术学报,1999(4):70~72.
    [34] Sang Man Seong,Jang Gyu Lee,Chan Gook Park.Equivalent ARMA ModelRepresentation for RLG Random Errors[J].IEEE Transaction on Aerospace andElectronic Systems,2000(1):286~290.
    [35]王省书,黄宗升等.激光陀螺随机漂移的数字滤波方法比较[J].中国激光,2006(11):1547~1551.
    [36]彭云辉,刘云峰等.基于小波包分析的激光陀螺信号滤波方法[J].红外与激光工程,2007(6):823~826.
    [37]宋雅兰,朱春云,詹丽娟.小波滤波在单轴机抖激光陀螺输出信号处理中的应用[J].中国惯性技术学报,2006(5):62~64.
    [38] Robert L.Hammon. An Application of Random Process Theory to Gyro DriftAnalysis[J]. IRE Transactions on Aeronautical and Navigational Electronics,September,1960(7):84~91.
    [39] Allan Dushman. On Gyro Drift Models and their Evaluation[J].IRE Transactionson Aerospace and Navigational Electronics,1964:66~71.
    [40] Van Dierendonek, A.J, and Brown, R.G. Modeling Nonstationary RandomProcesses with an Application to Gyro Drift Rate[J].IEEE Transactions on Aerospaceand Electronic Systems,1969:423~428.
    [41] Albert S. Oravetz. Stationary and Nonstationary Characteristics of Gyro DriftRate[C]. AIAA Guidance, Control, and Flight Mechanics Conference, Princeton, N.J.,August,1969:18~20.
    [42] Sudhakar M.Pandit, Wei Bang Zhang. Modeling Random Gyro Drift Rate DataDependent Systems[J].IEEE Transactions on Aerospace and ElectronicSystems.1986(4):455~459.
    [43] P.B.Reddy. On Stationary and Nonstationary Models of Long Term RandomErrors of Gyroscopes and Accelerometers in An Inertial Navigation System[C]. NewOrleans: Proceeding of the1977IEEE conference on decision and Control,1977.
    [44] Jiang Hong, Yang Weiqin, Yang Yantang. State Space Modeling of Random DriftRate in High-Precision Gyro[J].IEEE Transactions on Aerospace and ElectronicSystems,1996(3):1138~1143.
    [45]高炳祥,万德钧. Kalman滤波器虚拟噪声补偿技术在陀螺随机常值漂移标定中的应用[J].中国造船,1995(4):86~90.
    [46]顾颖玲,许江宁,卞鸿巍.陀螺随机漂移误差模型建模方法研究[J].海军工程大学学报,2000:80~82.
    [47]吴少敏,万德钧,周百令等.陀螺随机漂移时间序列的辨识[J].应用科学学报.1995(4):452~456.
    [48]刘春宁,田蔚风,金志华.自适应格型算法对动调陀螺仪随机漂移的建模[J].上海交通大学学报,2002(7):1049~1052.
    [49]刘巧光,许辅义,滕云鹤等.环形激光陀螺仪随机误差模型的研究[J].清华大学学报(自然科学版),1999(2):71~74.
    [50]陈熙源,万德钧,程启明,余勇.陀螺随机漂移的神经网络预报方法研究[J].东南大学学报,1999(5):79~83.
    [51]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002:10~15.
    [52] Liu Sifeng, Lin Yi. Grey Information Theory and Practical Applications[M].London: Springer-Verlag,2006:1~22.
    [53] Jiang C W, Hou Z J, Zhang Y C. Chaos analysis of the grey forecasting model[J].The Journal of Grey System,2000(4):319~322.
    [54]赵雪花,黄强,吴建华.基于灰色马尔可夫链的径流序列模式挖掘[J].武汉大学学报(工学版),2008(4):1~4.
    [55] Liu Sifeng, Deng Julong. The range suitable for GM(1,1)[J]. The Journal of GreySystem,1999(1):131~-138.
    [56] Newland D E. Harmonic wavelet analysis. Proc. R. Soc. Land. A,1993(443):203~205.
    [57] Newland D E. Harmonic wavelets in vibrations and acoustics. Proc. R. Soc. Land.A,1999(357):2607~2625.
    [58]李舜酩,李香莲.振动信号的现代分析技术与应用[M].北京:国防工业出版社,2008:119~158
    [59]朱洪俊.非平稳信号瞬时特征提取的谐波小波方法[J].机械工程学报,2008,44(5):191~195.
    [60] Chen Xiyuan. Modeling random gyro drift by time series Neural Networks and bytrational method[C]. Proceeding of2003international conference of neural networks&signal processing. New York: IEEE press,2003:810~830.
    [61] IEEE Standard Specification Format Guide and Test Procedure for Single-AxisLaser Gyros [S]. IEEE,2006.
    [62] N. El-Sheimy, H. Hou, X. Niu et al.. Analysis and Modeling of Inertial SensorsUsing Allan Variance[J]. IEEE Trans. On Instrumentation and Measurment,2008(1):140~149.
    [63] L. Galleani, P. Tavella. Tracking nonstationarities in clock noises using thedynamic Allan variance[J]. Proc. Joint FCS-PTTI Meeting, Aug.2005:392~396.
    [64] L. Galleani, P. Tavella. The characterization of clock behavior with the dynamicAllan variance[J]. in Proc.IEEE FCS-EFTF, Tampa,2003:5~8.
    [65] L. Galleani, P. Tavella. The dynamic Allan variance[J], IEEE Transaction onUltrasonics, Ferroelectrics, and Frequency Control,2009(3):450~464.
    [66] L. Galleani. The dynamic Allan variance II: A Fast Computational Algorithm[J].IEEE Transaction on Ultrasonics, Ferroelectrics, and FrequencyControl,2010(1):182~188.
    [67]张鹏飞.二频机抖激光陀螺捷联惯导系统及其实时温度补偿方法的研究[M].长沙:国防科技大学博士学位论文,2006.
    [68] Lee C C, Chiang Y C, Shih C Y, Tsai C L. Noisy time series prediction usingM-estimator based robust radial basis function neural networks with growing andpruning techniques [J]. Expert Systems with Applications,2009(36):4717~4724.
    [69] Vapnik V. N. The Nature of Statistical Learning Theory[M]. NewYork:Springer-Verlag,1999:988~999.
    [70]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000(1):32~42.
    [71]王宇红,黄德先等.基于LS-SVM的非线性预测控制技术[J].控制与决策2004(4):383~387.
    [72]王伟,王田苗,魏洪兴.LS-SVM与多层前向网络的非线性回归性能比较.系统仿真学报[J],2008(1):256~263.
    [73] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J].Neural Processing Letters,1999(3):293~300.
    [74] Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squaresvector machine[C]. IEEE International Symposium on Circuits and Systems, Geneva,2000:757~760.
    [75] Suykens J A K. Nonlinear Modeling and Support Vector Machines[C]. IEEEInstrumentation and Measurement Technology Conference, Hungary,2001,3:287~294.
    [76]陈北鸥,孙文胜,张桂宏.捷联组合(设备无定向)六位置测试标定[J].导弹与航天运载技术,2001(3):23~27.
    [77]孙宏伟,房建成,盛蔚.一种基于MEMS的微惯性测量单元标定补偿方法[J].北京航空航天大学学报,2008(4):439~442.
    [78]严恭敏,秦永元.激光捷联惯组的双轴位置转台标定仿真[J].中国惯性技术学报,2007(1):123~127.
    [79]熊智,刘建业,林雪原.激光陀螺捷联惯性导航系统中惯性器件误差补偿技术[J].上海交通大学学报,2003(11):1795~1799.
    [80]肖桂平.光学陀螺捷联惯导系统的标定精度分析[D].长沙:国防科学技术大学,2008.
    [81]邓志红,刘亚辰,王清哲.转台角位置基准误差对激光捷联惯导标定的影响分析[J].中国惯性技术学报,2009(4):498~504.
    [82]张红良.陆用高精度激光陀螺捷联惯导系统误差参数估计方法研究[D].长沙:国防科技大学博士学位论文,2010.
    [83] Pittman D N, Roberts C E. Determining Inertial Errors fromNavigation-in-PlaceData[C].//IEEE Position Location and Navigation Symposium,Monterey, CA, USA,1992.
    [84] Camberlein L, Mazzanti F. Calibration technique for laser gyro strapdowninertialnavigation systems[C].//Symposium Gyro Technology, Stuttgart, WestGermany,1985.
    [85] Savage P G. Strapdown Analytics[M]. Maple Plain, Minnesota:StrapdownAssociates, Inc.,2007.
    [86] Rogers R M. Applied Mathematics in Integrated Navigation Systems[M].AmericanInstitute of Aeronautics and Astronautics, Inc.,2007.
    [87]杨晓霞,黄一.激光陀螺捷联惯导系统的系统级标定方法研究[C].//湖南:第26届中国控制会议,2007.
    [88] Mark J, Tazartes D, Hilby T. Fast Orthogonal Calibration of a Ring LaserStrapdown System[C].//Symposium Gyro Technology, Stuttgart, West Germany,1986.
    [89] Grewal M S, Henderson V D, Miyasako R S. Application of KalmanFiltering to theCalibration and Alignment of Inertial Navigation Systems[J]. IEEE Transactions onAutomatic Control,1991(1):4~13.
    [90]张卫东,刘恒春.捷联惯性测量组合标定的仿真研究[J].中国惯性技术学报,2000(2):10~15.
    [91]林玉荣,邓正隆.激光陀螺捷联惯导系统中惯性器件误差的系统级标定[J].哈尔滨工业大学学报,2001(1):112~115.
    [92]吴赛成.船用高精度激光陀螺姿态测量系统关键技术研究[D].长沙:国防科技大学博士学位论文,2012.
    [93]周健.用于车载自主导航激光多普勒测速仪的初步研究[D].长沙:国防科技大学博士学位论文,2011.
    [94]沈熊.激光多普勒测速技术及应用[M].北京:清华大学出版社,2003.
    [95] Rudd.M.J. A new theoretical model for the laser Doppler meter [J].J.Phy.E.Sci.Instrument,1969(1):55~58.
    [96]周健,冯庆奇,马曙光,宋锐,魏国,龙兴武.参考光束型激光多普勒测速仪的误差分析[J].强激光与粒子束,2010(11):2581~2587.
    [97] Milind M. Rajadhyaksha, Warren H. Stevenson. Accuracy of a laser Dopplervelocimeter for instantaneous velocity measurements on rotating solid surfaces [J].L.I.A.,1989(70):97~113.
    [98]周健,姚宝聚,龙兴武.激光多普勒信号渡越加宽的研究[J].红外与激光工程,2011(5):826~829.
    [99]谢波,秦永元,万彦辉.激光陀螺捷联惯导系统多位置标定方法[J].中国惯性技术学报,2011(2):157~162.
    [100]黄德鸣,程禄.惯性导航系统[M].北京:国防工业出版社,1986.
    [101]高钟毓.惯性导航系统技术[M].北京:清华大学出版社,2012.
    [102] Joint S. Master positioning, navigation, and timing plan [R]. Washington, D.C.20318-06002003CJCS.31March,2003.
    [103]吉训生.硅微陀螺漂移信号处理方法研究[D].南京:东南大学博士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700