用户名: 密码: 验证码:
钛表面透明质酸微图形调控血管内膜形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管植入材料表面内皮化被认为是防止植入后血栓和内膜增生的主要途径,因此提高这类生物材料的表面内皮化质量是非常重要和有意义的。目前,体外研究证明在生物材料表面覆盖完整的内皮层具有一定的抑制血栓形成和平滑肌细胞增生的作用。但是,这种材料表面单一细胞形成的内膜植入体内后,存在抗凝血功能不足和容易大面积脱落等问题。为了解决这一问题,更多的研究转向如何实现体内内皮化,但对材料表面内皮细胞周细胞环境和仿流体剪切力环境的构建与改善的研究也不可缺少。基于此,本文在构建与改善材料表面内皮细胞周细胞环境和仿流体剪切力环境的基础上,进行了材料表面仿生内膜构建的相关研究。
     本文采用具有较好生物相容性的钛(Ti)作为基底材料,利用Ti表面透明质酸(HA)条带微图形模拟体内流体剪切力对内皮细胞(ECs)的拉伸力学作用;利用微图形对平滑肌细胞(SMCs)的限制作用为内皮细胞提供仿生的平滑肌周细胞环境;同时构建了利用透明质酸酶(HAa)水解HA以实现ECs和SMCs的有序共培养(SMCs-HAa-ECs)和利用四型胶原(ColⅣ)屏蔽HA的阻抗效果以实现ECs和SMCs的有序共培养(SMCs-ColIV-ECs)两种血管内皮细胞和平滑肌细胞的共培养模型,并在此基础上初步实现了Ti金属表面血管仿生内膜构建,同时对该内膜的生物学功能进行了评价。首先,研究了P10/40(HA条纹宽度10μm;裸露的碱活化Ti条纹宽度40μm)、P25/25(HA条纹宽度25μm;裸露的碱活化Ti条纹宽度25μm)、P40/10(HA条纹宽度40μm;裸露的碱活化Ti条纹宽度10μm)三种微图形尺寸对内皮细胞的形态、增殖、功能性因子分泌和抗凝血功能的影响,筛选出最适合脐静脉内皮细胞生理功能发挥的微图形尺寸。其次,在此基础上构建了"SMCs-HAa-ECs"和"SMCs-ColIV-ECs"两种血管内皮细胞和平滑肌细胞的共培养模型。通过对比两个模型中内皮细胞形态、数量、抗凝血因子分泌功能、抗凝血功能以及抗切应力功能,筛选出更适合Ti基底血管仿生内膜的共培养模型。最后,在前一步筛选的基础上通过对平滑肌细胞初始种植密度的优化,实现了Ti表面血管仿生内膜的初步构建,并对构建的仿生内膜进行了功能评价。综合利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、水接触角分析、傅立叶变换红外光谱(FTIR)、酶联免疫吸附实验(ELISA)、免疫荧光染色分析等方法对Ti表面透明质酸微图形的物化性能和稳定性进行了表征。运用酶联免疫吸附实验(ELISA)和免疫荧光染色分析方法对内皮细胞的形态、数量和分泌功能进行了评价,尤其是运用双染方法观察共培养体系中内皮细胞和平滑肌细胞的形态和行为。运用细胞形态测量和计算软件(ImageJ)统计出内皮细胞的形态指数。通过血小板粘附和激活实验、活化部分凝血酶时间(APTT)、血浆凝血酶原时间(PT)实验对内皮细胞抗凝血功能进行了评价。在流动腔装置内模拟人体主动脉血流剪切力对材料表面内皮细胞的抗剪切力功能进行了评价。
     本文的另一个相关工作是结合Ti表面透明质酸微图形对内皮细胞的调控和脱细胞技术在Ti基底上构建了透明质酸微图形和内皮细胞外基质交错分泌的表面,并对该表面进行了纤维蛋白原变性、内皮祖细胞粘附与抗凝血功能、平滑肌细胞粘附和巨噬细胞粘附等生物相容性评价。
     全文主要结果如下:
     1、透明质酸微图形制备到Ti基底表面,该二维微图形具备较好的结构稳定性和功能稳定性。P10/40、P25/25、P40/10三个尺寸的微图形中P25/25更适合内皮细胞生理功能的发挥,包括形态仿生、功能性因子的分泌及抗凝血功能等。
     2、透明质酸微图形表面本身的血液相容性并不理想,但是通过微图形调控内皮细胞形态和细胞外基质的合成,再结合脱细胞技术可获得图形化分布的内皮细胞外基质。初步生物学评价结果显示,该细胞外基质表面具有较好的抑制纤维蛋白原变性功能、促内皮祖细胞粘附、有序分布和抗凝血功能,抑制平滑肌细胞粘附和促进平滑肌细胞表型收缩功能,以及抑制巨噬细胞粘附的功能。
     3、通过透明质酸酶的加入可改变透明质酸阻抗细胞粘附的作用,实现了"SMCs-HAa-ECs"共培养体系的构建;利用ColⅣ的引入屏蔽透明质酸对内皮细胞的阻抗作用,实现了"SMCs-ColIV-ECs"共培养体系的构建;通过两套模型中内皮细胞抗凝血因子的分泌、抗凝血功能、抑制平滑肌细胞增生功能和抗流体剪切力功能的综合比较,发现"SMCs-ColIV-ECs"共培养模型具有更大的生物学优势。
     4.在"SMCs-ColIV-ECs"共培养模型的基础上,利用内皮细胞和平滑肌细胞的初始种植密度差(1×105cells/ml:2.5×104cells/ml)实现了Ti基底表面血管仿生内膜的初步构建,初步的生物学和力学评价结果显示,该仿生内膜与材料表面单独培养内皮细胞相比,具有形成血管仿生内膜较快、抗凝血因子分泌多、抗流体剪切力能力强等优势。为后续无机材料表面仿生内膜的优化提供了重要的实验基础。
Surface endothelialization was considered to be the main way to resolve thrombosis and hyperplasia after the cardiovascular devices implanted. Therefore, improving the endothelial surface quality of such biomaterials is very important and meaningful. Currently, in vitro studies have shown that complete endothelium coverage of the biomaterial surface has a certain inhibition effect on thrombosis and smooth muscle cell proliferation. However, monolayer formed by this single cell on the surface was found lots of problems after implantation, such as anti-coagulation deficiencies and easily falling off in a large area. To solve these problems, more research turned to in vivo endothelialization, while the studies on construction and improvement of the endothelial cells pericytes environment and imitation of fluid shear stress environment on the materials surface were also important. Thus, in this work research on building biomimetic pericytes environment of endothelial cells and in vivo fluid shear stress environment to contribute to biomimetic intimal building on the materials surface was performed.
     In this paper, titanium (Ti) with good biocompatibility was chosen as the base materials. Tensile role on the endothelial cells by in vivo fluid shear stress was simulated by micro-strip graphic of hyaluronic acid (HA) on the Ti surface. Bionic smooth muscle cells pericytes environment was provided for the endothelial cells through the limitation of HA micro-strip on the smooth muscle cells. We built two kinds of vascular endothelial cells and smooth muscle cells co-culture model named "SMCs-HAa-ECs" and "SMCs-ColIV-ECs". respectively. On this basis, bionic vascular intimal on Ti metal surface was initial built, and the biological function of the endometrium was evaluated. At first, the effects of three kinds of micro-pattern size, P10/40, P25/25, P40/10, on endothelial cell morphology, proliferation, functional cytokine secretion and anticoagulant function were studied. The micro-pattern size which was the most suitable for physiological functions of human umbilical vein endothelial cells was filtered out. Secondly, two kinds of vascular endothelial cells and smooth muscle cells co-culture model named "SMCs-HAa-ECs" and "SMCs-ColIV-ECs" were built on this basis. By comparing the two models on endothelial cell morphology, the number of anti-coagulation factor secretion, anti-coagulation and anti-shear stress function, the model which was more suitable for culturing bionic vascular intima on Ti substrate was filtered out. Finally, on the basis of the previous step, the initial planting density of smooth muscle cells was optimized, and ultimately the construction of blood vessels bionic initial on Ti surface was realized, and the biological function of the endometrium was evaluated. Utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle analysis, Fourier transform infrared spectroscopy (FTIR), enzyme-linked immunosorbent assay (ELISA) and immunofluorescence analysis methods to characterize physical and chemical properties and stability of the hyaluronic acid micro-graphics on Ti surface. We use enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining methods to evaluate endothelial cell morphology, number and secretory function, in particular using double staining to observe endothelial cells and smooth muscle cell morphology and behavior in the co-culture system. We use cell morphology measurement and calculation software (ImageJ) statisticed endothelial cell morphology index. By platelet adhesion and activation experiments and clotting time (APTT, PT) test, endothelial cells anticoagulation property was evaluated. In the flow chamber device, the human aortic flow shear stress was simulated to evaluate anti-shear-strength function of endothelial cells on the surface.
     Another relevant work of this paper is a combination of regulation of HA micro-pattern on endothelial cells and decellularization technology, which can build an orderly distribution of endothelial extracellular matrix surface on Ti substrate surface. The initial blood compatibility evaluation, evaluation of rapid endothelialization, smooth muscle cell culture evaluation and evaluation of macrophage cultures for the extracellular matrix surface were performed.
     Full results are as follows:
     1. Hyaluronic acid micro-graph on Ti substrate surface has good stability. P25/25better suits to play a physiological function of endothelial cells among P10/40, P25/25and P40/10three micro-graphs, including imitation situ morphological, functional cytokine secretion and anticoagulant function.
     2. Hyaluronic micropattern surface itself does not have ideal blood compatibility. Micro-pattern can regulate endothelial cell morphology and extracellular matrix synthesis. Combining decellularization technology, a patterned distribution of endothelial extracellular matrix can be achieved. This extracellular matrix surface has good blood compatibility, rapid endothelialization function, certain inhibitions of smooth muscle over proliferation and inhibition of macrophage adhesion by preliminary biological evaluation.
     3. Because hyaluronidase can change the property of hyaluronic acid that inhibit cell adhesion, we take advantage of this to achieve a "SMCs-HAa-ECs" co-culture system construction; We take advantage of ColIV shield impedance function of hyaluronic acid on endothelial cell, to achieve the "SMCs-ColIV-ECs" co-culture system construction; Comparing two models on anti-clotting factor secretion, anti-clotting function, inhibition of smooth muscle function and anti fluid shear stress of endothelial cells,"SMCs-ColIV-ECs" co-culture model is considered to have a greater physiological advantage。
     4. On the basis of "SMCs-ColIV-ECs" co-culture model, initial construction of bionic vascular intima has been realized by the initial planting density difference of endothelial cells and smooth muscle cells (1×105cells/ml:2.5×104cells/ml). After initial of the biological and mechanical evaluation, the biomimetic membrane surface compared with endothelial cells cultured alone, has the advantages of growing fast, anti-coagulation factor secretion and better ability to resist shear stress and so on。 This work provides important experimental basis for subsequent optimization of biomimetic membrane on inorganic material surface.
引文
[1]Manu Kaushik. Siva P. Sontineni, Claire Hunter. Cardiovascular disease and androgens: A review. International Journal of Cardiology [J].2010,142(1):8-14.
    [2]David S. Celermajer, Clara K. Chow, Eloi Marijon, et al. Cardiovascular Disease in the Developing World. Journal of the American College of Cardiology [J].2012,60(14): 1207-1216.
    [3]李贵才.Ti表面共固定肝素和纤连蛋白分子:复合生物功能化的实现.西南交通大学博士论文[D].2012
    [4]Yolande Esquirol, Bertrand Perret, Jean Bernard Ruidavets, et al. Shift work and cardiovascular risk factors:New knowledge from the past decade. Archives of Cardiovascular Disease [J].2011,104(12):636-668.
    [5]Tassiopoulos AK, Greisler HP. Angiogenic mechanisms of endothelialization of cardiovascular implants:a review of recent investigative strategies. J. Biomater. Sci. Polym. Ed [J].2000,11(11):1275-1284.
    [6]刘录山,王贵学,杨永宗.心血管移植物体内内皮化研究进展.南华大学学报(医学版)[J].2002,30(4):387-390.
    [7]Avci-Adali M, Paul A, Ziemer G, et al. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials [J].2008,29:3936-3945.
    [8]陈佳龙,李全利,陈俊英,等.心血管植入材料体内内皮化研究进展.生物医学工程学杂志[J].2009,26:1380-1383.
    [9]Meltem Avci-Adali, Gerhard Ziemer, Hans P. Wendel. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization-A review of current strategies. Biotechnology Advances [J].2010,28:119-129.
    [10]Massia SP, Stark J. Immobilized RGD peptides on surface grafted dextran promote biospecific cell attachment. J Biomed Mater Res [J].2001,56 (3):390-399.
    [11]Clowes AW, Kirkman TR, Reidy MA. Mechanisms of arterial graft healing. Rapid transmural capillary in growth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. Am J Pathol [J].1986,123 (2):220-230.
    [12]Tsuchida H, Wilson SE, Ishimaru S. Healing mechanisms of high-porosity PTFE Grafts: Significance of transmural structure. J Surg Res [J].1997,71(2):187-195.
    [13]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science [J].1997,275(5302):964-967.
    [14]Ong AT, Aoki J, Kutryk MJ, et al. How to accelerate the endothelialization of stents. Arch Mal Coeur Vaiss [J].2005,98(2):123-126.
    [15]Aoki J, Serruys PW, Beusekom HV, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34. J Am Colle Cardi [J].2005,45 (10):1575-1597.
    [16]Shi Q, Rafii S, Wu MH, et al. Evidence f or circulating bone marrow-derived endothelial cells. Blood [J].1998,92(2):362-367.
    [17]Maeda M, Fukui A, Nakamura T, et al. Progenitor endothelial cells on vascular grafts: an ultra structural study. J Biomed Mater Res [J].2000,51(1):55-61.
    [18]Katharina Meier, Claus-Michael Lehr, Nicole Daum. Differentiation potential of human pancreatic stem cells for epithelial- and endothelial-like cell types. Ann Anat [J]. 2009,191:70-82.
    [19]Maryam Jazayeri, Abdolamir Allameh, Masoud Soleimani, et al. Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells. Cell Biology International [J].2008,32 (10):1183-1192.
    [20]Ki-Chul Hwang, Min-Ji Cha, Heesang Song, et al. Intravenous endothelial-like cells differentiated from mesenchymal stem cells accelerate re-endothelization in baloon-injured rat. JACC [J].2010, March 9,55 (10A):A175.E1646.
    [21]A. Aguirre, J.A. Planell, E. Engel. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochemical and Biophysical Research Communications [J].2010,400: 284-291.
    [22]Alessio Noghero, Federico Bussolino, Anna Gualandris. Role of the microenvironment in the specification of endothelial progenitors derived from embryonic stem cells. Microvascular Research [J].2010,79:178-183.
    [23]Bellik L., Musilli C., Vinci M.C,et al. Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype. Exp. Cell Res [J].2008,314:2965-2974.
    [24]Zeng L., Zampetaki A., Margariti A, et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc. Natl. Acad. Sci. U S A [J].2009,106:8326-8331.
    [25]Li CH, Hill A, Imran L, et al. Peptide-coated vascular grafts:An in vivo study in sheep. Hemodialysis International [J].2004,8 (4):360-367.
    [26]Heydarkhan-Hagvall S, Esguerra M, Helenius G, et al. Production of extracellular matrix components in tissue-engineered blood vessels. Tissue Eng [J].2006,12 (4): 831-842.
    [27]Sheng Meng, Zongjun Liu, Li Shen, et al. The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials [J].2009,30:2276-2283.
    [28]Quankui Lin, Xin Ding, Fuyu Qiu, et al. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer. Biomaterials [J].2010,31:4017-4025.
    [29]Guicai Li, Ping Yang, Wei Qin, et al. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials [J].2011, 32:4691-4703.
    [30]G. De Visscher, L. Mesure, B. Meuris, et al. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-lα. Acta Biomaterialia [J].2012,8:1330-1338.
    [31]Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol [J].2001,12(4):383-389.
    [32]刘录山,王学贵.心血管移植物体外内皮化研究进展.中国医疗器械信息[J].2006,12 (7):28-31.
    [33]Barry O'Brien, William Carroll. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers:A review. Acta Biomaterialia [J].2009,5:945-958.
    [34]Van der Giessen WJ, Sorruys PW, Visser WJ, et al. Endothelialization of intravascular stents. J Intervent Cardiol [J].1988,1:109.
    [35]Dichek AD, Neville FR, Zwibel AJ, et al. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation [J].1989,80:1347.
    [36]Flugelman MY, Virmani R, Leon MB, et al. Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro.Circ Res [J]. 1992,70(2):348-354.
    [37]Stefanadis C, Toutouzas K, Tsiamis E, et al. Stents covered by an autologous arterial graft in porcine coronary arteries:feasibility, vascular injury and effect on neointimal hyperplasia. Cardiovasc Res [J].1999,41(2):433-442.
    [38]Toshihiko Shirota, Hisataka Yasui, Hiroaki Shimokawa, et al. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials [J].2003,24:2295-2302.
    [39]Min Yin, Yuan Yuan, Changsheng Liu, et al. Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent devices. Biomaterials [J].2009,30:2764-2773.
    [40]Gaku Nakazawa, Juan F. Granada, Carlos L. Alviar, et al. Anti-CD34 Antibodies Immobilized on the Surface of Sirolimus-Eluting Stents Enhance Stent Endothelialization. J A C C:Cardiovascular Interventions [J].2010,3 (1):68-75.
    [41]Joo Myung Lee, WonSeok Choe, Baek-Kyung Kim, et al. Comparison of endothelialization and neointimal formation with stents coated with antibodies against CD34 and vascular endothelial-cadherin. Biomaterials [J].2012,33:8917-8927.
    [42]Yang Shen, Guixue Wang, Liang Chen, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy:Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomaterialia [J].2009,5:3593-3604.
    [43]Mariana C. Loya, Karla S. Brammer, Chulmin Choi, et al. Plasma-induced nanopillars on bare metal coronary stent surface for enhanced endothelialization. Acta Biomaterialia [J]. 2010,6:4589-4595.
    [44]James J. Kleinedler, John D. Foley, Elysse A. Orchard, et al. Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization. Journal of Controlled Release [J].2012,159:27-33.
    [45]Gazzaniga AB, Mansfi eld PB, LaFarge CG. Late ligation of the superior vena cava following the glenn operation. J Thorac Cardiovasc Surg [J].1970,60(1):84-86.
    [46]Herring MB, Gardner AL, Glover GL, et al. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery [J].1978,84:498-504.
    [47]Zilla P, Deutsch M, Meinhart J, et al. Clinical in vitro endothelialization of femoropopliteal bypass grafts:an actuarial follow-up over three years.J Vasc Surg [J]. 1994,19(3):540-548.
    [48]Meinhart J, Deutsch M, Zilla P. Eight years of clinical endothelial cell transplantation. Closing the gap between prosthetic grafts and vein grafts. ASAIO J [J].1997,43(5): M515-521.
    [49]Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients:a 9-year experience. Surgery [J].1999,126 (5): 847-855.
    [50]Zilla P, Deutsch M, Meinhart J. Endothelial cell transplantation. Semin Vasc Surg [J]. 1999,12 (1):52-63.
    [51]Meinhart J G, Deutsch M, Fischlein T, et al. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg [J].2001,71 (5 Suppl):S327-331.
    [52]L'Heureux N, Paquet S, Labbe R, et al. A completely biological tissue-engineered human blood vessel. FASEB J [J].1998,12:47-56.
    [53]John D. Kakisis, Christos D. Liapis, Christopher Breuer, et al. Artificial blood vessel: The Holy Grail of peripheral vascular surgery. Journal of vascular surgery [J].2005,41 (2): 349-354.
    [54]Lars Bengtsson, Kjell Radegran, Anders Haegerstrand. A new and simple technique to achieve a confluent and flow resistant endothelium on vascular ePTFE-grafts using human serum. European Journal of Vascular Surgery [J].1994,8 (2):184-187.
    [55]Manfred Deutsch, Johann Meinhart, Peter Zilla, et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. Journal of Vascular Surgery [J].2009,49 (2):352-362.
    [56]Margit Voegele-Kadletz, Ernst Wolner. Bio artificial surfaces-Blood surface interaction. Materials Science and Engineering C [J].2011,31:1195-1200.
    [57]Thomas Eberl, Susanne Siedler, Bernd Schumacher, et al. Experimental in vitro endothelialization of cardiac valve leaflets. The Annals of Thoracic Surgery [J].1992, 53 (3):487-492.
    [58]Ameli E. Trantina-Yates, Paul Human, et al. Mitigation of bioprosthetic heart valve degeneration through biocompatibility:in vitro versus spontaneous endothelialization. Biomaterials [J].2001,22:1837-1846.
    [59]Artur Lichtenberg, Igor Tudorache, Serghei Cebotari, et al. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials[J].2006,27:4221-4229.
    [60]Helmut Gulbins, Anita Pritisanac, Korbinian Pieper, et al. Successful Endothelialization of Porcine Glutaraldehyde-Fixed Aortic Valves in a Heterotopic Sheep Model. The Annals of Thoracic Surgery [J].2006,81 (4):1472-1479.
    [61]李晖,黄焕雷,肖学钧,等.气动左心辅助循环泵-罗叶泵内皮化的实验研究.中国体外循环杂志[J].2011,9(2):111-114.
    [62]赵宏伟,王贵学,戴传云.血管内支架和支架内皮化.生物技术通讯[J].2005,16(6):684-686.
    [63]陈双红,姜宗来,张炎.内皮细胞和平滑肌细胞联合种植研究.国外医学生物医学工程分册[J].1999,22:78-83.
    [64]李晖.心室辅助装置的内皮化.国外医学生物医学工程分册[J].2003,26(4):169-172.
    [65]姜晓华,姚庆苹,姜隽等.切应力与血管平滑肌细胞对内皮细胞增殖的影响及TGFβ1与p-Akt信号通路在其中的作用.医用生物力学[J].2010,5(25):316-320.
    [66]Keri B.Vartanian, Sean J. Kirkpatrick, Stephen R. Hanson. Endothelial cell cytoskeletal alignment independent of fluid shear stresson micropatterned surfaces. Biochemical and Biophysical Research Communications [J].2008,371:787-792.
    [67]Ye Cao, Yin Fun Poon, Jie Feng. Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls. Biomaterials [J].2010,31:6228-6238.
    [68]Nakazawa K, Kalassy M, Sahuc F, et al. Pigmented human skin equivalent as a model of the mechanisms of control of cell-cell and cell-matrix interactions. Med Biol Eng Comput [J].1998,36(6):813-820.
    [69]Peter H. Lin, Dewei Ren, Mark K. Hirko, et al. Fibroblast growth factor-2-toxin induced cytotoxicity:differential sensitivity of co-cultured vascular smooth muscle cells and endothelial cells. Atherosclerosis [J].1998,137:277-289.
    [70]Wang Xi-Qiao, Liu Ying-Kai, Qing Chun, et al. Hyperactivity of fibroblasts and functional regression of endothelial cells contribute to microvessel occlusion in hypertrophic scarring. Microvascular Research [J].2009,77:204-211.
    [71]Orlidge A, D'Amore P A. Inhibition of capjllaly endothelial cell growth by pericytes and smooth muscle cell. J Cell Biol [J].1987,105(3):1455-1462.
    [72]Davies P F, Kerr C, Co-cultivation of vascular endothelial and smooth muscle cells using microcarrier techniques. Exp Cell Res [J].1982,141 (2):455-459.
    [73]李玉洁,杨庆,翁小刚等.血管内皮细胞-平滑肌细胞共培养体系研究进展.中国中药杂志[J].2012,37(3):265-268.
    [74]Mark D.Lavender, Zhengyu Pang, Charles S. Wallace. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials [J].2005,26:4642-4653.
    [75]Angela G. Vouyouka, Shady Selim Salib,Steven Cala. Chronic High Pressure Potentiates the Antiproliferative Effect and Abolishes Contractile Phenotypic Changes Caused by Endothelial Cells in Cocultured Smooth Muscle Cells. Journal of Surgical Research [J].2003,110:344-351.
    [76]Han-Qin Wang, Ling Bai, Bao-Rong Shen. Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of bl-integrin and phosphatidylinositol 3-kinase/Akt. European Journal of Cell Biology [J].2007,86:51-62.
    [77]Maek F. Fillinger, Lawrencen. Sampson, Jack L. Cronenwett. Coculture of Endothelial Cells and Smooth Muscle Cells in Bilayer and Conditioned Media Models. Journal of surgicl research [J].1997,67:169-178.
    [78]Mark F. Fillinger, Susan E. The effect of endothelial cell coculture on smooth muscle cell proliferation. Journal of Vascular Surgery [J].1993,6(17):1058-1068.
    [79]廖玉珍.软刻蚀方法制备细胞模板及内皮/平滑肌细胞的协同培养.西南交通大学硕士学位论文[M].2011.
    [80]Yan-Hua Wang, Zhi-Qiang Yan, Bao-Rong Shen, et al. Vascular smooth muscle cells promote endothelial cell adhesion via microtubule dynamics and activation of paxillin and the extracellular signal-regulated kinase (ERK) pathway in a co-culture system. European Journal of Cell Biology [J].2009,88:701-709.
    [81]Van Buul-Wortelboer M F, Brinkman H J, Dingemans K P, et al. Reconstitution of the vascular wall in vitro. A novel model to study interactions between endothelial and smooth muscle cells. Experimental Cell Research [J].1986,162(1):151-158.
    [82]Ziegler T, Alexander R W, Nerem R M. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effectson vascular biology. Annal of Biomedical Engineering [J].1995,23(3):216-225.
    [83]Hsi-Chin Wu, Tzu-Wei Wang, Pei-Leun Kang, et al. Cocultured endothelial and smooth muscle cells on a collagen membrane in the development of a small--diameter vascular graft. Biomaterials [J].2007,28:1358-1392.
    [84]Niwa K, Kado T, Sakai J, et al. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC-SMC coculture. Annals of Biomedical Engineering [J].2004,32(4):537-543.
    [85]Wada Y, Sugiyama A, Kohro T, et al. In vitro model of atherosclerosisusing coculture of arterial wall cells and macrophage. Yonsei Medical Journal [J].2000,41(6):740-755.
    [86]Hirschi K K, Rohovsky S A, D'Amore P A. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. Journal of Cell Biology [J].1998,141(3):805-814.
    [87]Powell R J, Bhargava J, Basson M D, et al. Coculture conditions alter endothelial modulation of TGF-beta 1 activation and smooth muscle growth morphology. Am J Physiol Heart and Circulation Physiology [J].1998,274(2):642-649.
    [88]丛兴忠,姜宗来,李玉泉等.用于内皮细胞与平滑肌细胞联合培养的流动腔系统.医用生物力学[J].2001,16(1):1-5.
    [89]韩林,张宝仁,覃开荣等.不同切应力下的内皮细胞条件培养基对平滑肌细胞增殖和胶原合成的影响.中国动脉硬化杂志[J].2000,8(3):206-208.
    [90]Van Kempen M J, Jongsma H J. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochemical and Cell Biology [J].1999,112(6):479-486.
    [91]Discher D E, Janmey P, Wang Y-1. Tissue cells feel and respond to the stiffness of their substrate. Science[J].2005,310 (5751):1139-1143.
    [92]于学军,何座云,王晓燕等.血管内皮-平滑肌细胞双层联合培养模型的改进.第三军医大学学报[J].2004,26(6):554-556.
    [93]George A Truskey. Endothelial vascular smooth muscle cell coculture assay for high throughput screening assays to identify antiangiogenic and other therapeutic molecules. International Journal of High Throughput Screening [J].2010,1:171-181.
    [94]段超,陈鑫,邱志兵.血管外膜成纤维细胞与血管再狭窄.心脏杂志[J].2010,22(2):285-288.
    [95]唐月霞,梁春,吴宗贵.血管外膜损伤后血管内皮的功能及形态变化.心脏杂志[J].2009,21(3):347-350.
    [96]Yasuyuki Fujiwara, Toshiyuki Kaji. Possible mechanism for lead inhibition of vascular endothelial cell proliferation:a lower response to basic fibroblast growth factor through inhibition of heparan sulfate synthesis. Toxicology [J].1999,133:147-157.
    [97]Lei Zhao, Mahboubeh Eghbali-Webb, et al. Release of pro-and anti-angiogenic factors by human cardiac (?)broblasts:e(?)ects on DNA synthesis and protection under hypoxia in human endothelial cells. Biochimica et Biophysica Acta [J].2001,1538:273-282.
    [98]Wang Xi-Qiao, Liu Ying-Kai, Qing Chun, et al. Hyperactivity of fibroblasts and functional regression of endothelial cells contribute to microvessel occlusion in hypertrophic scarring. Microvascular Research [J].2009,77:204-211.
    [99]Sarah A. Biela, Yi Su, Joachim P. Spatz, et al. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomaterialia [J].2009,5:2460-2466.
    [100]刘艳文.氧化钛薄膜微图形制备及生物相容性研究.西南交通大学硕士学位论文[M].2006.
    [101]姜丽丽.软刻蚀方法制备二氧化钛微图形及其相关性质研究.西南交通大学硕士学位论文[M].2007.
    [102]陈长琦,王艳,王旭迪等.软刻蚀技术及其应用.真空[J].2003,6:11-14。
    [103]Xia Y, Zhao XM, Whitesides GM. Pattern transfer:self-assembled monolayers as ultrathin resists. Microelectron Eng [J].1996,32:255-268.
    [105]Younan Xia, Dong Qin, Yadong Yin. Surface patterning and its application in wetting_dewetting studies. Current Opinion in Colloid & Interface Science [J].2001, 6:.54-64
    [105]Charles F. Cooper. George Whitesides:Molecular self-assembly and the invention of soft lithography. Journal of the Franklin Institute [J].2011,348:544-554.
    [106]Xi Chen, Zhi Wang, Ting-Wu Qin, et al. Effects of micropatterned surfaces coated with type I collagen on the proliferation and morphology of tenocytes [J]. Applied Surface Science [J].2008,255:368-370.
    [107]Jung J., Na K., Shin B., et al. A cell-repellent sulfonated PEG comb-like polymer for highly resolved cell micropatterns. Journal of Biomaterials Science Polymer Eidition [J]. 2008,19(2):161-173.
    [108]廖玉珍,杨苹,王进等.内皮细胞在钛金属表面透明质酸微图形上的粘附行为.功能材料[J].2010,10(41):1807-1809.
    [109]Yi He Y., Hower J., Chen S. F., et al. Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine. Self-Assembled Monolayers in the Presence of Water [J].2008,24(18):10358-10364
    [110]Khang, DY; Lee, HH. Pressure-assisted capillary force lithography. Advanced materials [J].2004,16 (2):176-179.
    [111]Suh, KY; Lee, HH. Capillary force lithography:Large-area patterning, self-organization, and anisotropic dewetting. Advanced functional materials [J].2002,12 (6-7):405-413.
    [112]Chou, SY:Krauss, PR; Renstrom, PJ. Imprint lithography with 25-nanometer resolution. Science [J].1996,272 (5258):85-87.
    [113]Xinhong Yu, Zhe Wang, Rubo Xing, et al. Solvent assisted capillary force lithography. Polymer [J].2005,46:11099-11103.
    [114]石锦霞,软刻蚀技术在高分子科学中的应用,中国科学技术大学博士学位论文[D].2008:4.
    [115]Fengming Zhang, Guicai Li, Ping Yang, et al. Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion. Colloids and Surfaces B:Biointerfaces [J].2013,102 (1):457-465.
    [116]谢佳.软刻蚀方法制备壳聚糖/牛血清白蛋白复合图形及其相关性质研究.西南交通大学硕士学位论文[M].2010.
    [117]Kim E, Xia Y N, Whitesides G. M. Polymer Micro structures Formed By Moulding In Capillaries. Nature [J].1995,376:581-584.
    [118]Paul K.E., Prentiss M., Whitesides G.M..Patterning. Spherical Surfaces at the Two-Hundred-Nanometer Scale Using Soft Lithography. Advanced Functional Materials [J].2003,13(4):259-263.
    [119]Rhee S W, Taylor A M., Tu C H., et al. Patterned cell culture inside microfluidic devices. Lab on a Chip [J].2005,5:102-107.
    [120]任慧兰,杨苹,鲁雄等.生物材料表面微图形化及其研究进展.功能材料[J].2007(增刊),38:1822-1825.
    [121]Dae-Nyun Kim, Jinwon Park, Won-Gun Koh. Control of cell adhesion on poly(ethylene glycol) hydrogel surfaces using photochemical modification and micropatterning techniques. Journal of Industrial and Engineering Chemistry [J].2009,15: 124-128.
    [122]Hiromi Miyoshi, Jungmyoung Ju, Sang Min Lee,et al. Control of highly migratory cells by microstructured surface based on transient change in cell behavior. Biomaterials [J]. 2010,31:8539-8545.
    [123]Jung-Hoon Yang, Varun Penmatsa, Shinya Tajima, et al. Direct amination on 3-dimensional pyrolyzed carbon micropattern surface for DNA detection. Materials Letters [J].2009,63:2680-2683.
    [124]Veloso J.F.C.A., Silva A.L.M., Oliveira C.A.B., et al. Energy resolved X-ray fluorescence imaging based on a micropattern gas detector. Spectrochimica Acta Part B [J]. 2010,65:241-247.
    [125]Jun Yan, Yinghua Sun, He Zhu, et al. Enzyme-containing hydrogel micropatterns serving a dual purpose of cell sequestration and metabolite detection. Biosensors and Bioelectronics [J].2009,24:2604-2610.
    [126]Kristina Lehmann, Manuela Herklotz, Martin Espig, et al. A new approach to biofunctionalisation and micropatterning of multi-well plates. Biomaterials [J].2010,31: 8802-8809.
    [127]Makoto Sakuragi, Saki Tsuzuki, Sei Obuse, et al. A photoimmobilizable sulfobetaine-based polymer for a nonbiofouling surface. Materials Science and Engineering C[J].2010,30:316-322.
    [128]Tomoaki Okuyama, Hironori Yamazoe, Yuki Seto, et al. Cell micropatterning inside a microchannel and assays under a stable concentration gradient. Journal of Bioscience and Bioengineering [J].2010,110:230-237.
    [129]Mi-Young Ahn, In-Tae Hwang, Chan-Hee Jung, et al. Cell patterning on a poly(N-vinyl pyrrolidone)-patterned polystyrene substrate by using ion implantation. Journal of Industrial and Engineering Chemistry [J].2010,16:87-90.
    [130]Kohji Nakazawa, Yukako Shinmura, Yukiko Yoshiura, et al. Effect of cell spot sizes on micropatterned cultures of rat hepatocytes. Biochemical Engineering Journal [J].2010,53: 85-91.
    [131]Li Yao, Shenguo Wang, Wenjin Cui, et al. Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia [J].2009,5:580-588.
    [132]Yusuke Sakai, Yukiko Yoshiura, Kohji Nakazawa, et al. Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. Journal of Bioscience and Bioengineering [J].2011,111:85-91.
    [133]Julien E. Gautrot, Britta Trappmann, Fabian Oceguera-Yanez, et al. Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale. Biomaterials [J].2010,31:5030-5041.
    [134]Keri B. Vartanian, Sean J. Kirkpatrick, Stephen R. Hanson, et al. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochemical and Biophysical Research Communications [J].2008,371:787-792.
    [135]Hug Aubin, Jason W. Nichol, Che B. Hutson, et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials [J].2010,31:6941-6951.
    [136]Jing-an Li, Ping Yang, Kun Zhang, et al. Preparation of TiO2/SiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation.18th International Conference on Ion Beam Modification of Materials. Qingdao, China.
    [137]Keri B. Vartanian, Sean J. Kirkpatrick, Owen J.T. McCarty, et al. Distinct extracellular matrix microenvironments of progenitor and carotid endothelial cells. Journal of Biomedical Materials Research Part A [J].2009,91A:528-539.
    [138]Deirdre E.J. Anderson, Monica T. Hinds. Extracellular matrix production and regulation in micropatterned endothelial cells. Biochemical and Biophysical Research Communications [J].2012,427:159-164.
    [139]Jan P. Stegemann,Robert M. Nerem. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Experimental Cell Research [J].2003,283 (2):146-155.
    [140]Tull, SP, Anderson, SI, Hughan, SC, et al. Cellular pathology of atherosclerosis-Smooth muscle cells promote adhesion of platelets to cocultured endothelial cells. Circulation Research [J].2006,98:98-104.
    [141]Rahul G. Thakar, Friedrich Ho, Ngan F. Huang, et al. Regulation of vascular smooth muscle cells by micropatterning. Biochemical and Biophysical Research Communications [J],2003,307:883-890.
    [142]Sumona Sarkar, Manisha Dadhania, Patrick Rourke, et al. Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomaterialia [J].2005,1:93-100.
    [143]Jimin Xu, Cheng Chen, Xuemei Jiang, et al. Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells. Biochemical and Biophysical Research Communications [J].2011,415:591-596.
    [144]Indra Ramasamy. Inherited bleeding disorders:disorders of platelet adhesion and aggregation. Critical Reviews in Oncology/Hematology [J].2004,49:1-35.
    [145]陈江,郭翔,杨苹等.微图形Ti-O薄膜亲水性对细胞行为的影响.功能材料[J].2010,41:1788-1791.
    [146]郑楠.几种无机材料表面微沟槽的制备及其生物相容性研究.西南交通大学硕士学位论文[M],2009.
    [147]John M. Collins, Saju Nettikadan. Subcellular scaled multiplexed protein patterns for single cell cocultures. Analytical Biochemistry [J].2011,419:339-341.
    [148]Shintaro Takahashi, Hironori Yamazoe, Fumihiro Sassa, et al. Preparation of coculture system with three extracellular matrices using capillary force lithography and layer-by-layer deposition. Journal of Bioscience and Bioengineering [J].2009,108:544-550.
    [149]Lee J.Y., Shah S.S., Yan J., et al. Integrating Sensing Hydrogel Microstructures into Micropatterned Hepatocellular Cocultures. Langmuir [J].2009,25:3880-3886.
    [150]Stybayeva G.,Zhu H., Ramanculov E., et al. Micropatterned co-cultures of T-lymphocytes and epithelial cells as a model of mucosal immune system. Biochemical and biophysical research communications [J].2009,380:575-580.
    [151]Thompson D.M., Buettner H.M.. Neurite outgrowth is directed by Schwann cell alignment in the absence of other guidance cues. Annals of biomedical engineering [J]. 2006,34:161-168.
    [152]Zeng Yan, Lee Thong-See, Yu Peng,et al. Numerical simulation of mass transport in a microchannel bioreactor with cell micropatterning. Journal of biomechanical engineering [J].2008,130:031018.
    [153]Tu QF, Zhang Y, Ge DX, et al. Novel tissue-engineered vascular patches based on decellularized canine aortas and their recellularization in vitro. Appl Surf Sci [J].2008,255: 282-285.
    [154]Poirier TP,Kehoe MA,Whitnack E, et al. Fibrinogen binding and resistance to phagocytosis of Streptococcus sanguis expressing cloned M protein of Streptococcus pyogenes. Infect. Immun. [J].1989,57:29-35.
    [155]Kun Zhang, Tao Liu, Jing-an Li, Jun-ying Chen, Jian Wang, Nan Huang. Surface modification of implanted cardiovascular metal stents:from anti-thrombosis and anti-restenosis to endothelialization. Journal of biomedical materials research part A [J]. 2013 accepted, doi:10.1002/jbm.a.34714
    [156]Rolando Barbucci, Stefania Lamponi, Agnese Magnani, et al. The influence of molecular weight on the biological activity of heparin like sulphated hyaluronic acids. Biomaterials [J].1998,19:801-806.
    [157]Kameha R. Kidd, Vangie B. Patula, Stuart K. Williams. Accelerated Endothelialization of Interpositional 1-mm Vascular Grafts.Journal of Surgical Research [J]. 2003,113:234-242
    [158]Unger R.E., Peters K., Wolf M., et al. Endothelialization of a non-woven silk fibroin net for use in tissue engineering:growth and gene regulation of human endothelial cells. Biomaterials [J].2004,25:5137-5146
    [159]Yang Shen, Guixue Wang, Liang Chen, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy:Effects of surface micropatterning combined with plasma nanocoatings.Acta Biomaterialia [J].2009,5:3593-3604
    [160]Tzu-Wen Chuang, Kristyn S. Masters. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides.Biomaterials [J].2009, 30:5341-5351.
    [161]Edward M Boyle Jr, Sean T Lille, Eric Allaire, et al. Endothelial Cell Injury in Cardiovascular Surgery:Atherosclerosis. The Annals of Thoracic Surgery [J].1997,63: 885-894.
    [162]Mansoor Husain, Jonathan Moss. Endothelium-dependent vascular smooth muscle control. Journal of Clinical Anesthesia [J].1988,1:135-145.
    [163]Radomski M.W., Vallance P., Whitley G., et al. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovascular Research [J].1993,27:1380-1382.
    [164]Andrews A.M., Jaron D., Buerk D.G., et al. Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide:Biology and Chemistry [J].2010,23:335-342.
    [165]Tsao P.S., Buitrago R., Chan J.R., et al. Fluid flow inhibits endothelial adhesiveness: nitric oxide and transcriptional regulation of VCAM-1. Circulation [J].1996,94: 1682-1689.
    [166]G.M. Buga, M.E. Gold, J.M. Fukuto, et al. Shear-stress induced release of nitric oxide from endothelial-cells grown on beads. Hypertension [J].1991,17:187-193.
    [167]Allison M. Andrews, Dov Jaron, Donald G. Buerk, et al. Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide [J].2010,23:335-342.
    [168]Buga G.M., Gold M.E., Fukuto J.M., et al. Shear-stress induced release of nitric oxide from endothelial-cells grown on beads. Hypertension [J].1991,17:187-193.
    [169]Madison GB, Zhou WS, Dawn CN, et al. PGI2 as a regulator of CD4+subset differentiation and function. Prostag. Oth. Lipid M. [J].2011,96:21-26.
    [170]Whittaker N, Bunting S, Salmon J, et al. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins [J].1976,12:915-28.
    [171]Anyou Wang, Fang Liu, Ningzheng Dong, et al. Thrombospondin-1 and ADAMTS13 competitively bind to VWF A2 and A3 domains in vitro.Thrombosis Research [J].2010, 126:e260-e265.
    [172]Lopez JA, Dong JF. Structure and function of the glycoprotein Ib-IX-V complex. Curr Opin Hematol [J].1997,4(5):323-329.
    [173]Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem [J].1998,67:395-424.
    [174]Furlan M. Von Willebrand factor:molecular size and functional activity. Ann Hematol [J].1996,72(6):341-8.
    [175]Dong JF, Moake JL, Nolasco L, et al. ADAMTS13 rapidly cleaves newly secretedultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood [J].2002,100(12):4033-4039.
    [176]Furlan M, Robles R, Lamie B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood [J].1996,87:4223-1234.
    [177]Dent JA, Galbusera M, Ruggeri ZM. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. J Clin Invest [J].1991,88: 774-782.
    [178]S. Mangan, P. Clancy, J. Golledge. Modulation of endothelial cell thrombomodulin by PPAR ligands — Variation according to environment. Thromb. Res. [J].2008,121: 827-834.
    [179]Esmon CT. The regulation of natural anticoagulant pathways. Science [J].1987, 235:1348-52.
    [180]Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem [J].1989,264:4743-4746.
    [181]Esmon CT. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J [J].1995,9:946-955.
    [182]Kristien Winckers, Hugo ten Cate, Tilman M. Hackeng.The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Reviews [J].2013,27: 119-132.
    [183]Caplice NM, Mueske CS, Kleppe LS, et al. Expression of tissue factor pathway inhibitor in vascular smooth muscle cells and its regulation by growth factors. Circ Res [J]. 1998,83:1264-1270.
    [184]Maroney SA, Mast AE. Expression of tissue factor pathway inhibitor by endothelial cells and platelets. Transfus Apher Sci [J].2008,38:9-14.
    [185]Broze Jr GJ, Lange GW, Duffin KL, et al. Heterogeneity of plasma tissue factor pathway inhibitor. Blood Coagul Fibrinolysis [J].1994,5:551-559.
    [186]Wun TC, Kretzmer KK, Girard TJ, et al. Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J Biol Chem [J].1988,263:6001-6004.
    [187]Broze Jr GJ, Warren LA, Novotny WF, et al. The lipoprotein-associated coagulation inhibitor that inhibits the factor Ⅶ-tissue factor complex also inhibits factor Xa:insight into its possible mechanism of action. Blood [J].1988,71:335-343.
    [188]Girard TJ, Warren LA, Novotny WF, et al. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature [J].1989,338: 518-520.
    [189]Hackeng TM, Sere KM, Tans G, Rosing J. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci U S A [J].2006,103: 3106-3111.
    [190]Ndonwi M, Tuley EA, Broze Jr GJ. The Kunitz-3 domain of TFPI-alpha is required for protein S-dependent enhancement of factor Xa inhibition. Blood [J].2010,116: 1344-1351.
    [191]Warshawsky I, Bu G, Mast A, Saffitz JE, et al. The carboxy terminus of tissue factor pathway inhibitor is required for interacting with hepatoma cells in vitro and in vivo. J Clin Invest [J].1995,95:1773-1781.
    [192]Mikae 1 M. Martino, Mayumi Mochizuki, Dominique A. Rothenfluh, et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials [J].2009,30:1089-1097.
    [193]George EL, Rayburn H, Hynes R. Genetic-analysis of fibronectin function in mice. J Cell Biochem [J].1993,17E:111-111.
    [194]Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci [J].2002,115:3861-3863.
    [195]Vogel V. Mechanotransduction involving multimodular proteins:converting force into biochemical signals. Annu Rev Biophys Biomol Struct [J].2006,35:459-88.
    [196]Xia Lin, Xueyan Duan, Yao-Yun Liang, et al. PPM1A Functions as a Smad Phosphatase to Terminate TGFβ Signaling. Cell [J].2006,125(5):915-928.
    [197]Carole E. Schantea, Guy Zuber, Corinne Herlin, et al. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydrate Polymers [J].2011,85:469-489.
    [198]Oh E., Park K., Kim K., et al. Target specific and long acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronicacid derivatives. J. Control. Release [J]. 2010,141:2-12.
    [199]Jiang D., Liang J., Noble P.. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Bi. [J].2007,23:435-461.
    [200]Stern R., Asari A., Sugahara K.. Hyaluronan fragments:Aninformation-rich system. Euro. J. Cell Biol. [J].2006,85:699-715.
    [201]Jingan Li, Kun Zhang, Ping Yang, et al. Human vascular endothelial cell morphology and functional cytokinesecretion influenced by different size of HA micro-pattern on titanium substrate. Colloids and Surfaces B:Biointerfaces [J].2013,110:199-207.
    [202]Den Braber ET, De Ruijter JE, Smits HTJ, et al. Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials [J].1996,17:1093-1099.
    [203]Hwang CM, Park Y, Park JY, et al. Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed Microdevices [J].2009,11:739-746.
    [204]Yang SP, Lee TM. The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher. J. Mater. Sci.-Mater. M. [J].2011,22: 1027-1036.
    [205]Jingan Li, Kun Zhang, Ping Yang, et al. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micropattern on a titanium surface. Experimental Cell Research [J].2013,319:2663-2672.
    [206]Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem [J]. 1936,28(8):988-994
    [207]Kim C, Kendall MR, Miller MA, et al. Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions. Mat. Sci. Eng. C [J].2013,33:327-339.
    [208]Joo HC, Lim YJ, Kim MJ, et al. Characterization on titanium surfaces and its effect on photocatalytic bactericidal activity. Appl. Surf. Sci. [J].2010,257:741-746.
    [209]Jingan Li, Guicai Li, Kun Zhang, et al. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Applied Surface Science [J].2013,273:24-31.
    [210]Sunil K. Nadar, Eman Al Yemeni, Andrew D. Blann, et al. Thrombomodulin, von Willebrand factor and E-selectin as plasma markers of endothelial damage/dysfunction and activation in pregnancy induced hypertension. Thrombosis Research [J].2004,113: 123-128.
    [211]Schaker M. Zakeri, Hildegard Meyer, Gudrun Meinhardt, et al. Effects of trovafloxacin on the IL-1-dependent activation of E-selectin in human endothelial cells in vitro. Immunopharmacology [J].2000,48:27-34.
    [212]Bryan Simard, David Ratel, Isabelle Dupre, et al. Shark cartilage extract induces cytokines expression and release in endothelial cells and induces E-selectin, plasminogen and t-PA genes expression through an antioxidant-sensitive mechanism. Cytokine [J].2013, 61:104-111.
    [213]Clive Page, Simon Pitchford. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. International Immunopharmacology [J].2013, DOI: http://dx.doi.org/10.1016/j.intimp.2013.06.004.
    [214]Lousinian S., Missopolinou D., Panayiotou C..Fibrinogen adsorption on zinc oxide nanoparticles:A Micro-Differential Scanning Calorimetry analysis. Journal of Colloid and Interface Science [J].2013,395:294-299.
    [215]Rossella DS, Maria CB, Chiara A, et al. Human peripheral blood endothelial progenitor cells synthesize and express functionally active tissue factor. Thromb Res [J]. 2009,123:925-930.
    [216]Ann-Charlotte B. Svensson Holma,Torbjorn Bengtsson, Magnus Grenegard, et al. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation. Experimental Cell Research [J].2012,318:632-640.
    [217]Poh-Hui Chua, Koon-Gee Neoh, En-Tang Kang, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials [J].2008,29: 1412-1421.
    [218]Tsuyoshi Kato, Hirotaka Haro, Hiromichi Komori, et al. Evaluation of hyaluronic acid sheet for the prevention of postlaminectomy adhesions. The Spine Journal [J].2005,5: 479-488.
    [219]Min Kyung Cho, Gum Hwa Lee, Eun Young Park, et al. Hyaluronic acid inhibits adhesion of hepatic stellate cells in spite of its stimulation of DNA synthesis. Tissue & Cell [J].2004,36:293-305.
    [220]Tu QF, Zhao YC, Xue XQ, et al. Improved Endothelialization of Titanium Vascular Implants by Extracellular Matrix Secreted from Endothelial Cells. Tissue Engineering:Part A [J].2010, (16) 12:3635-3645.
    [221]Zhiqiang Zhao, Lu Qin, Brian Reid, et al. Directing migration of endothelial progenitor cells with applied DC electric fields. Stem Cell Research [J].2012,8:38-48.
    [222]Nana Mukai, Taichi Akahori, Motohiro Komaki, et al. A comparison of the tube forming potentials of early and late endothelial progenitor cells. Experimental Cell Research [J].2008,314:430-440.
    [223]Carl A. Hubel, Peter I. Sipos, Ian P. Crocker. Endothelial progenitor cells:Their potential role in pregnancy and preeclampsia. Pregnancy Hypertension:An International Journal of Women's Cardiovascular Health [J].2011,1:48-58.
    [224]Futami T, Fujii N, Ohnishi H, Taguchi N, et al. Tissue response to titanium implants in the rat maxilla:ultrastructural and histochemical observations of the bone-titanium interface. J Periodontol [J].2000,71:287-98.
    [225]Li GC, Yang P, Liao YZ, et al. Tailoring of the Titanium Surface by Immobilization of Heparin/Fibronectin Complexes for Improving Blood Compatibility and Endothelialization: An in Vitro Study. Biomacromolecules [J].2011,12:1155-1168.
    [226]Yang ZL, Tu QF, Maitz FM, et al. Direct thrombin inhibitor-bivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices. Biomaterials [J].2012,33:7959-7971.
    [227]Ensanya AAN, Laurent B, Jonathan CK, et al. Collagen-Emerging collagen based therapies hit the patient. Adv Drug Deliver Rev [J].2012, http://dx.doi.Org/10.1016/j.addr.2012.08.010.
    [228]Tu QF, Zhang Y, Ge DX, et al. Novel tissue-engineered vascular patches based on decellularized canine aortas and their recellularization in vitro. Appl Surf Sci [J].2008,255: 282-285.
    [229]Carole ES, Guy Z, Corinne H, et al. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohyd Polym [J]. 2011,85:469-489.
    [230]Price DR, Berry MG, Navsaria AH. Hyaluronic acid:the scientific and clinical evidence. J Plast Reconstr Aes [J].2007,60:1110-1119.
    [231]Poirier TP, Kehoe MA, Whitnack E, et al. Fibrinogen binding and resistance to phagocytosis of Streptococcus sanguis expressing cloned M protein of Streptococcus pyogenes. Infect Immun [J].1989,57:29-35.
    [232]Carlos ES, Roger DK, Douglas AL. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp Cell Res [J].2006,312:289-298.
    [233]Meltem AA, Gerhard Z, Hans PW. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization-A review of current strategies. Biotechnol Adv [J].2010,28:119-129.
    [234]Keri BV, Sean JK, Owen JTM, et al. Distinct extracellular matrix microenvironments of progenitor and carotid endothelial cells. J Biomed Mater Res A [J].2009,91:528-539.
    [235]Wang HQ, Bai L, Shen BR, et al. Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of β1-integrin and phosphatidylinositol 3-kinase/Akt. Eur. J. Cell Biol. [J].2007,86:51-62.
    [236]Mark DL, Zheng P, Charles SW, et al. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials [J].2005,26:4642-4653.
    [237]Chiua JJ, Chen LJ, Chen CN, et al. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. [J]. 2004,37:531-539.
    [238]Cao L, Wu A, Truskey AG. Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. J. Biomech [J].2011,44:2150-2157.
    [239]Agelikie GV, Lin LF, Marc DB. Pressure and endothelial coculture upregulate myocytic Fas-FasL pathway and induce apoptosis by way of direct and paracrine mechanisms. Am. J. Surg. [J].2005,190:780-786.
    [240]Fillinger MF, Sampson LN, Cronenwett JL, et al. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J. Surg. Res. [J].1997,67: 169-178.
    [241]Marc H, David M, Frederic P, et al. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vasc. Pharmacol. [J].2008,49:113-118.
    [242]Tull SP, Anderson SI, Hughan SC. Cellular pathology of atherosclerosis-Smooth muscle cells promote adhesion of platelets to cocultured endothelial cells. Circ. Res. [J]. 2006,98:98-104.
    [243]Hong-Jian Shi, Ai-Hong Cao, Jun Chen, et al. Transjugular Intrahepatic Portosystemic Shunt with an Autologous Endothelial Progenitor Cell Seeded Stent:A Porcine Model. Academic Radiology [J].2010,17 (3):358-367.
    [244]C. Cheung, S. Sinha, Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. Journal of Molecular and Cellular Cardiology [J]. 2011,51:661-664.
    [245]Chiu J.J., Chen L.J., Chen C.N., et al. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. Journal of Biomechanics [J].2004,37:531-539.
    [246]Ziegler T., Alexander R.W., Nerem R.M.. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Annals of Biomedical Engineering [J].1995,23:216-225.
    [247]Niwa K., Kado T., Sakai J., et al. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC-SMC coculture. Annals of Biomedical Engineering [J].2004,32:537-543.
    [248]Lavender M.D., Pang Z.Y., Wallace C.S., et al. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials[J].2005,26:4642-4653.
    [249]Rahul G. Thakar,Friedrich Ho, Ngan F. Huang, et al. Regulation of vascular smooth muscle cells by micropatterning. Biochemical and Biophysical Research Communications [J].2003,307:883-890.
    [250]姜宗来,陈双红,张炎,等.与平滑肌细胞联合培养的内皮细胞的形态学和生长增殖.解剖学报[J].2000,31(3):274-275.
    [251]Michael J Barnes, Richard W Farndale. Collagens and atherosclerosis. Experimental Gerontology [J].1999,34(4):513-525.
    [252]Mei-Na Lin, De-Shu Shang, Wei Sun, Bo Li, et al. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Research [J].2013, 1513:1-8.
    [253]Kristien Winckers, Hugo ten Cate, Tilman M. Hackeng.The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Reviews [J].2013,27: 119-132.
    [254]Sylaja Murikipudi, Heiko Methe, Elazer R. Edelman. The effect of substrate modulus on the growth and function of matrix-embedded endothelial cells. Biomaterials [J].2013,34: 677-684.
    [255]Victoria J. Burton, Lynn M. Butler, Helen M. McGettrick, et al. Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture. Experimental Cell Research[J].2011,317:276-292.
    [256]Brooke N. Mason, Alina Starchenko, Rebecca M. Williams, et al. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomaterialia [J].2013,9:4635-4644.
    [257]Anna Broder, Jimmy J. Chan, Chaim Putterman. Dendritic cells:An important link between antiphospholipid antibodies, endothelial dysfunction, and atherosclerosis in autoimmune and non-autoimmune diseases. Clinical Immunology [J].2013,146:197-206.
    [258]Huey-Shan Hung, Chia-Ching Wu, Shu Chien, et al. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials [J]. 2009,30:1502-1511.
    [259]Laura Indolfi, Aaron B. Baker, Elazer R. Edelman. The role of scaffold microarchitecture in engineering endothelial cell immunomodulation. Biomaterials [J].2012, 33:7019-7027.
    [260]Masatomi Y, Masanori S, Seiji S, et al. Argatroban, specific thrombin inhibitor, induced phenotype change of cultured rabbit vascular smooth muscle cells. Eur J Pharmacol [J].2003,461:9-17.
    [261]Marouan A, Stefan R, Horst R, et al. Tropomyosin 4 expression is enhanced indedifferentiating smooth muscle cells in vitro and during atherogenesis. Eur J Cell Biol [J]. 2003,82:473-482.
    [262]Amedeo Ferlosio, Gaetano Arcuri, Elena Doldo, et al. Age-related increase of stem marker expression influences vascular smooth muscle cell properties. Atherosclerosis [J]. 2012,224:51-57.
    [263]Steven F.Kemeny, DannielleS.Figueroa, AllisonM.Andrews, et al. Glycated collagen alters endothelial cell actin alignment and nitric oxide release inresponse to fluid shear stress. Journal of Biomechanics [J].2011,44:1927-1935
    [264]Yi-Shuan J. Li, Jason H. Haga, Shu Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics [J].2005,38:1949-1971.
    [265]S.M. Derkaoui, A. Labbe, P. Chevallier, et al. A new dextran-graft-polybutylmetha crylate copolymer coated on 316L metallic stents enhances endothelial cell coverage. Acta Biomaterialia [J].2012,8:3509-3515.
    [266]Claudia R. Arbeitman, Mariela F. del Grosso, Moni Behar, et al. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms [J]. 2013, In Press DOI:http://dx.doi.org/10.1016/j.nimb.2013.05.039
    [267]Preety Sharma, Thomas Templin, Peter Grabham. Short term effects of gamma radiation on endothelial barrier function:Uncoupling of PECAM-1. Microvascular Research [J].2013,86:11-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700