用户名: 密码: 验证码:
非均匀无线自组织网络容量及相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线自组织网络(Ad Hoc网络)是一类特殊的无线网络,因为其无中心、自组织、动态拓扑、多跳路由等特点,被广泛的应用于军事通信和抗险救灾等领域。另外,支持Ad Hoc通信模式也已成为无线通信设备发展的趋势。而学术界关于Ad Hoc网络的理论研究已成为了无线通信网络领域的一大分支,其中作为信息理论子课题的Ad Hoc网络的容量问题,在近十多年备受国内外广大学者的关注。本文以深入分析Ad Hoc网络容量问题为出发点,以完善网络信息理论为目标,重点研究更贴近实际网络状况的非均匀无线网络,分析了非均匀无线自组织网络的节点分布特征、网络连通性、传输模型、容量性质、传输能耗以及延时等性能。
     本文首先针对非均匀Ad Hoc网络的节点分布特性,引入了离散噪声过程对节点分布进行建模,其中重点分析了非均匀特性非常明显的簇扩张型网络模型,对网络中不同区域之间的节点密度差异进行了深入研究。接着本文以节点簇为基本单位,首次建立了非均匀节点分布下的渗透模型,证明了在簇内存在两种方向上的信息高速公路,由这些高速公路组成的主干传输系统成为了分析网络传输模型的关键,而在簇间则建立了相关的信息管道,为簇内的传输模型做补充,完善了整个网络的传输模型。本文还分析了该模型下,非均匀网络保证连通的充要条件,推导出了节点发射功率应满足的条件。在完善传输模型的基础上,本文提出了合理的路由传输策略,路由分为簇内传输和簇间传输两部分,文中对两部分分别进行了分析并推导证明了网络中节点传输数据的可行吞吐率,用于逼近非均匀Ad Hoc网络容量的下界。通过比较,本文所得下界较前人的结论更为紧凑。
     本文还重点分析了非均匀Ad Hoc网络的最小传输能量问题,旨在从理论上推导网络中随机的一对源-目的节点对之间,成功传输单位信息量数据所消耗的网络最小能量。文中通过上下界同时逼近的方法,在求取下界的过程中建立了泰森多边形模型,并在其中寻找一些较大概率不含有任何节点的空路径,通过求解一次传输所必须消耗的能量从而得到最小传输能量的下界。而在上界的求解过程中,则利用本文提出的非均匀渗透模型,计算在路由过程中所消耗的能量。通过仔细分析和证明,非均匀网络的特殊性将导致渗透模型无法完全覆盖整个网络区域,其受到网络节点分布属性的限制,最终将导致上下界存在一定的间隙。本文分析和推导了间隙的大小以及形成原因,并由此给出了非均匀网络向均匀网络转化的可行性分析及条件。
     最后,对于非均匀无线网络中端到端传输延时边界的问题,本文采用了随机网络演算作为理论分析工具,随机网络演算作为建模无线衰落信道,分析网络延时和数据积压的数学工具,能很好地分析网络延时的边界。本文以渗透模型中的信息高速公路为主要分析对象,通过利用网络演算中的串联定理,计算并分析了传输延时的标度率性质。结果表明,网络规模的变化对延时的影响强于对容量的影响,所以在设计大规模无线自组网的时候,可能网络的传输时延更应该引起设计者的关注。
Wireless Ad Hoc network is special for its no-centre, self-organization, multihoprouting and dynamic topology, which make it widely used in areas such as militarycommunication and disaster assistance. And currently most wireless devices that appliedin our daily life can support the Ad Hoc mode. Theoretical research about Ad Hoc networkhas become an important branch of wireless communication in academic field. As asub-issue of the information theory, the capacity of Ad Hoc network has attracted muchattention in the recent decade. This thesis explores the capacity of Ad Hoc network basedon some practices of the real network. The research analyzes the performances such asnode distribution, network connectivity, transmission model, properties of capacity,transmission consumption and delay especially in inhomogeneous network, which is moreclose to the real environment.
     This thesis introduces the Shot Noise Cox Process to model the node distribution andanalyzes the cluster-sparse network model which is highly inhomogeneous and discussesdifferences of node density in various areas in particular. Then the thesis firstly presents apercolation model under the inhomogeneous node distribution based on cluster of nodesand demonstrates that there exist system highways in two directions. The backboneformed by the system highways is the key to analyze the network transmission model.Then the relevant “information pipes” is established between clusters to complete theintra-cluster transmission model up to the transmission model of the whole network. Thefollowing content sets the transmission power and puts forward correspondingtransmission routing scheme in line with the analysis of the sufficient and necessarycondition for connectivity. To approach the lower bound of the capacity in inhomogeneousAd Hoc network, this thesis analyzes and proves the throughput that nodes can achieve.By comparison, the lower bound obtained in this thesis is tighter than the previousresearch.
     Besides, to obtain the minimum energy consumption for a random pair of sourcenodes to transmit unit message, the thesis studies the minimum transmission energy of thenetwork especially. By approaching both the upper and lower bound, a tessellation model is set up when getting the lower bound to seek empty path that has no node w.h.p. to be thetransmission gap. Let the energy consumption during one transmission be the lower boundand calculate the energy consumption in the routing process using the inhomogeneouspercolation model when obtaining the upper bound. The thesis finds that there exists a gapbetween the upper and lower bound through analysis and proof. This is due to that thepercolation model can’t cover the whole inhomogeneous network under the constraint ofnode distribution.
     Finally, to solve the bound of transmission delay, this thesis takes stochastic networkcalculus as a tool for theoretical research and the system highway as the main analysisobject. It calculates and studies the scaling law of transmission delay using theconcatenation property of network calculus. The results show that the end-to-endtransmission delay increases nonlinearly with the increase of network size and number ofnodes. This relationship can guide the tradeoff between throughput and delay.
     This thesis focuses on the capacity and analyzes the performance such as energyconsumption and transmission delay. The research method is based on the informationtheory and probability theory. It first demonstrates the theorems and then does someanalysis to relevant conclusion. In view of the theoretical results, specific results havebeen given and practical meaning has been analyzed aiming at giving a guidance topractice.
引文
[1] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Journal,1948,27(1):379-423,623-656.
    [2] R. Ahlswede. Multi-way communication channels. In: Proceedings of2ndInternational Symposium on Information Theory,1971:23–52.
    [3] H. J. Liao. Multiple access channels:[Ph.D. dissertation]. University of Hawaii,Honolulu,1972.
    [4] P. Bergmans. Random coding theorem for broadcast channels with degradedcomponents. IEEE Transactions on Information Theory,1973,19(1):197-207.
    [5] T.M. Cover. Broadcast channels. IEEE Transactions on Information Theory,1972,18(1):2-14.
    [6] T.M. Cover. An achievable rate region for the broadcast channel. IEEE Transactionson Information Theory,1975,21(1):399-404.
    [7] T. S. Han and K. Kobayashi. A new achievable rate region for the interferencechannel. IEEE Transactions on Information Theory,1981,27(1):49-60.
    [8] T. M. Cover and A. E. Gamal. Capacity theorems for the relay channel. IEEETransactions on Information Theory,1979,25(1):571-584.
    [9]陈昌海.基于随机几何理论的无线Ad Hoc网络容量研究:[博士学位论文].北京邮电大学,2011.
    [10] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Transactionson Information Theory,2000,46(2):388-404.
    [11] M. Franceschetti, O. Dousse, and D. Tse.Closing the gap in the capacity of wirelessnetworks via percolation theory.IEEE Transactions on Information Theory,2007,53(3):1009-1018.
    [12] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc wirelessnetworks. In: Proceedings of IEEE Infocom,2001:235-243.
    [13] S. Diggavi, M. Grossglauser and D. Tse. Even one-dimensional mobility increasesthe capacity of wireless networks. IEEE Transactions on Information Theory,2005,51(11):3947-3954.
    [14] N. Bansal and Z. Liu. Capacity, delay and mobility in wireless ad hoc networks. In:22ndAnnual Joint Conference of the IEEE Computer and Communications(Infocom2003),2003:1553-1563.
    [15] A. Gamal, J. Mammen, B. Prabhakar et al. Throughput-delay trade-off in wirelessnetworks. In:23rdAnnual Joint Conference of the IEEE Computer andCommunications (Infocom2004),2004:475-482.
    [16] M. Neely and E. Modiano. Capacity and delay tradeoffs for ad hoc mobile networks.IEEE Transactions on Information Theory,2005,51(6):1917-1937.
    [17] L. Ying, S. Yang and R. Srikant. Optimal delay-throughput tradeoffs in mobile adhoc networks. IEEE Transactions on Information Theory,2008,54(9):4119-4143.
    [18] P. Li, C. Zhang and Y. Fang. Capacity and delay of hybrid wireless broadband accessnetworks. IEEE Journal on Selected Areas in Communications,2009,27(2):117-125.
    [19] X. Wang, Y, Bei, Q, Peng et al. Speed improves delay-capacity trade-off inmotioncast. IEEE Transactions on Parallel and Distribited Systems,2011,22(5):729-742.
    [20] X. Wang, W. Huang, S. Wang et al. Delay and capacity tradeoff analysis formotioncast. IEEE/ACM Transactions on Networking,2011,19(5):1354-1367.
    [21] D. Shila and C. Yu. Ad hoc wireless networks meet the infrastructure: mobility,capacity and delay. In: The Proceedings of IEEE INFOCOM,2012:3031-3035.
    [22] X. Wang, L. Fu, X. Tian et al. Converge cast: on the capacity and delay tradeoffs.IEEE Transactions on Mobile Computing,2012,11(6):970-982.
    [23] L. Fu, S. Yang, X. Wang et al. Capacity and delay tradeoffs of motioncast with basestations. In: IEEE Global Telecommunications Conference,2011:1-5.
    [24] E. Perevalov and R. Blum. Delay limited capacity of ad hoc networks:asymptotically optimal transmission and relaying strategy. In:22ndAnnual JointConference of the IEEE Computer and Communications (Infocom2003),2003:1575-1582.
    [25] S. Toumpis and A. Goldsmith. Large wireless networks under fading, mobility anddelay constraints. In:23rdAnnual Joint Conference of the IEEE Computer andCommunications (Infocom2004),2004:619-625.
    [26] F. Qiu, J. Bai and Y. Xue. Towards optimal rate allocation in multi-hop wirelessnetworks with delay constraints: a double-price approach. In: IEEE InternationalConference on Communications (ICC),2012:5280-5285.
    [27] W. Fu, Y. Wang and D. Agrawal. Delay and capacity optimization in multi-radiomuti-channel wireless mesh networks. In: IEEE International Performance,Computing and Communications Conference,2008:152-159.
    [28] D. Shila, Y. Cheng and T. Anjali. Throughput and delay analysis of hybrid wirelessnetworks with multi-hop uplinks. In: The Proceedings of IEEE INFOCOM,2011:1476-1484.
    [29] Y. Lin and Y. Hsu. Multihop cellular: a new architecture for wirelesscommunications. In: The Proceedings of IEEE INFOCOM,2000:1273-1282.
    [30] J. Noerenberg. Bridging wireless protocols. IEEE Communications Magazine,2001,39(11):90-97.
    [31] G. Aggelou and R. Tafazolli. On the relaying capability of next-generation GSMcellular networks. IEEE Personal Communications,2001,1(2):40-47.
    [32] A. Zadeh, B. Jabbari, R. Pickholtz et al. Self-organizing packet radio ad hocnetworks with overlay. IEEE Communications Magazine,2002,40(6):149-157.
    [33] O. Dousse, P. Thiran and M. Hasler. Connectivity in ad hoc and hybrid networks. In:21stConference of the IEEE Computer and Communications Societies (INFOCOM),2002:1079-1088.
    [34]杨盘隆,陈贵海.无线网状网容量分析与优化理论研究.软件学报,2008,19(3):687-701.
    [35] M. Gastpar and M. Vetterli. On the capacity of wireless networks: the relay case. In:21stConference of the IEEE Computer and Communications Societies (INFOCOM),2002:1577-1586.
    [36] B. Liu, Z. Liu and D. Towsley. On the capacity of hybrid wireless networks. In:22ndConference of the IEEE Computer and Communications Societies (INFOCOM),2003:1543-1552.
    [37] U. Kozat and L. Tassiulas. Throughput capacity of random ad hoc networks withinfrastructure support. In: ACM MobiCom,2003:55-65.
    [38] A. Zemlianov and V. Gustavo. Capacity of ad hoc wireless networks withinfrastructure support. IEEE Journal on Selected Areas in Communications,2005,23(2):657-667.
    [39] B. Liu, P. Thiran and D. Towsley. Capacity of a wireless ad hoc network withinfrastructure. In: ACM MobiHoc,2007:9-14.
    [40] S. Zhao and D. Raychaudhuri. Scalability and performance evaluation ofhierarchical hybrid wireless networks. IEEE/ACM Transactions on Networking,2009,17(5):1536-1549.
    [41] W. Huang, X. Wang and Q. Zhang. Capacity scaling in mobile wireless ad hocnetwork with infrastructure support. In: IEEE30thInternational Conference onDistributed Computing Systems,2010:848-857.
    [42]陈林,魏淑桃,谭文安.多信道多接口混合网络容量研究.计算机科学,2011,38(8):96-100.
    [43] P. Li, M. Pan and Y. Fang. The capacity of three-dimensional wireless ad hocnetworks. In: The Proceedings of IEEE INFOCOM,2011:1485-1493.
    [44] X. Lin, X. Shen and W. Jon. Capacity analysis of UWB networks inthree-dimensional space. Journal of Communications and Networks,2009,11(3):287-296.
    [45] P. Li, M. Pan and Y. Fang. Capacity Bounds of Three-Dimensional Wireless Ad HocNetworks. IEEE/ACM Trasactions on Networking,2012,20(4):1304-1315.
    [46] C. Hu, X. Wang, Z. Yang et al. A Geometry Study on the Capaciy of WirelessNetworks via Percolation. IEEE Transactions on Communications,2010,58(10):2916-2925.
    [47] S. Toumpis. Capacity bounds for three classes of wireless networks: asymmetric,cluter, and hybrid. In: ACM MobiHoc,2004:133-144.
    [48] E. Perevalov, R. Blum and D. Safi. Capacity of clustered ad hoc networks: how largeis “large”? IEEE Transactions on Communications,2006,54(9):1672-1681.
    [49] G. Alfano, M. Garetto and E. Leonardi. Capacity scaling of wireless networks withinhomogeneous node density: upper bounds. IEEE Journal on Seleted Areas inCommunications,2009,27(7):1147-1157.
    [50] R. Ganti and M. Haenggi. Interference and Outage in Clustered Wireless Ad HocNetworks. IEEE Transactions on Information Theory,2009,55(9):4067-4086.
    [51] G. Alfana, M. Garetto, E. Leonardi et al. Capacity Scaling of Wireless Networkswith Inhomogeneous Node Density: Lower Bounds. IEEE/ACM Transactions onNetworking,2010,18(5):1624-1636.
    [52] M. Garetto, A. Nordio, C. Chiasserini et al. Information-Theoretic Capacity ofClustered Random Networks. IEEE Transactions on Information Theory,2011,57(11):7578-7596.
    [53] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO: Scaling Wireless Capacity withUser Demands. In: ACM SIGCOMM,2012:157-166.
    [54] A. Jovicic, P. Viswanath, and S. R. Kulkarni. Upper bounds to transport capacity ofwireless networks. IEEE Transactions on Information Theory,2004,50(11):2555-2565.
    [55] O. Leveque and I. E. Telatar. Information theoretic upper bounds on the capacity oflarge extended ad hoc wireless networks. IEEE Transactions on Information theory,2005,51(3):858-865.
    [56] I. E. Telatar. Capacity of multi-antenna Gaussian channels. European Transactions onTelecommunications,1999,10(1):585-595.
    [57] C. Hu, X. Wang, D. Nie et al. Multicast Scaling Laws with Hierarchical Cooperation.In: ProceedingsofIEEE INFOCOM,2010:214-223.
    [58]王明飞,慈林林,詹平等.多信道无线传感器网络容量分析模型研究.通信学报,2008,29(11):50-61.
    [59] A. Ozgur, O. Leveque and D. Tse. Hierarchical cooperation achievesoptimal capacityscaling in ad hoc networks. IEEE Transactions on Information Theory,2007,53(10):3549-3572.
    [60] Y. Ko,V. Shankarkumar,and N. H. Vaidya. Mediumaccess control protocols usingdirectional antennas inad hoc networks. In: IEEE INFOCOM,2000:354-363.
    [61] S. Yi, Y. Pei, and S. Kalyanaraman. On the capacity improvement ofad hoc wirelessnetworks using directional antennas. In: Proceedings ofACM MobiHoc,2003:94-102.
    [62] P. Li, C. Zhang, and Y. Fang. The capacity of wireless ad hoc networksusingdirectional antennas. IEEE Transactions on Mobile Computing,2011,10(1):1374–1387.
    [63] G. Zhang, Y. Xu and X. Wang. Multicast capacity of hybrid MANETs with directionantenna and delay constraint. In:2011IEEE Global Telecommunications Conference(GLOBECOM),2011:1-5.
    [64] G. Zhang, Y. Xu, X. Wang et al. Capacity of hybrid wireless networks withdirectional antenna and delay constraint. IEEE Transactions on Communications,2010,58(7):2097-2106.
    [65] J. Zhang and S. Liew. Capacity improvement of wireless ad hoc networks withdirectional antennas. In: IEEE63rdVehicular Technology Conference,2006:911-915.
    [66] A. Spyropoulos and C. Raghavendra. Capacity bounds for ad hoc networks usingdirectional antennas. In: IEEE International Conference on Communications,2003:348-352.
    [67] J. Wang, L. Kong and M. Wu. Capacity of wireless ad hoc networks using practicaldirectional antennas. In: IEEE Wireless Communications and NetworkingConference (WCNC),2010:1-6.
    [68] X. Li. Multicast capacity of wireless ad hoc networks. IEEE/ACM Transactions onNetworking,2009,17(3):950-961.
    [69] R. Cogill and B. Shrader. Multicast queueing delay: performance limits andorder-optimality of random linear coding. IEEE Journal on Selected Areas inCommunications,2011,29(5):1075-1083.
    [70] X. Chen, W. Huang, X. Wang et al. Multicast capacity in mobile wireless ad hocnetwork with infrastructure support. In:2012Proceedings of IEEE INFOCOM,2012:271-279.
    [71] H. Liu and X. Wang. Capacity of cooperative ad hoc networks with heterogeneoustraffic patterns. In:2011IEEE International Conference on Communications (ICC),2011:1-5.
    [72] X. Li, Y. Liu, S. Li et al. Multicast capacity of wireless ad hoc networks underGaussian channel model. IEEE/ACM Transactions on Networking,2010,18(4):1145-1157.
    [73] C. Wang, X. Li, S. Tang et al. Multicast capacity scaling for cognitive networks:general extended primary network. In: The7thInternational Conference on MobileAd hoc and Sensor Systems (MASS),2010:262-271.
    [74] C. Liu and J. G. Andrews. Multicast capacity scaling of wireless networks withmulticast outage. In: IEEE International Symposium on Information TheoryProceeding (ISIT),2010:2323-2327.
    [75]胡晨晖.无线多播性能的渐进性分析:[硕士学位论文].上海交通大学,2010.
    [76] K. Lu, S. Fu, Y. Qian et al. On capacity of random wireless networks with physicallayer network coding. IEEE Journal on Selected Areas in Communications,2009,27(5):763-772.
    [77] S. Karande, Z. Wang, H. Sadjadpour et al. Multicast throughput order of networkcoding in wireless ad hoc networks. IEEE Transactions on Communications,2011,59(2):497-506.
    [78] Z. Li, B. Li and L. Lau. A constant bound on throughput improvement of multicastnetwork coding in undirected networks. IEEE Transactions on Information Theory,2009,55(3):1016-1026.
    [79] M. Langberg and A. Sprintson. On the hardness of approximating the networkcoding capacity. IEEE Transactions on Information Theory,2011,57(2):1008-1014.
    [80] R. Dougherty, C. Freiling and K. Zeger. Unachievability of network coding capacity.IEEE Transactions on Information Theory,2006,52(6):2365-2372.
    [81] A. Ramamoorthy, J. Shi and R. Wesel. On the capacity of network coding forrandom networks. IEEE Transactions on Information Theory,2005,51(8):2878-2885.
    [82] Y. Shi, M. Sheng, J. Li et al. Capacity of network coding for mobile ad hoc networks.In: IEEE72ndVehicular Technology Conference Fall,2010:1-5.
    [83] P. Li and S. Guo. On the multicast capacity in energy-constrainted lossy wirelessnetworks by exploiting intra-batch and inter-batch network coding. IEEETransactions on Parallel and Distributed Systems,2012,34(12):1247-1259.
    [84] V. Rodoplu and T. H. Meng. Bits-per-Joule Capacity of Energy-Limited WirelessNetworks. IEEE Transactions on Wireless Communications,2007,6(3):857-865.
    [85] V. Sethuraman and B. Hajek. Capacity Per Unit Energy of Fading Channels with aPeak Constrait. IEEE Transactions on Information Theory,2005,51(9):3102-3120.
    [86] S. Buzzi, and G. Colavolpe. Maximizing bits-per-Joule Capacity over ParallelChannels. In: IEEE Online Conference on Green Communications (GreenCom),2011:88-91.
    [87] J. Moller. Shot noise Cox processes. Adv. Appl. Prob.,2003,35(1):614-640.
    [88] J. Neyman and E. L. Scott. Statistical approach to problems of cosmology. J. Roy.Statist. Soc. B,1958,20(1):1-43.
    [89] B. Matern. Spatial variation. Lecture Notes in Statistics.2nded. Berlin, Germany:Springer, vol.36,1986.
    [90] M. Thomas. A generalization of Poissons binomial limit for use in ecology.Biometrika,1949,36(1/2):18-25.
    [91] S. R. Kulkarni and P. Viswanath. A deterministic approach to throughput scaling inwireless networks. IEEE Transactions on Information Theory,2004,50(6):1041-1049.
    [92] G. Grimmett. Percolation.2nded. New York: Springer-Verlag,1999.
    [93] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wirelessnetworks.In: Stochastic Analysis, Control, Optimization and Applications: A Volumein Honor of W. H. Fleming,1998:55-69.
    [94] D. M. Blough, M. Leoncini, G. Resta et al. On the symmetric range assignmentproblem in wireless ad hoc networks.In: Proc. IFIP17thWorld Computer Congr.,TCI Stream/2ndIFIP Int. Conf. Theoretical Computer Science,2002:71-78.
    [95] J. Gomez and A. Campbell. A case for variable-range transmission power control inwireless multihop networks. In:IEEE Infocom,2004:1-9.
    [96] M. D. Penrose. The longest edge of the random minimal spanning tree. Annal. Appl.Probabil.,1997,7(1):340-361.
    [97] M. D. Penrose. On k-connectivity for a geometric random graph. Random Structures&Algorithms,1999,15(1):145-164.
    [98] B. Rengarajan, J. Chen, S. Shakkottai et al.Connectivity of sensor networks withpower control.In: Proc.37thAsilomar Conf. Signals, Syst. Comput.,2003:201-210.
    [99] P. Santi and D. M. Blough. The critical transmitting range for connectivity in sparsewireless ad hoc networks.In: IEEE Trans. Mobile Computing,2003,2(1):25-39.
    [100]P. J. Wan and C. Yi. Asymptotic critical transmission radius and critical neighbornumber for k-connectivity in wireless ad hoc networks.In: ACM Mobihoc,2004:57-68.
    [101]H. Zhang and J. Hou. On the critical total power for asymptotic k-connectivity inwireless networks.In: IEEE Infocom,2005:581-590.
    [102]H. Zhang and C. H. Jennifer. On the asymptotic minimum transporting energy andits implications on the wireless network capacity. IEEE Transactions on Networking,2008,16(5):1175-1187.
    [103]H. Zhang and J. C. Hou. Capacity of wireless ad hoc networks under ultra wide bandwith power constraint. In:IEEE INFOCOM, Miami, U.S.A.,2005:455-465.
    [104]L.–L. Xie and P. R. Kumar. A network information theory for wirelesscommunications: Scaling laws and optimal operation. IEEE Transations onInformation Theory,2004,50(5):748-767.
    [105]F. Ciucu, A. Burchard and J. Liebeherr. Scaling properties of statistical end-to-endbounds in the network calculus. IEEE Transactionson Information Theory,2006,52(6):2300-2312.
    [106]X. haibo, G. youjun, T. Hui et al. Network Calculus Modeling and QoS Analysis forWireless PacketNetworks. In: IEEE65th Vehicular Technology Conference,2007:247-256.
    [107]H. Kim and J. C. Hou. Network calculus based simulation for TCP congestioncontrol: theorems, implementationand evaluation. In: Twenty-third AnnualJointConference of the IEEE Computer and CommunicationsSocieties,2004,4(1):2844-2855.
    [108]L. Lenzini, L. Martorini, E. Mingozzi et al. Exploiting Network Calculus forDelay-Based Admission Controlin a Sink-Tree Network.In: Workshop onTechniques, Methodologies and Tools for Performance Evaluation ofComplexSystems,2005:126-135.
    [109]S. Mao, S. S. Panwar, and Y. T. Hou. On minimizing end-to-end delay with optimaltraffic partitioning.IEEETransactions on Vehicular Technology,2006,55(3):681-690.
    [110]K. Pandit, J. Schmitt, and R. Steinmetz. Network calculus meets queueing theory-asimulation based approach tobounded queues. In: Twelfth IEEE InternationalWorkshop on Quality of Service (IWQOS),2004:114-120.
    [111]P. Thiran, J.Boudec, and F. Worm. Network calculus applied to optimal multimediasmoothing. In: TwentiethAnnual Joint Conference of the IEEE Computer andCommunications Societies (INFOCOM),2001:1474-1483.
    [112]H. Yin, F. Xia, Z. Wang et al. Performance evaluation of hard real-time data in theswitched Ethernet bynetwork calculus. In: Fifth World Congress on IntelligentControl and Automation (WCICA),2004:1451-1455.
    [113]Y. Jiang. A Basic Stochastic Network Calculus.In: Proc. of ACM SIGCOMM,2006:24-36.
    [114]S. Ayyorgun and W. Feng. A Probabilistic Definition of Burstiness Characterization.Los Alamos National Laboratory, Tech. Rep.,2003:41-45.
    [115]C. S. Chang. Stability, queue length, and delay of deterministic and stochasticqueueing networks. IEEE Transactions on Automatic Control,1994,39(1):913-931.
    [116]D. Starobinski and M. Sidi. Stochastically bounded burstiness for communicationnetworks. IEEE Transactions on Information Theory,2000,46(1):206-212.
    [117]Q. Yin, Y, Jiang, S. Jiang et al. Analysis on generalized stochastically bounded burstytraffic for communication networks. In: Proc. IEEE Local Computer Networks,2002:141-149.
    [118]R. Boorstyn, A. Burchard, J. Liebeherr et al. Statistical service assurances for trafficscheduling algorithms. IEEE Journal on Selected Areas of Communications, SpecialIssue on Internet QoS,2000,18(12):2651-2664.
    [119]J. Qiu and E. Knightly. Inter-class resource sharing using statistical serviceenvelopes. In: Proc. IEEE INFOCOM,1999:36-42.
    [120]C. S. Chang. On deterministic traffic regulation and service guarantees: A systematicapproach by filtering. IEEE Transactions on Information Theory,1998,44(3):1097-1110.
    [121]R. L. Cruz. Quality of service management in integrated services networks. In: Proc.1stSemi-Annu. Res. Rev., CWC, Jun,1996:45-61.
    [122]C. Li, A. Burchard, and J. Liebeherr. A Network Calculus with Effictive Bandwidth.University of Virginia, Computer Science Department, Tech. Rep. CS-2003-20,2003.
    [123]J. Kurose. On computing per-session performance bounds in high-speed multi-hopcomputer networks. In: Proc. ACM Sigmetrics’92,1992:128-139.
    [124]O. Yaron and M. Sidi. Performance and stability of communication networks viarobust exponential bounds. IEEE/ACM Transactions on Networking,1993,1(2):372-385.
    [125]C. S. Chang. Performance Guarantees in Communications Networks. New York:Springer Verlag,2000.
    [126]J. Boudec and P. Thiran. Network Calculus: Springer Verlag, Lecture Notes inComputer Science, LNCS,2001.
    [127]J. Liebeherr, S. Patek, and A. Burchard. Statistical per-flow service bounds in anetwork with aggregate provisioning. In: Proc. IEEE INFOCOM,2003:258-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700