用户名: 密码: 验证码:
基于光波调控技术的光纤参量放大增益特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤参量放大(FOPA)是一种基于光纤四波混频(FWM)效应的新型光放大技术,具有工作波长范围灵活、对信号的比特率和调制格式完全透明、高增益、大带宽、低噪声系数、高相敏特性等显著优点,并在全光信号处理方面具有广泛的应用,被认为是最适合未来超长距离密集波分复用系统(DWDM)和全光网络的光放大技术之一。因此,作为一种新型的光放大技术,光纤参量放大技术成为近年来新的研究热点。而如何提高并优化光纤参量放大过程的增益成为研究的重点。鉴于此,本论文围绕光纤参量放大过程中的光波调控的技术方法,致力于研究分析其对增益特性的影响。其目的是设计优化光纤参量放大过程增益的方案并从理论上和实验上对其进行深入研究。本文的主要研究内容和研究成果如下:
     深入研究了光纤参量放大过程的基本理论,概述了光纤参量放大过程的基本原理及主要结构,介绍了四波混频的基本机理,并在此基础上分别分析了单泵浦光纤参量放大过程和双泵浦光纤参量放大过程的理论模型,同时分别分析了他们在考虑泵浦消耗和不考虑泵浦消耗时的增益特性以及相位匹配条件,给出了不考虑泵浦消耗时的解析解,并分别搭建和研究了单泵浦结构和双泵浦结构的光纤参量放大实验系统。
     给出了采用光波调控方式的光纤参量放大过程的方案,在不考虑泵浦消耗时推导了基于光波调控技术的通用传输矩阵,给出了不考虑泵浦消耗时信号光的增益表达式,并通过仿真分析得到了增益的优化。
     应用标准G.652单模光纤(SSMF)与高非线性光纤(HNLF)级联,分别设计了单泵浦和双泵浦的光纤参量放大方案,理论分析了采用SSMF前后对系统增益的影响,并发现了梳状谱结构的增益谱;同时从实验上验证了采用SSMF级联时对光纤参量放大系统的影响。
     设计了对泵浦光进行相位控制的光纤参量放大系统的方案。利用传输矩阵法分析相移光栅的传输特性,应用泵浦光相移(PPS)的方法,实现了平坦化的系统增益;同时分析了通过相移光栅对泵浦光进行相移前后的光波的变化,结果表明:采用PPS后,相位失配得到了补偿,并且信号光的增益得到了提高;通过分析采用PPS前后的信号光的增益谱特性,获得了采用PPS后的更加平坦化的增益谱。
     提出了调控闲频光优化光纤参量放大过程增益的方案,分别对闲频光的相位和功率的调节两方面来优化系统的增益特性。提出了采用光滤波器抑制闲频光的单泵浦FOPA系统的结构,通过在两段HNLF间引入光滤波器,提高了信号光的增益和泵浦光向信号光的能量转换效率,并实现了增益带宽的优化。提出了利用相移光栅对闲频光同时移相和反射的系统结构,研究结果表明:引入相移光栅后,补偿了光波间的相对相位差和相位失配,从而提高了信号光的增益;并且,对比研究了相移光栅的反射率和相移量对信号光增益的影响作用。通过搭建实验系统,验证了采用均匀Bragg光栅(FBG)对闲频光的反射作用可以提高系统的增益,并且提高了泵浦光向信号光的能量转换效率。
Fiber-optic parametric amplificatiaon (FOPA) is a new optical amplification technique based on four wave mixing (FWM), which has the obvious advantages of providing high gain uniform over a wide wavelength range, complete transparence to the signal bit rate and modulation formate, low noise figure, phase sensitivity, compatible with all fiber devices and so on. What is more, the FOPA has potentional advantages in all optical signal-processing, and it is considered as one of the most suitable optical amplifiable techniques for the future ultra-long-distance dense wavelength division multiplexing (DWDM) all-optial networks. Therefore, the FOPA has attracted increasing attencion recently as a new type of fiber optical amplifier. However, it is a very important issue to find some new ways of increasing and optimizing the gain spectrum of the FOPA. Considering the profound background, in this work, the lightwave regulation method is presented and concentrated on the influcnes to the gain properties of the FOPA, with the purpose of achieving the optimized gain method and investigating them deeply both from the theory and experiment. The main contents of the dissertation are as following.
     The basic theory of the FOPA is investigated comprehensively at first, as well as the main structure. And based on the principle of the FWM, the theory model is analyzed in the case of one-pump FOPA and two-pump FOPA, respectively, at the same time, both the signal gain without pump depletion and the gain with pump depletion are discussed. The phase matching condition and the analytical solution of signal gain without pump depletion are given for both the one-pump and two-pump cases. What is more, the amplification systems of both the one-pump FOPA and the two-pump FOPA are achieved experimently.
     The scheme of the FOPA based on lightwave regulation is presented and analized. Afer the derivation of the theory modle of the signal gain without pump depletion, the solution of the signal gain is given, meanwhile, the gain characteristics of the FOPA system is optimized obviously with the simulation and discussion.
     By using the standard single mode fiber (SSMF) connecting between two high nonlinear fibers (HNLFs), the cascaded systems of FOPA are designed. The SSMF is applied to compencate the phase mismatch parameter of the involed waves. The numerically simulation shows that the signal gain is increased and the gain bandwidth is broaded with the SSMF inserting between HNLFs, and the comb gain spectrum is observed. Furthermore, the amplification experimental flatform is set up and tested, and the result shows that the gain is improved, which is consistently with the simulation mentioned before.
     Next, the phase shifted fiber Bragg gratting (PS-FBG) is unilized to shift the phase of the pump wave in order to research the influence to the gain of FOPA. With the way of pump phase shifter (PPS), FOPA can gain flattened gain spectrum. In the case of the fixed signal wavelength, compareing with the system without inserting PPS, it can be seen that the phase matching is compensated and the signal gain is increased obviously with using PPS. On the other hand, the flat gain bandwidth is also abtainted by analyzing the gain spectrum.
     For the first time, the solution to enhance the efficiency of fiber optical parametric amplification is proposed by regulating the idler wave, and both the phase and the power properties of the idler wave are regulated. Firstly, the one-pump FOPA is designed by using an optical bandpass filter (OBPF) between two HNLFs to filter the idler wave, and it shows that both the signal gain and the pump-to-signal conversion efficiency are enhanced, with the gain flatter at the same time. Secondly, a PS-FBG is also adopted between two HNLFs to shift the phase and reflect the power of the idler wave during the amplification processing. The result shows that the phase mismatch is compensated, the relative phase difference of the involved waves is changed and the signal gain is improved clearly. Then influence of the reflectivity and phase shifter of the PS-FBG to the gain property are also discussed. At last, the experimental one-pump FOPA system via fiber Bragg grafting (FBG) reflecting the idler wave between two same HNLFs is constrocted and analyzed. The experimental results show that the sigal gain is increased, and the conversion efficiency of the pump power transferred to the signal power is enhanced synchronously.
引文
[1]R. J. Essiamber, R. W. Tkach. Capacity trends and limits of optical communication networks. Proc. IEEE,2012,100(5):1035-1055.
    [2]O. Gerstel, H. Raza. Predeployment of resources in agile photonic networks. J. Lightwave Technol.2004,22(12):2236-2241.
    [3]S. Gringeri, E. B. Basch, T. J. Xia, et al. Technical condiseration for supporting data rates beyond 100 Gb/s. IEEE Commun. Mag.,2012,50(2):21-30.
    [4]J. Yu, G. K. Chang, A. Chowdhury, J. L. Long. Spectral efficient DWDM optical label/payload generation and transport for next-generation internet. J. Lightwave Technol. 2004,22(12):2469-2474.
    [5]J. M. Simmons. On determining the optimal optical reach for a long-haul network. J. Lightwave Technol.2005,23(6):1039-1045.
    [6]E. Yamazaki, M. Tomizawa, Y. Miyamoto.100 Gb/s optical transport network and beyond employing digital signal processing. IEEE Commun. Mag.,2012,50(2):43-49.
    [7]O. Gerstel, H. Raza. Merits of low-density WDM line systems for long-haul networks. J. Lightwave Technol.2003,21(11):2470-2475.
    [8]M. Vasilyev, M. Mehendale, S. Tsuda. Optimum pre-emphasis in ultra-long-haul networks. J.Opt.Netw.2006,5(1):159-174.
    [9]V. E. Perlin, H. G Winful. Optimal design of flat-gain wide-band fiber Raman amplifiers. J. Lightwave Technol.2002,20(1):250-254.
    [10]J. T. Ahn, K. H. Kim. All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation. IEEE Photonics Technol. Lett.2004,16(1):84-86.
    [11]M. J. Adams. Physics and applications of optical bistability in semiconductor laser amplifiers. Solidstate Electron.1987,30(1):43-51.
    [12]P. Chan, H. Tsang. Minimizing gain transient dynamics by optimizing the erbium concentration and cavity length of a gain clamped EDFA. Opt. Express.2005,13(9): 7520-7526.
    [13]K. Ennser, G. Sacchi, C. Mornatta. Dynamic behavior of gain-clamped Er:Yband high concentration Er-doped amplifier. IEEE Photonics Technol. Lett.2004,16(7): 1643-1645.
    [14]K. Furusawa, T. M. Monro, D. J. Richardson. High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. Opt. Express.2004,12(15):3452-3458.
    [15]吴重庆.半导体光放大器的光-光互作用及在全光信号处理中的应用.激光与光电子学进展.2007,44(10):17-25.
    [16]C. Y. J. Chu, H. Ghafouri-Shiraz. Analysis of Gain and Saturation Characteristics of a Semiconductor Laser Optical Amplifier Using Transfer Matrices, IEEE J. Lightwave Technol.1994,12(8):1378-1386.
    [17]董建绩,张新亮,黄德修.SOA动态增益特性的理论和实验研究.物理学报.2005,54(2):763-767.
    [18]S. Diez, R. Ludwig, C. Schmidt.160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Lett.1999,11(11):1402-1044.
    [19]A. Tio, P. Shum, Y. Gong. Wide bandwidth flat gain Raman amplifier by using polarization-independent interferometric filter. Opt. Express.2003,11(10):2991-2996.
    [20]Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro. Raman effects in a highly nonlinear holey fiber:amplification and modulation. Opt. Lett.2002,27(2):424-426.
    [21]J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist. Fiber-based optical parametric amplifiers and their applications. J. Sel. Top. Quantum Elect,2002,8(3): 506-520.
    [22]C.-S. Br es, A. Wiberg, B. P.-P. Kuo, N. Alic, S. Radic. Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier. IEEE Photon. Technol. Lett. 2009,21(14):1002-1004.
    [23]K. Croussore, G. Li. Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification. IEEE Photon. Technol. Lett.2007, 19(11):864-866.
    [24]H. Steffensen, J. R. Ott, K. Rottwitt, C. J. McKinstrie. Full and semi-analytic analyses of two-pump parametric amplification with pump depletion. Opt. Express.2011,19(7): 6648-6656.
    [25]J. Kakande, C. Lundstrom, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, D. J. Richardson. Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. Opt. Express.2010,18(5): 4130-4137.
    [26]M. E. Marhic, Y. Park, F. S. Yang, L. G. Kazovsky. Broadband fiber optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra. Opt. Lett.1996,21 (17):1354-1356.
    [27]R. H. Stolen, J. E. Bjorkholm. Parametric amplification and frequency conversion in optical fibers. J. Quantum Electron.1982,18(7):1062-1072.
    [28]J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, S. N. Knudsen.300 Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification. IEEE Photonics Technology Letters.2001,13(9):987-989.
    [29]M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky. Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. J. Quantum Electron,2004,10(5): 1133-1141.
    [30]T. Torounidis, P. A. Andrekson. Broadband single-pumped fiber-optic parametric amplifiers. Photon. Technol. Lett.2007,19(9):650-652.
    [31]G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, V. Marie. Fiber optical parametric oscillator with 560nm tuning range using dispersion-shifted fiber. OPTICAL FIBER COMMUNICATION,2007.
    [32]B. Mukherjee. WDM optical communication networks, Progress and challenges. IEEE J. Sel. Areas Commun.2000,18 (10):1810-1824.
    [33]M. E. Marhic. Fiber optical parametric amplifiers oscillators and related devices. Cambridge University Press.2008.
    [34]T. Thomas, P. A. Andrekson, B. E. Olsson. Fiber-optical parametric amplifier with 70-dB gain. Photon. Technol. Lett.2006,18(10):1194-1196.
    [35]S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. Schmidt-Langhorst, B. Huettl, C. Schubert, H.-G. Weber. An optical parametric amplified fiber switch for optical signal processing and regeneration.IEEE Journal of Selected Topics in Quantum Electronics. 2008,14(3):674-680.
    [36]M. Hirano, T. Nakanishi, T. Okuno, M. Onishi. Silica-based highly nonlinear fibers and their application.IEEE Journal of Selected Topics in Quantum Electronics.2009, 15(1):103-113.
    [37]M. Tang, Y. Gong, P. Shum. Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry. IEEE Photonics Technology Letters.2005,17 (1):148-150.
    [38]J. Li, A. Berntson, G. Jacobsen. Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber. IEEE Photonics Technology Letters.2008,20(9):691-693.
    [39]M. Westlund. Fiber-based all-optical sampling. Proceedings Conference on Lasers and Electro-Optics, Baltimore, MD, USA.2007.
    [40]S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, H. G. Weber. Novel fiber Kerr-switch with parametric gain:demonstration of optical demultiplexing and sampling up to 640 Gb/s. Proceedings. European Conference on Optical Communication, Stockholm, Sweden.2004.
    [41]F. Futami. Optical signal processing using nonlinearity in optical fibers.Proceedings. IEEE/LEOS Winter Topicals Meeting Series.2009,1(2):213-214.
    [42]M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, C. Zhu. Bismuth and aluminum co-doped germanium oxide glasses for superbroadband optical amplification.Optics Letters.2004,29 (17):1998-2000.
    [43]K. Seki, S. Yamashita. Narrowband and tunable optical parametric amplification in Bismuth-Oxide-based highly nonlinear fiber. Optics Express.2008,16 (18): 13871-13877.
    [44]Thomas Torounidis. Fiber optic parametric amplifiers in single and multi wavelength applications. Chalmers University of Technology. Goteborg, Sweden,2006.
    [45]Shiming Gao, Changxi Yang, Guofan Jin. Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate. IEEE Photonics Technology Letters.2004,16 (2):557-559.
    [46]R. H. Stolen, J. E. Bjokholm, A. Ashkim, Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett.1974,24 (3):308-310.
    [47]M. E. Mahric, N. Kagi, T. K. Chiang, L. G Kazovsky. Broadband fiber optical parametric amplifiers. Opt. Lett.1996,21 (8):573-575.
    [48]M. E. Mahric, F. S. Yang, M.-C. Ho, L. G Kazovsky. High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation. J. Lightwave. Technol. 1999,17(2):210-215.
    [49]J. Kim, O. Boyraz, J. H. Lim, and M. N. Islam. Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching:theory and experiment. J. Lightwave Technol.2001,19(2):247-251.
    [50]J. Hansryd, P. A. Andrekson. Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency. IEEE Photonics Technology Letters.2001,13(3):194-196.
    [51]K. K. Y. Wong, K. Shimizu, K. Uesaka, G Kalogerakis, M. E. Marhic, L. G Kazovsky. Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two-segment design. IEEE Photonics Technology Letters.2003,15(12):1707-1709.
    [52]Min-Chen Ho, Katsumi Uesaka, Michel Marhic, Youichi Akasaka, Leonid G Kazovsky.200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain. IEEE Photon. Technol. Lett.2003,19(7):977-981.
    [53]J. M. Chavez Boggio, F. A. Callegari, S. Tenenbaum, H. L. Fragnito, J. B. Rosolem, M. R. X. debarros. Demonstration of 26 dB on-off gain of a two-pump fiber optical parametric amplifier. Optical Fiber Communication Conference,2002.
    [54]C. J. McKinstrie, S. Radic. Parametric amplifiers driven by two pump waves with dissimilar frequencies. Opt. Lett.2002,27(5):1138-1140.
    [55]S. Radic, C. J. Mckinsstrie, R. M. Jopson. Continuous wave fiber parametric amplifier with 41.5nm of flat gain. OPTICAL FIBER COMMUNICATION, Los Angeles, CA, USA,2004:TuC4.
    [56]张瑞宝,刘红军,杨延龙,赵卫,王屹山,陈国夫,李永放,董淑福.双泵浦光子 晶体光纤参量放大研究.光子学报.2006,35(8):1137-1140.
    [57]R. Jiang, N. Alic, C. Mckinstrie. Two pump parametric amplifier with 40dB of equzlized continuous gain over 50nm. Optical Fiber Communication,2007, OWB2.
    [58]Y. Y. Deng, C. X. Yu, J. H. Yuan, X. Z. Sang, W. J. Li. Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier. Optical Engineering. 2012,51(4):045003.
    [59]L. Provino, A. Mussot, E. Lantz, T. Sylvestre, H. Maillotte. Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement. J. Opt. Soc. Am. B.2003,20(7):1532-1537.
    [60]M. Y. Gao, C. Jiang, W. S. Hu, J. Wang. Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm. Opt Express.2004,12(23):5603-5613.
    [61]Chen. Y, A. Snyder. Four-photon parametric mixing in optical fibers effect of pump depletion. Opt. Lett.1989,14(1):87-89.
    [62]M. E. Marhic, K. K. Y. Wong, M. C. Ho, L. G. Kazovsky.92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier. Opt. Lett.2001,26(9): 620-622.
    [63]Chavez Boggio, J.M. Broad-Band 88% Efficient Two-Pump Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters.2003,15(11):1528-1530.
    [64]H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie. Full and semi-analytic analyses of two-pump parametric amplification with pump depletion. Opt. Express. 2011,19(7):6648-6656.
    [65]Lnoue K, H. Toba. Wavelength conversion experiment using fiber four-wave mixing. IEEE Photonics Technology Letters.1992,4(1):69-72.
    [66]Tanemura T. K. Kikuchi. Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening. IEEE Photonics Technology Letters.2003,15(11):1573-1575.
    [67]K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G Kalogerakis, L. G. Kazovsky. Continuous-wave fiber optical parametric wavelength converter with +40 -dB conversion efficiency and a 3.8-dB noise figure. Opt. Lett.2003,28(9):692-694.
    [68]S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy. All-optical regeneration in one-and two-pump parametric amplifiers using highly nonlinear optical fiber. IEEE Photonics Technology Letters.2003,15(7):957-959.
    [69]Mats Sk"old, Jiang Yang, Henrik Sunnerud, Magnus Karlsson, Shoichiro Oda, Peter A. Andrekson. Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier. Opt. Express.2008,16(9):5974-5983.
    [70]A. Bogris, D. Syvridis.40 Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification. Opt. Fiber Technol.2008,14(1):63-71.
    [71]Jing Yang, Junhao Hua, Changyuan Yu, Yong Kee Yeo, Yixin Wang. Multi-channel 80-GHz RZ pulse train generation based on parametric process in highly-nonlinear fiber. Optics Communications.2010,283(1):939-945.
    [72]L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, J. T. Lin. Character analysis of slow light with communication waveband in fiber optical parametric amplifier. Opt. Commun.2010,283(21):4350-4357.
    [73]Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, S. Radic.40-Gb/s optical switching and wavelength multicasting in a two-pump parametric device. IEEE Photonics Technology Letters.2005,17(11):2376-2378.
    [74]Hansryd. J, E. A. Andrekson. O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier. IEEE Photonics Technology Letters.2001,13(7): 732-734.
    [75]Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, K. K. Y. Wong. All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes. IEEE Photonics Technology Letters.2010,22(17):1330-1332.
    [76]Torounidis. T. Sunnerud. H, Hedekvist. P. O, Andrekson. P. A. Amplification of WDM signals in fiber-based optical parametric amplifiers. IEEE Photonics Technology Letters.2003,15(8):1061-1063.
    [77]Inoue K. Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber. IEEE Photonics Technology Letters.2001,13(4):338-340.
    [78]A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, T. Sylvestre. Impact of pump phase modulation on the gain of fiber optical parametric amplifier. IEEE Photonics Technology Letters.2004,16(5):1289-1291.
    [79]Y. C. Wang, J. Y. Zheng, M. J. Zhang, A. B. Wang. Widely tunable ultra-wideband signals generation utilizing optically injected semiconductor laser. IEEE Photonics Technology Letters.2011,23(03):158-160.
    [80]G. Kalogerakis, M. E. Marhic, L. G. Kazovsky. Multiple-wavelength conversion with gain by a high-repetition-rate pulsed-pump fiber OPA. J. Lightwave Technol.2005, 23(10):2954-2960.
    [81]L. Yuhua, K. Croussore, K. Cheolhwan. All-optical 2R regeneration using data-pumped fiber parametric amplification. Electral letters.2003,39(17):1263-1264.
    [82]Inoue K, T. Mukai. Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier. IEEE. J. Lightwave Technol.2002,20(6):969-974.
    [83]Voss E. L, R. Tang, P. Kumar. Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier. Opt. Lett.2003,28(7):549-551.
    [84]Yaman F., Q. Lin, G. P. Agrawal. Pump noise transfer in dual pump fiber-optic parametric amplifiers walk-off effects. Opt. Lett.2005,30(9):1048-1050.
    [85]Yaman F., Q. Lin, S. Radic, G. P. Agrawal. Impact of dispersion fluctuations on dual-pump fiber-optical parametric amplifiers. IEEE Photonics Technology Letters. 2004,16(5):1292-1294.
    [86]Marble M. E., K. K. Y. Wong, L. G. Kazovsky, Fiber optical parametric amplifiers with circularly-polarised pumps. Electron. Lett.2003,39(20):350-351.
    [87]Yaman F., Q. Lin, G. P. Agrawal. Effects of polarization-mode dispersion in dual-pump Fiber-optic parametric amplifiers. IEEE Photonics Technology Letters.2004,16(2): 431-433.
    [88]Chicheung Zhang, K. Y. Kim, P. C. Chui, Kevin K. Tsia, Kenneth K. Y. Wong. Fiber-optical parametric amplifier with high-speed swept pump. IEEE Photonics Technology Letters.2011,23(14):1022-1024.
    [89]J.Kakande,C.Lundstr6m,P.A.Andrekson,Z.Tong,M.Karlsson,P Petropoulos,F. Parmigiani,D.J.Richardson.Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation.Opt.Express.2010,18(5): 4130-4137.
    [90]Philip J.M.Johnson,Valentyn I.Prokhorenko,R.J.Dwayne Miller. Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump.Optics Letters.2011,36(11):2170-2172.
    [91]曹辉,孙军强,陈国杰,陈伟成,黄德修.强脉冲信号在光纤参变放大器中的放大特性研究.光学学报.2005,25(10):1329-1333.
    [92]Q.Li,Y. Zhu.Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier.Fiber and Integrated Optics.2009,28(4): 288-300.
    [93]王青,刘小明,王燕,蒋俏峰,周炳琨.高非线性光纤中受激布里渊散射的抑制和光参量放大.中国激光.2004,31(7):802-806.
    [94]李齐良,李院民,钱胜.具有高阶色散双泵浦级联光纤参量放大器的增益.中国激光.2006,33(6):760-764.
    [95]桑明煌,张祖兴,况庆强,聂义友,詹黎.双泵浦两段非线性光纤级联的光纤参量放大器.量子电子学报.2009,26(3):356-359.
    [96]王智,吴重庆,张劲松,简水生.光纤光参量放大增益特性的研究.光通信技术.1997,22(4):280-283.
    [97]倪屹,王青,张磊,刘小明,彭江得.光子晶体光纤参量放大的理论模拟.中国激光.2004,31(3):310-312.
    [98]刘红军,陈国夫,赵卫,王屹山.三波混频光参量放大器中带宽的研究.中国激光.2004,31(8):680-686.
    [99]桂林,文双春.饱和放大情形下光纤参量放大器的增益和带宽特性研究.光子学 报.2007,36(6):1050-1054.
    [100]金晶,李齐良.带有周期色散补偿的双泵浦光纤参量放大器.杭州电子科技大学 学报.2000,29(4):22-25.
    [101]李建平,蔺玉珂.级联光纤参量放大器带宽拓宽的理论研究.中国激光.2009, 36(8):2052-2056.
    [102]K. Xu, H. Y. Liu, Y.T. Dai, J. Wu, J. T. Lin. Synthesis of broadband and flat parametric gain by idler loss in optical fiber. Optics Comm.2012,28(5):790-794.
    [103]曹辉,孙军强,张新亮,黄德修.光纤参变放大器光纤长度的优化.光学学报.2004,24(8):1085-1090.
    [104]李建平,罗斌,潘炜,卢静,王欣,罗广军.常规DSF光纤参变放大器的增益带宽拓展研究.激光技术.2007,31(4):337-340.
    [105]Mingyi Gao, Jingyuan Wang, Chun Jiang, Weishang Hu, Hongliang Ren. Two-pump fiber optical parametric amplifiers using optimized photonic crystal fiber by genetic algorithm. Appl. Phys. B-Lasers Opt.2006,84(3):433-438.
    [106]Chaoying Zhao, Xingzhen Ye, Chengfeng Yang, and Liya Chen. Influence of pumping laser bandwidth on the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier. Chinese Physics B.2012,21(7):070308-1-4.
    [107]尚韬.基于光子晶体光纤的拉曼放大器及光学参量放大器的理论研究.博士学位论文,上海交通大学,2007.
    [108]Yi Zhang, Xinzhu Sang, Shuyu Yang, Lan Rao, Wenjing Li, Jinhui Yuan, Xiangjun Xin, Chongxiu Yu. Performance analysis of dual-pump optical parametric amplifiers in silicon waveguide. Optics Communications.2010,283(15):3043-3048.
    [109]Fan Meng, Chongxiu Yu, Yunyi Deng, Jinhui Yuan. Nonlinear performances of dual-pump amplifiers in silicon waveguides. Chinese Physics B.2012,21(4):044202.
    [110]耿丹.光子晶体光纤中受激布里渊散射与四波混频技术研究.博士学位论文,浙江大学,2008.
    [111]Chaoying Zhao, Xingzhen Ye, Chengfeng Yang, Liya Chen. Influence of pumping laser bandwidth on the quantum fluctuation chracteristic of a non-degenerate optical parametric amplifier. Chinese Physics B.2012,21(7):070308.
    [112]Shaohao Wang, Dawei Wang, Chao Lu, Tee Hiang Cheng, P. K. A. Wai. Multiple Raman pump assisted fiber optical parametric amplifiers. Journal of Lightwave Technology.2011,29(17):2601-2608.
    [113]王秋国.光子晶体光纤参量放大器与超连续光源理论与实验研究.博士学位论文, 北京邮电大学,2009.
    [114]Hongna Zhu, Bin Luo, Wei Pan, Lianshan Yan, Shuiying Xiang, Kunhua Wen, Li Wang. Gain characteristics of two-pump fiber optical parametric amplifier based on a photonic crystal fiber with pump depletion. Optoelectron. Adv. Mater. -Rapid Commun. 2012,6(9):800-803.
    [115]Hongna Zhu, Bin Luo, Wei Pan, Lianshan Yan, Shuiying Xiang, Kunhua Wen. Gain enhancement of fiber optical parametric amplifier via introducing phase-shifted fiber-Bragg-grating for phase matching. J. Opt. Soc. Am. B.2012,29(6):1497-1502.
    [116]Hongna Zhu, Bin Luo, Li Wang, Wei Pan, Lianshan Yan, Jianpeng Zhao,Xiaorong Gao, Zeyong Wang. Gain optimization of one-pump fiber optical parametric amplifier with optical band pass filter reducing the idler wave. Opt. Eng.2012,51(9):095003.
    [117]Hai Ming Jiang, Kang Xie, Ya Fei Wang. Optimization of pump parameters for gain flattened Raman fiber amplifiers based on artificial fish school algorithm. Optics Communications.2011,284(23):5480-5483.
    [118]Liang Zhao, Junqiang Sun. Research into the gain characteristics of the highly nonlinear fiber-based degeneration four-wave mixing in the presence of dispersion fluctuations. Optical Engineering.2009,48(8):085001.
    [119]苑金辉.光子晶体光纤特性及其应用研究.博士学位论文,北京邮电大学,2011.
    [120]Shigehiro Takasaka, Yu Mimura, Masanori Takahashi, Ryuichi Sugizaki, Haruki Ogoshi. Flat and broad amplification by quasi-phase-matched fiber optical parametric amplifier.OFC,2012.
    [121]G. P.Agrawal,非线性光纤光学原理及应用,贾东方译,机械工业出版社,(2007).
    [122]G. P. Agrawal, Nonlinear Fiber Optics,4th ed. Academic Press, SanDiego, (2007).
    [123]杨春蕾.级联结构的光纤参量放大器研究.西南交通大学,硕士学位论文,2011.
    [124]J. C. Knight. Photonic-Crystal Fibers. Nature.2003.424(14):847-851.
    [125]高明义.新型光纤参量放大器的优化设计.上海交通大学,博士学位论文,2006.
    [126]周品,何正风MATLAB数值分析.机械工业出版社,2009.
    [127]http://baike.baidu.com/view/5726059.htm.
    [128]金晶.准相位匹配光纤参量放大器平坦性的研究.杭州电子科技大学,硕士学位 2009.
    [129]ITU-T G.652建议书.单模光纤和光缆的特性,2005.6.
    [130]Eulogan T. Fiber gratings spectra. Journal of Lightwave Teclnology.1997,15(8): 1277-1294.
    [131]Giles C. R. Lightwave application of fiber Bragg gratings, Journal of Lightwave Technology.1997,15(8):1391-1404.
    [132]B. Xie, W. Pan, B. Luo. Improvement on peak-to trough ratio of sampled fiber Bragg gratings with multiple phase shifts. Chinese Optics Letter.2008,6(1):9-11.
    [133]张自嘉,光纤光栅理论基础与传感技术,科学出版社,(2009).
    [134]A. Othonos, Fiber Bragg gratings, Rev. Sci. Instrum.1997,68(5):4309-4341.
    [135]K. Wen, L. Yan, W. Pan, B. Luo. Design of fiber Bragg gratings with arbitrary reflective spectrum. Opt. Eng.2011,50(4):054003-4.
    [136]K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, H. Zhu. Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings. Optik.2011,122(8):2249-2251.
    [137]Kawasaki B S, Hill K O, Johnson D C, Fujii Y. Narrow-band Bragg reflectiors in optical fiber. Optics Letters.1978,3(8):66-68.
    [138]邹喜华.光梳状滤波器在光通信和微波信号处理中的研究与应用.西南交通大学,博士学位论文,2009.
    [139]Xihua Zou, Wei Pan, Bin Luo, and etc. Periodically chirped sampled fiber Bragg gratings for multichannel comb filter. IEEE Photonics Technology Letters.2006,18 (12):1371-1373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700