用户名: 密码: 验证码:
0.5Gy X线通过多重信号通路促进成骨细胞增殖与分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨的生长、发育及内稳态依赖于成骨细胞的骨形成与破骨细胞的骨吸收之间平衡。成骨细胞的主要功能是在骨形成及骨折愈合过程合成分泌大量细胞外基质。众所周知,高剂量辐照对骨组织常具有不良影响,包括放射性骨坏死、骨硬化、骨折及骨矿丢失。然而,低剂量电离辐射对骨组织的生物学效应及分子机制目前仍缺乏相关研究。骨科病人更经常接受到电离辐射,如X线摄影、计算机断层扫描或术中透视,辐射暴露通常为低剂量水平。我们课题组前期研究表明,低剂量X线照射促进大鼠骨折模型愈合过程骨痂的矿化,同时不同水平的低剂量X线在体外对成骨细胞的增殖和分化具有不同影响。但是,目前对于低剂量X线对骨组织刺激兴奋效应的潜在机制仍不清楚。在本研究中,我们进一步探讨低剂量X线辐照对成骨细胞增殖、分化及骨折愈合的影响特征,并在此基础上对相关信号通路的调控作用深入研究,以阐述低剂量X线对骨组织刺激兴奋效应的分子机制,为更好的理解低剂量X线对骨组织的生物学效应提供一定理论基础。
     一、0.5Gy X线照射促进成骨细胞增殖、分化及骨折愈合
     电离辐射对成骨细胞的影响目前仍存很大争议,且具体分子机制仍不是很清楚。为了进一步研究不同剂量X线对成骨细胞的影响,本部分研究分别应用0.5Gy和5GyX线照射成骨细胞和骨折模型。通过CCK-8,Brdu掺入实验及Sub-G1实验研究对成骨细胞增殖的影响,同时应用Real-time PCR及Western-blot检查骨分化相关基因的表达情况。组织学检查评估骨痂的形成及改建过程。结果显示0.5Gy X线明显促进成骨细胞增殖、分化及骨折愈合。具体表现为,0.5Gy X线增加MC3T3-E1细胞活性及DNA合成,而5GyX线明显抑制细胞活性及增殖,增加细胞的凋亡。Western-blot检测显示MC3T3-E1细胞在电离辐照后骨分化相关标志物蛋白表达水平发生动态变化,包括Col1、ALP、OCN、Runx2、Osterix。在大鼠股骨闭合骨折模型中,0.5GyX线能促进骨折愈合过程,骨痂中PCNA阳性细胞数量、软骨形成及骨痂面积比对照组明显增加,膜内成骨及软骨内成骨进程加速,同时骨形成标志基因Col1α1、Col2α、ALP、OCN、Runx2、Osterix的mRNA表达水平增高。虽然在5Gy照射组骨痂组织中一些骨形成标志物基因的表达也有增高,但是骨痂形成及骨折愈合时间较对照组及0.5Gy组明显延迟,可观察到胶原纤维老化。因此,低剂量的X线照射对成骨细胞具有一定刺激兴奋效应,可增加成骨细胞的增殖、分化及骨折愈合。
     二、低剂量X线照射对MC3T3-E1细胞基因表达谱的影响
     为了探讨低剂量X射线对成骨细胞基因表达谱的影响及相关分子机制。MC3T3-E1细胞在低剂量X线照射后,继续诱导成骨培养7天,收集样本后采用罗氏NimbleGen小鼠表达谱芯片进行检测。经过RNA抽提纯化和完整性检测后,取5μgRNA进行标记杂交,GenePix Pro6.0软件扫描获取图像并应用NimbleScan2.5软件进行数据分析。应用T检验筛选出p<0.05,两组之间差异表达在1.3倍以上的基因为判定差异基因。结果显示,成骨细胞在低剂量X射线照射后,共发现1412个差异基因,其中559个上调,853个下调。差异基因中促进成骨细胞分化、钙化,及一些生长因子及受体基因上调,同时调控细胞外基质、局部粘附、细胞骨架和血管形成的基因也明显上调。GO和Pathway分析结果显示细胞粘附、细胞周期及调节、Wnt信号、NF-κB信号、细胞骨架、TGF-信号、血小板生长因子受体信号基因明显富集。由此可见,低剂量的X线辐照对成骨细胞的生物学效应的复杂性,其促进成骨细胞分化和矿化可能与细胞外基质-局部粘附-细胞骨架途径、Wnt信号通路及生长因子相关信号通路有关。
     三、0.5Gy X线照射通过Wnt/-Catenin信号通路促进成骨细胞分化
     为了进一步研究Wnt信号通路在0.5GyX线促进成骨细胞分化中扮演的重要作用,以明确0.5Gy X线照射促进成骨细胞分化的分子机制。成骨细胞接受0.5Gy线照射后流式细胞仪检测细胞凋亡,通过检测骨分化标志物Col1α、ALP、OCN基因蛋白表达水平及ALP活性染色评估成骨细胞分化情况,应用Real-time PCR及Western-blot检测Wnt信号通路中关键分子的表达情况,同时检测Wnt/-Catenin特异性抑制剂XAV939对0.5Gy X线促进成骨细胞分化效应的影响。结果显示,0.5Gy X线可以抑制MC3T3-E1细胞凋亡,照射后4天Col1α、ALP、OCN表达减少,而在分化的中、晚期表达有增加趋势。同时,0.5Gy X射线照射可以激活成骨细胞Wnt/GSK-3/-Catenin信号,应用特异性抑制剂XAV939可以消除0.5Gy X射线照射导致的ALP表达升高。因此,低剂量X线照射成骨细胞后早期可以促进细胞存活,及中、晚期骨性分化标志物表达水平增高,这与低剂量X线照射对成骨细胞Wnt信号的影响密切相关。
     四、TGF-1/Smad2、3信号通路在0.5Gy X射线促进成骨细胞分化过程的作用
     验证TGF-1/Smads通路在0.5Gy X线照射在促进成骨细胞增殖和分化过程的重要作用。克隆形成实验及细胞周期检测0.5Gy X线照射后成骨细胞的分裂增殖能力,同时评估X线照射对成骨细胞分化、矿化的影响。Real-time PCR检测X线照射后成骨细胞周期调控因子、TGF-1及受体ALK5的mRNA的表达水平,ELISA检测X线照射后TGF-1分泌活性,Western-blot检测TGF-1信号通路关键调控分子Smad2、3的表达水平。结果显示,0.5GyX线照射能增加成骨细胞克隆形成率及S+G2/M细胞比例,增加CyclinD1和Id2的mRNA表达水平,而且导致骨性标志物表达动态变化及促进成骨细胞分化、矿化,同时0.5GyX线照射可以激活TGF-1/Smad2、3信号通路。因此,低剂量X线照射可以促进成骨细胞增殖和表达骨分化相关基因,增加成骨细胞分化成熟、矿化及骨形成能力,在这一过程TGF-1/Smad2,3/Osterix通路可能参与了重要分子调控机制。
     五、IGF-1/Akt信号通路在0.5Gy X射线促成骨细胞分化过程的调控作用
     研究低剂量X线照射对成骨细胞IGF-1信号的影响,同时探讨IGF-1信号与Wnt信号、TGF-信号间的相互作用,以期深入阐述低剂量X线对成骨细胞的生物学效应及相关分子机制。首先构建IRS-1shRNA慢病毒载体,感染MC3T3-E1细胞后检测IRS-1基因沉默情况。成骨细胞在接受0.5GyX线照射后,Real-time PCR检测IGF-1及膜受体IGF-1R的mRNA表达水平,Western-blot检测IGF-1信号通路关键调控分子Akt的活性。通过RNA干扰阻断IGF-1/Akt信号通路,同时检测其对成骨细胞分化及Wnt/-Catenin和TGF-1/Smad2,3信号的影响。结果显示,成功构建了IRS-1shRNA慢病毒载体和建立了稳转细胞克隆。低剂量X线促进成骨细胞分化的同时可激活IGF-1/Akt信号通路,RNA干扰阻断IRS-1基因可抑制IGF-1/Akt信号,也可消除低剂量X线促进成骨细胞分化成熟及矿化的效应。在低剂量X线照后早期,IGF-1信号可以调节Wnt信号通路中关键分子GSK-3活性,而对TGF-1通路中Smad2的表达水平无显著影响。因此可以看出,0.5GyX线照射通过激活IGF-1/Akt信号通路促进成骨细胞分化和矿化过程。同时,IGF-1/Akt信号可能参与了Wnt信号及TGF-1信号的相互作用。
Bone development and homeostasis are maintained through the balance betweenbone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts are the chiefbone-making cells that are responsible for the production of bone extracellular matrixduring the remodeling or healing of bone. It is well known that high-dose irradiationdelivers deleterious effects to bone tissue, including osteoradionecrosis, sclerosis, loss ofbone mass and bone fracture, in a dose-and time-dependent manner. However, the effectsof low-dose irradiation on bone responses and healing have rarely been described in theliterature. Orthopedic patients are more often subjected to radiation exposure, such asradiography, computed tomography or fluoroscopy during surgery, where the exposure toionizing radiation is usually at low-dose levels. Our preliminary studies surprisinglydemonstrated that low dose X-irradiation promoted callus formation and mineralization ina rat model, and this type of radiation was also shown to have different effects on theproliferation and differentiation of osteoblasts in vitro. However, the underlyingmechanism has not been evaluated in osteoblasts exposed to low-dose irradiation. In thisstudy, we investigated how low-dose X-ray irradiation influences the proliferation anddifferentiation of osteoblasts and promotes fracture healing. The expression patterns ofosteogenic genes were evaluated to explore the possible mechanisms involved inirradiation-stimulated osteoblast differentiation. Our findings provide a greaterunderstanding of the biologic responses of osteoblasts exposed to low dose X-irradiationand highlight the potential positive effects of such treatment.
     Part I Low-dose X-irradiation promotes osteoblast proliferation, differentiation andfracture healing in vitro and in vivo
     There is a great controversy regarding the biologic responses of osteoblasts toX-irradiation, and the mechanisms are poorly understood. In this study, the biologicaleffects of low-dose radiation in stimulating osteoblast proliferation, differentiation andfracture healing were identified using in vitro cell culture and in vivo animal studies. First, low-dose (0.5Gy) X-irradiation induced significant increases in the cell viability andproliferation of MC3T3-E1cells. However, high-dose (5Gy) X-radiation inhibited theviability and proliferation of osteoblasts. In addition, dynamic variations in osteoblastdifferentiation markers, including type I collagen, alkaline phosphatase, Runx2, Osterixand osteocalcin, were observed after both low-dose and high-dose irradiation by Westernblot analysis. Second, fracture healing was evaluated via histology and gene expressionafter single-dose X-irradiation, and low-dose X-irradiation was found to accelerate fracturehealing of closed femoral fractures in rats. In low-dose X-ray-irradiated fractures,increased proliferating cell nuclear antigen (PCNA)-positive cells, cartilage formation, andfracture callus were observed. In addition, we observed more rapid completion ofendochondral and intramembranous ossification, which was accompanied by alteredexpression of gene involved in bone remodeling and fracture callus mineralization.Although several osteoblast differentiation gene expression levels were increased in thefracture callus of high-dose irradiated rats, the callus formation and fracture union weredelayed compared to the control and low-dose irradiated fractures. These results revealbeneficial effects of low-dose irradiation, including the stimulation of osteoblastproliferation, differentiation and fractures healing, and highlight its potential translationalapplication in novel therapies against bone-related diseases.
     Part II The effects of low-dose X-ray radiation on the profile of gene expression inMC3T3-E1cells
     In order to evaluate global differences of expression between low-dose irradiationgroup and the control, we conducted microarray analyses using mouse Roche NimbleGen12x135K chips. MC3T3-E1cells were irradiated0.5Gy X-irradiation. Cells withoutirradiation were regarded as control group. Cells were cultured for7days after irradiationand collected. Total RNA were extracted and RNA integrity was assessed by standarddenaturing agarosegel electrophoresis. About5μg total RNA of each sample was used forlabeling and array hybridization. The experiment of collecting fluorescent information wasperformed by scanning images. They were then imported into software and expression datawere analyzed. Differentially expressed genes with statistical significance were identifiedthrough Volcano Plot filtering and the threshold was fold change≥1.3. Pathway Analysisand GO analysis were applied to determine the roles of these differentially expressed genes played in these biological pathways or GO terms. Finally, Hierarchical clustering wasperformed to show distinguishable gene expression profiling among samples. We identified1412differentially expressed transcripts in the radiated group compared with the control.Among the identified genes,559transcripts were up-and853transcripts weredown-regulated after irradiation. These identified transcripts were further analyzed byPathway analysis and GO analysis. The overrepresented genes were associated withosteoblast differentiation and ossification. Many genes belonged to focal adhesion,extracellular matrix space, cytoskeletal protein binding and angiogenesis. Some transcriptspossessing growth factor activity such as epidermal growth factor receptor, fibroblastgrowth factor, insulin-like growth factor were statistically overpresented. The studyindicated low-dose X-ray radiation promoted some genes of osteoblast differentiationup-regulated which might be involved extracellular matrix, actin cytoskeleton, focaladhension and growth factor activities.
     Part III0.5Gy X-ray radiation promoted osteoblast proliferation and differentiationby Wnt/-Catenin signaling
     In order to investigate the important role of Wnt signaling in the processes of0.5GyX-ray promote osteoblast differentiation, and make clear the molecular mechanismsinvolved. Flow cytometry was employed to detect the apoptosis after osteoblast exposureto0.5Gy X-ray radiation. The protein expression level of osteoblast differentiationmarkers, such as Col1α, ALP, OCN, were detected and ALP activity staining wasperformed. Real-time PCR and Western blot were utilized to evaluate the variations of keyfactors in Wnt signaling pathways, while specific inhibitor of Wnt/-Catenin, XAV939wasused to block the Wnt signaling. Our results showed that the apoptosis of MC3T3-E1significantly declined at three days after0.5Gy X-ray radiation. The protein levels ofCol1α, ALP and OCN had increase during osteoblast differentiation except a temporary fallat four days of radiation exposure. At the same time,0.5Gy X-ray radiation can activateWnt/GSK-3/-Catenin signaling, and specific inhibitor XAV939completely abrogatedthe increase in ALP expression and activaty induced by0.5Gy X-ray radiation. This studydemonstrated that low dose X-ray radiation promoted osteoblast early survival, andstimulated middle and late osteoblast differentiation, in which Wnt signaling participatedthe regulation processes.
     Part IV0.5Gy X-ray radiation stimulates TGF-1/Smad2/3signaling, osteoblastproliferation and differentiation in vitro
     To investigate the changes of TGF-1/Smad2/3signaling pathway in osteoblastproliferation and differentiation induced by0.5Gy X-ray radiation. Clone formationefficiency and cell cycle analysis were performed to detect the ability osteoblast divisionand proliferation after radiation exposure. The effects of irradiation on osteoblastdifferentiation and mineralization were assessed at different times. Real-time PCR wasused to detect the mRNA expression level of cyclin D1, Id2, TGF-1, ALK5afterirradiation, and TGF-1secretory activity was evaluated by ELISA. Western blot wasutilized to detect the expression of phosphorylated Smad2, Runx2and Osterix that wereimportant signaling molecules in TGF-1signaling pathways. The results revealed that0.5Gy X-ray radiation increased clone formation rate and G2/M proportion in osteoblast. Theincreases in mRNA expression levels of CyclinD1, Id2, TGF-1and ALK5were found inosteoblast after radiation exposure. Osteoblast differentiation markers presented dynamicchanges after0.5Gy X-ray radiation. And an accelerated mineralization was detected at thesame time.0.5GyX-ray radiation also activated TGF-1/Smad2/3/Osterix signalingpathwaysin osteoblast. Thus, low dose X-ray radiation can increase the expression ofrelated osteogenesis genes, and promote osteoblast differentiation, mature, mineralizationand bone formation ability. In this process, TGF-1/Smad2/3/Osterix may be involved inthe important regulation mechanism.
     Part V IGF-1/Akt signaling involves in the processes of differentiation regulationinduced by0.5Gy X-ray radiation
     This part highlighted the effects of low dose X-ray radiation on IGF-1signaling inosteoblast, and the cross-talk between IGF-1signaling, and Wnt signaling and TGF-1signaling. Our purpose was to understand the biological effects of low dose irradiation onosteoblast and the related mechanism more deeply. We constructed IRS-1shRNAlentivirus firstly. Then the shRNA lentivirus infected MC3T3-E1in ordor to silence IRS-1gene. After osteoblast exposure to0.5Gy X-ray radiation, real-time PCR detected themRNA expression of IGF-1and membrane receptor IGF-1R. Western blot was used toinvestigate activity of Akt which was a key regulation molecular in IGF-1signalingpathway. Moreover, after irradiation, the changes in osteoblast differentiation, Wnt/-Catenin signaling, TGF-1/Smad2/3signaling were detected after IGF-1/Aktsignaling pathway was blocked by IGF-1R RNA interference. We successfully constructedIRS-1mRNA interference vector and established stable transfection clones. The resultsshowed that low dose X-ray acradiation activated IGF-1/Akt signaling pathway andpromoted the osteoblast differentiation at the same time. IRS-1gene silencing blockedIGF-1/Akt signaling. That also eliminated the effects of low dose X-ray radiation onosteoblast differentiation, mature and mineralization. At early stage after low dose X-rayradiation, IGF-1signaling adjusted Wnt signaling pathways by activating GSK-3, andthere had no significant effects on the expression level of phosphorylated Smad2whichwas an important molecular mediator in TGF-1signaling pathway. Thus it can be seenthat0.5Gy X-ray radiation promoted osteoblast differentiation and mineralization byactivating IGF-1/Akt signal pathway, and IGF-1/Akt signaling might be cross-talk withWnt signaling and TGF-1after low dose radiation.
     Together, our experiments revealed dynamic phenotypic expression changes inosteoblastic cells after X-ray radiation. Low-dose (0.5Gy) X-ray radiation had stimulatoryeffects on osteoblast proliferation, differentiation and fracture healing in vitro and vivo.Multiple signaling pathways including Wnt/-Catenin signaling, TGF-1/Smad2/3signaling and IGF-1/Akt signaling, mediated these stimulatory effects of radiation onosteoblast. Our findings provide a better understanding of low-dose radiation-inducedbiologic responses during bone formation and may lead to the development of improvedstrategies with translational applications for bone-related diseases in humans.
引文
1. Gevorgyan A, La Scala GC, Sukhu B, et al. An in vitro model of radiation-inducedcraniofacial bone growth inhibition. The Journal of craniofacial surgery.2007;18(5):1044-1050.
    2. Gevorgyan A, Sukhu B, Alman BA, Bristow RG, Pang CY, Forrest CR. Radiationeffects and radioprotection in MC3T3-E1mouse calvarial osteoblastic cells. Plasticand reconstructive surgery.2008;122(4):1025-1035.
    3. Luckey TD. Physiological benefits from low levels of ionizing radiation. Healthphysics.1982;43(6):771-789.
    4. Heissig B, Rafii S, Akiyama H, et al. Low-dose irradiation promotes tissuerevascularization through VEGF release from mast cells and MMP-9-mediatedprogenitor cell mobilization. The Journal of experimental medicine.2005;202(6):739-750.
    5. Kataoka T, Mizuguchi Y, Yoshimoto M, Taguchi T, Yamaoka K. Inhibitory effects ofprior low-dose x-irradiation on ischemia-reperfusion injury in mouse paw. Journal ofradiation research.2007;48(6):505-513.
    6. Francois S, Bensidhoum M, Mouiseddine M, et al. Local irradiation not only induceshoming of human mesenchymal stem cells at exposed sites but promotes theirwidespread engraftment to multiple organs: a study of their quantitative distributionafter irradiation damage. Stem Cells.2006;24(4):1020-1029.
    7.吴冰,韦艳,刘强,张茜,王存,白海.低剂量X射对人骨髓充质干细胞生物学效应.中国实验血学杂志.2011;19(5):1214-1217.
    8. Fazel R, Krumholz HM, Wang Y, et al. Exposure to low-dose ionizing radiation frommedical imaging procedures. The New England journal of medicine.2009;361(9):849-857.
    9.韩生,格,跃,等.模拟透视下骨科X射辐射量和敏感器吸量究.中华骨科杂志.1998,18:670-674.
    10. Theocharopoulos N, Perisinakis K, Damilakis J, Papadokostakis G, Hadjipavlou A,Gourtsoyiannis N. Occupational exposure from common fluoroscopic projectionsused in orthopaedic surgery. The Journal of bone and joint surgery. American volume.2003;85-A(9):1698-1703.
    11.刘铮.低剂量辐射兴效应发生若干问题探讨.中华放射医学防护杂志.2003;23(12):393-398.
    12. Bogdandi EN, Balogh A, Felgyinszki N, et al. Effects of low-dose radiation on theimmune system of mice after total-body irradiation. Radiation research.2010;174(4):480-489.
    13. Gocmen S, Sirin S, Oysul K, Ulas UH, Oztas E. The effects of low-dose radiation inthe treatment of sciatic nerve injury in rats. Turkish neurosurgery.2012;22(2):167-173.
    14. Wei LC, Ding YX, Liu YH, et al. Low-dose Radiation Stimulates Wnt/beta-cateninSignaling, Neural Stem Cell Proliferation and Neurogenesis of the MouseHippocampus in vitro and in vivo. Current Alzheimer research.2012;.
    15.张炜,王培军,萍,华,高晓.低剂量X射鼠对海马经元形态及微蛋白2影响.中华医学杂志,2012,92(5):336-340.
    16. Rithidech KN, Udomtanakunchai C, Honikel LM, Whorton EB. No Evidence for theIn Vivo Induction of Genomic Instability by Low Doses of CS Gamma Rays in BoneMarrow Cells of BALB/CJ and C57BL/6J Mice. Dose-response: a publication ofInternational Hormesis Society.2012;10(1):11-36.
    17. Liang X, So YH, Cui J, Ma K, Xu X, et al. The low-dose ionizing radiation stimulatescell proliferation via activation of the MAPK/ERK pathway in rat culturedmesenchymal stem cells. Journal of radiation research.2011;52:380-386.
    18. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF coupleshypertrophic cartilage remodeling, ossification and angiogenesis during endochondralbone formation. Nature medicine.1999;5(6):623-628.
    19.高建军,高林,慰,王洪复,道林,凌,高艳红,轶.γ射对体外培养骨细胞用察.辐射究辐射工学报,2002,20(1):41-47.
    20. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, et al. X-ray radiation at low dosesstimulates differentiation and mineralization of mouse calvarial osteoblasts. BMBreports.2012;45:571-576
    21. Zhou XZ, Zhang G, Dong QR, Chan CW, Liu CF, Qin L. Low-dose X-irradiationpromotes mineralization of fracture callus in a rat model. Archives of orthopaedic andtrauma surgery.2009;129(1):125-132.
    22.晓中,张戈,秦,海斌,佘昶,张健,刘春,董启榕.低剂量X射射促大鼠骨折骨痂矿化究.中华医学杂志,2009,89(5):342-346.
    23. Song XS, Zhou XZ, Zhang G, Dong QR, Qin L. Low-dose X-ray irradiation promotesfracture healing through up-regulation of vascular endothelial growth factor. Medicalhypotheses.2010;75(6):522-524.
    24.马,华强,王涛,才.骨形成蛋白-2因转染对辐射后成骨细胞增殖活性影响.海口腔医学.2007,16(1):28-32.
    25. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wntsignaling in bone cell biology and bone disease. Gene.2012;492(1):1-18.
    26. Chen G, Deng C, Li YP.TGF-βand BMP signaling in osteoblast differentiation andbone formation.Int J Biol Sci.2012;8(2):272-288.
    27. Niu T, Rosen CJ.The insulin-like growth factor-I gene and osteoporosis: A criticalappraisal.Gene,2005,361(9):38–56.
    28. Zhou B, Liu Y, Kahn M, et al. Interactions Between beta-Catenin and TransformingGrowth Factor-beta Signaling Pathways Mediate Epithelial-Mesenchymal Transitionand Are Dependent on the Transcriptional Co-activator cAMP-responseElement-binding Protein (CREB)-binding Protein (CBP). The Journal of biologicalchemistry.2012;287(10):7026-7038.
    29. Zhou S. TGF-beta regulates beta-catenin signaling and osteoblast differentiation inhuman mesenchymal stem cells. Journal of cellular biochemistry. Jun2011;112(6):1651-1660.
    30. Zhang M, Wang M, Tan X, Li TF, Zhang YE, Chen D. Smad3prevents beta-catenindegradation and facilitates beta-catenin nuclear translocation in chondrocytes. TheJournal of biological chemistry.2010;285(12):8703-8710.
    31. Inoue Y, Canaff L, Hendy GN, et al. Role of Smad3, acting independently oftransforming growth factor-beta, in the early induction of Wnt-beta-catenin signalingby parathyroid hormone in mouse osteoblastic cells. Journal of cellular biochemistry.2009;108(1):285-294.
    32. Singh AM, Reynolds D, Cliff T, et al. Signaling Network Crosstalk in HumanPluripotent Cells: A Smad2/3-Regulated Switch that Controls the Balance betweenSelf-Renewal and Differentiation. Cell stem cell.2012;10(3):312-326.
    33. Chen YG, Li Z, Wang XF. Where PI3K/Akt Meets Smads: The Crosstalk DeterminesHuman Embryonic Stem Cell Fate. Cell stem cell.2012;10(3):231-232.
    34. Klokov D, Leskov K, Araki S, et al. Low dose IR-induced IGF-1-sCLU expression: ap53-repressed expression cascade that interferes with TGFbeta1signaling to confer apro-survival bystander effect. Oncogene.2013;32(4):479-490.
    1. Matsumura S, Hiranuma H, Deguchi A, Maeda T, Jikko A. Changes in phenotypicexpression of osteoblasts after X irradiation. Radiation research,1998,149:463-471.
    2. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Naturereviews Molecular cell biology,2012,13:27-38.
    3. Phulpin B, Dolivet G, Marie PY, Poussier S, Gallet P. Re-assessment of chronicradio-induced tissue damage in a rat hindlimb model. Experimental and therapeuticmedicine,2010,1:553-560.
    4. Takahashi S, Sugimoto M, Kotoura Y, Sasai K, Oka M. Long-term changes in thehaversian systems following high-dose irradiation. An ultrastructural and quantitativehistomorphological study. The Journal of bone and joint surgery Americanvolume,1994,76:722-738.
    5. Peyre HM, Coffigny H, Reillaudou M, Beaumatin J, Morin M. Transformation byradiation of rat foetal glial cells. International journal of radiation biology,2000,76:87-94.
    6. Jia D, Gaddy D, Suva LJ and Corry PM. Rapid loss of bone mass and strength in miceafter abdominal irradiation. Radiation research,2011,176:624-635.
    7. Szymczyk KH, Shapiro IM and Adams CS. Ionizing radiation sensitizes bone cells toapoptosis. Bone,2004,34:148-156.
    8. Sakurai T, Sawada Y, Yoshimoto M, Kawai M and Miyakoshi J. Radiation-inducedreduction of osteoblast differentiation in C2C12cells. Journal of radiation research,2007,48:515-521.
    9. Theocharopoulos N, Perisinakis K, Damilakis J, Papadokostakis G, Hadjipavlou A.Occupational exposure from common fluoroscopic projections used in orthopaedicsurgery. The Journal of bone and joint surgery American volume,2003,85-A:1698-1703.
    10. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J. Exposure to low-dose ionizingradiation from medical imaging procedures. The New England journal of medicine,2009,361:849-857.
    11. Pramojanee SN, Pratchayasakul W, Chattipakorn N and Chattipakorn SC. Low-dosedental irradiation decreases oxidative stress in osteoblastic MC3T3-E1cells withoutany changes in cell viability, cellular proliferation and cellular apoptosis. Archives oforal biology,2012,57:252-256.
    12. Sangsuwan T and Haghdoost S. The nucleotide pool, a target for low-dosegamma-ray-induced oxidative stress. Radiation research,2008,170:776-783.
    13. Asaithamby A and Chen DJ. Cellular responses to DNA double-strand breaks afterlow-dose gamma-irradiation. Nucleic acids research,2009,37:3912-3923.
    14. Li W, Wang G, Cui J, Xue L and Cai L. Low-dose radiation (LDR) induceshematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cellsinto peripheral blood circulation. Experimental hematology,2004,32:1088-1096.
    15. Wu B, Wei Y, Liu FQ, Zhang Q, Wang CB.[Biological effects of low doseX-irradiation on human bone marrow mesenchymal stem cells]. Zhongguo shi yan xueye xue za zhi,2011,19:1214-1217.
    16. Liang X, So YH, Cui J, Ma K, Xu X. The low-dose ionizing radiation stimulates cellproliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymalstem cells. Journal of radiation research,2011,52:380-386.
    17. Wei LC, Ding YX, Liu YH, Duan L, Bai Y. Low-dose radiation stimulatesWnt/beta-catenin signaling, neural stem cell proliferation and neurogenesis of themouse hippocampus in vitro and in vivo. Current Alzheimer research,2012,9:278-289.
    18. Zhou XZ, Zhang G, Dong QR, Chan CW, Liu CF. Low-dose X-irradiation promotesmineralization of fracture callus in a rat model. Archives of orthopaedic and traumasurgery,2009,129:125-132.
    19. Xu W, Xu L, Chen M, Mao YT, Xie ZG. The effects of low dose X-irradiation onosteoblastic MC3T3-E1cells in vitro. BMC musculoskeletal disorders,2012,13:94.
    20. Naik AA, Xie C, Zuscik MJ, Kingsley P, Schwarz EM. Reduced COX-2expression inaged mice is associated with impaired fracture healing. Journal of bone and mineralresearch: the official journal of the American Society for Bone and Mineral Research,2009,24:251-264.
    21. Iwaki A, Jingushi S, Oda Y, Izumi T, Shida JI. Localization and quantification ofproliferating cells during rat fracture repair: detection of proliferating cell nuclearantigen by immunohistochemistry. Journal of bone and mineral research: the officialjournal of the American Society for Bone and Mineral Research,1997,12:96-102.
    22. Tsai CJ, Hofstede TM, Sturgis EM, Garden AS, Lindberg ME. Osteoradionecrosis andradiation dose to the mandible in patients with oropharyngeal cancer. Internationaljournal of radiation oncology, biology, physics,2003,85:415-420.
    23. Lee IJ, Koom WS, Lee CG, Kim YB, Yoo SW. Risk factors and dose-effect relationshipfor mandibular osteoradionecrosis in oral and oropharyngeal cancer patients.International journal of radiation oncology, biology, physics,2009,75:1084-1091.
    24. Williams HJ and Davies AM. The effect of X-rays on bone: a pictorial review.European radiology,2006,16:619-633.
    25. He J, Qiu W, Zhang Z, Wang Z, Zhang X. Effects of irradiation on growth anddifferentiation-related gene expression in osteoblasts. The Journal of craniofacialsurgery,2011,22:1635-1640.
    26. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM. X-ray radiation at low doses stimulatesdifferentiation and mineralization of mouse calvarial osteoblasts. BMB reports,2012,45:571-576.
    27. Chae HJ, Chae SW, Kang JS, Bang BG, Han JI. Effect of ionizing radiation on thedifferentiation of ROS17/2.8osteoblasts through free radicals. Journal of radiationresearch,1999,40:323-335.
    28. Lau P, Baumstark-Khan C, Hellweg CE and Reitz G. X-irradiation-induced cell cycledelay and DNA double-strand breaks in the murine osteoblastic cell line OCT-1.Radiation and environmental biophysics,2010,49:271-280.
    29. Smialek MA, Moore SA, Mason NJ and Shuker DE. Quantification ofradiation-induced single-strand breaks in plasmid DNA using a TUNEL/ELISA-basedassay. Radiation research,2009,172:529-536.
    30. Sugrue T, Brown JA, Lowndes NF and Ceredig R. Multiple facets of the DNA damageresponse contribute to the radioresistance of mouse mesenchymal stromal cell lines.Stem Cells,2013,31:137-145.
    31. Feinendegen LE. Evidence for beneficial low level radiation effects and radiationhormesis. The British journal of radiology,2005,78:3-7.
    32. Caetano-Lopes J, Canhao H and Fonseca JE. Osteoblasts and bone formation. Actareumatologica portuguesa,2007,32:103-110.
    33. Choi JY, Lee BH, Song KB, Park RW, Kim IS. Expression patterns of bone-relatedproteins during osteoblastic differentiation in MC3T3-E1cells. Journal of cellularbiochemistry,1996,61:609-618.
    34. Singh AM, Reynolds D, Cliff T, Ohtsuka S, Mattheyses AL. Signaling networkcrosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls thebalance between self-renewal and differentiation. Cell stem cell,2012,10:312-326.
    35. Zhang M, Ho HC, Sheu TJ, Breyer MD, Flick LM. EP1(-/-) mice have enhancedosteoblast differentiation and accelerated fracture repair. Journal of bone and mineralresearch: the official journal of the American Society for Bone and Mineral Research,2011,26:792-802.
    1. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R,Hewitt SM, Helman LJ. The membrane-cytoskeleton linker ezrin is necessary forosteosarcoma metastasis. Nature medicine. Feb2004;10(2):182-186.
    2. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J,Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA. Induced pluripotentstem cell lines derived from human somatic cells. Science (New York, N.Y.). Dec212007;318(5858):1917-1920.
    3. Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B. Constraint and turnover insex-biased gene expression in the genus Drosophila. Nature. Nov82007;450(7167):233-237.
    4. Hiramitsu S, Terauchi M, Kubota T. The effects of Dickkopf-4on the proliferation,differentiation, and apoptosis of osteoblasts. Endocrinology. Dec2013;154(12):4618-4626.
    5. Heining E, Bhushan R, Paarmann P, Henis YI, Knaus P. Spatial segregation ofBMP/Smad signaling affects osteoblast differentiation in C2C12cells. PloS one.2011;6(10):e25163.
    6. Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1tothe bone. Endocrine reviews. Oct2005;26(6):743-774.
    7. Yoon WJ, Cho YD, Kim WJ, Bae HS, Islam R, Woo KM, Baek JH, Bae SC, RyooHM. Pin1-mediated conformational change and subnuclear focal accumulation ofRunx2is crucial for FGF2-induced osteoblast differentiation. The Journal ofbiological chemistry. Feb72014.
    8. Maruyama T, Jiang M, Hsu W. Gpr177, a novel locus for bone mineral density andosteoporosis, regulates osteogenesis and chondrogenesis in skeletal development.Journal of bone and mineral research: the official journal of the American Society forBone and Mineral Research. May2013;28(5):1150-1159.
    9. Bustos-Valenzuela JC, Fujita A, Halcsik E, Granjeiro JM, Sogayar MC. Unveilingnovel genes upregulated by both rhBMP2and rhBMP7during early osteoblastictransdifferentiation of C2C12cells. BMC research notes.2011;4:370.
    10. Maeng YS, Choi HJ, Kwon JY, Park YW, Choi KS, Min JK, Kim YH, Suh PG, KangKS, Won MH, Kim YM, Kwon YG. Endothelial progenitor cell homing: prominentrole of the IGF2-IGF2R-PLCbeta2axis. Blood. Jan12009;113(1):233-243.
    11. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J.Angiogenic factors in bone local environment. Cytokine&growth factor reviews. Jun2013;24(3):297-310.
    12. Morita Y, Matsuyama H, Serizawa A, Takeya T, Kawakami H. Identification ofangiogenin as the osteoclastic bone resorption-inhibitory factor in bovine milk. Bone.Feb2008;42(2):380-387.
    13. Suzuki Y, Yanagisawa M, Yagi H, Nakatani Y, Yu RK. Involvement of beta1-integrinup-regulation in basic fibroblast growth factor-and epidermal growth factor-inducedproliferation of mouse neuroepithelial cells. The Journal of biological chemistry. Jun112010;285(24):18443-18451.
    14. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wntsignaling in bone cell biology and bone disease. Gene. Jan152012;492(1):1-18.
    15. Burgers TA, Williams BO. Regulation of Wnt/beta-catenin signaling within and fromosteocytes. Bone. Jun2013;54(2):244-249.
    16. Krum SA, Chang J, Miranda-Carboni G, Wang CY. Novel functions for NFkappaB:inhibition of bone formation. Nature reviews. Rheumatology. Oct2010;6(10):607-611.
    17. Yao Z, Li Y, Yin X, Dong Y, Xing L, Boyce BF. NF-kappaB RelB negatively regulatesosteoblast differentiation and bone formation. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research. Oct12013.
    18. Novack DV. Role of NF-kappaB in the skeleton. Cell research. Jan2011;21(1):169-182.
    19. Yamazaki M, Fukushima H, Shin M, Katagiri T, Doi T, Takahashi T, Jimi E. Tumornecrosis factor alpha represses bone morphogenetic protein (BMP) signaling byinterfering with the DNA binding of Smads through the activation of NF-kappaB. TheJournal of biological chemistry. Dec182009;284(51):35987-35995.
    20. Boyce BF, Yao Z, Xing L. Functions of nuclear factor kappaB in bone. Annals of theNew York Academy of Sciences. Mar2010;1192:367-375.
    21. Xiao M, Inal CE, Parekh VI, Li XH, Whitnall MH. Role of NF-kappaB inhematopoietic niche function of osteoblasts after radiation injury. Experimentalhematology. Jan2009;37(1):52-64.
    22. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrinsignal transduction. Nature cell biology. Apr2002;4(4):E83-90.
    23. Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in: G proteinsignaling in integrin-mediated cell adhesion, spreading, and retraction. Currentopinion in cell biology. Oct2012;24(5):600-606.
    24. Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biology of the cell/underthe auspices of the European Cell Biology Organization. Oct2000;92(7):477-494.
    25. Tamura Y, Takeuchi Y, Suzawa M, Fukumoto S, Kato M, Miyazono K, Fujita T. Focaladhesion kinase activity is required for bone morphogenetic protein--Smad1signalingand osteoblastic differentiation in murine MC3T3-E1cells. Journal of bone andmineral research: the official journal of the American Society for Bone and MineralResearch. Oct2001;16(10):1772-1779.
    26. Kawano T, Zhu M, Troiano N, Horowitz M, Bian J, Gundberg C, Kolodziejczak K,Insogna K. LIM kinase1deficient mice have reduced bone mass. Bone. Jan2013;52(1):70-82.
    27. Li X, Liu C, Li P, Li S, Zhao Z, Chen Y, Huo B, Zhang D. Connexin43is a potentialregulator in fluid shear stress-induced signal transduction in osteocytes. Journal oforthopaedic research: official publication of the Orthopaedic Research Society. Dec2013;31(12):1959-1965.
    28. Grimston SK, Watkins MP, Stains JP, Civitelli R. Connexin43modulates post-natalcortical bone modeling and mechano-responsiveness. BoneKEy reports.2013;2:446.
    29. Yamada KM, Even-Ram S. Integrin regulation of growth factor receptors. Nature cellbiology. Apr2002;4(4):E75-76.
    30. Long RK, Nishida S, Kubota T, Wang Y, Sakata T, Elalieh HZ, Halloran BP, Bikle DD.Skeletal unloading-induced insulin-like growth factor1(IGF-1) nonresponsiveness isnot shared by platelet-derived growth factor: the selective role of integrins in IGF-1signaling. Journal of bone and mineral research: the official journal of the AmericanSociety for Bone and Mineral Research. Dec2011;26(12):2948-2958.
    31. Oommen S, Gupta SK, Vlahakis NE. Vascular endothelial growth factor A (VEGF-A)induces endothelial and cancer cell migration through direct binding to integrin{alpha}9{beta}1: identification of a specific {alpha}9{beta}1binding site. TheJournal of biological chemistry. Jan142011;286(2):1083-1092.
    32. Kurpinski K, Jang DJ, Bhattacharya S, Rydberg B, Chu J, So J, Wyrobek A, Li S,Wang D. Differential effects of x-rays and high-energy56Fe ions on humanmesenchymal stem cells. International journal of radiation oncology, biology, physics.Mar12009;73(3):869-877.
    1. Cohen MM, Jr. The new bone biology: pathologic, molecular, and clinical correlates.American journal of medical genetics. Part A. Dec12006;140(23):2646-2706.
    2. Kassem M, Abdallah BM, Saeed H. Osteoblastic cells: differentiation andtrans-differentiation. Archives of biochemistry and biophysics. May152008;473(2):183-187.
    3. Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A. Nanocomposites ofhydroxyapatite with aspartic acid and glutamic acid and their interaction withosteoblast-like cells. Biomaterials. Sep2006;27(25):4428-4433.
    4. Peter ME. Programmed cell death: Apoptosis meets necrosis. Nature. Mar172011;471(7338):310-312.
    5. Carinci F, Pezzetti F, Spina AM, Palmieri A, Carls F, Laino G, De Rosa A, Farina E,Illiano F, Stabellini G, LoMuzio L, Perrotti V, Piattelli A. An in vitro model fordissecting distraction osteogenesis. The Journal of craniofacial surgery. Jan2005;16(1):71-78; discussion78-79.
    6. Fournier C, Scholz M, Weyrather WK, Rodemann HP, Kraft G. Changes offibrosis-related parameters after high-and low-LET irradiation of fibroblasts.International journal of radiation biology. Jun2001;77(6):713-722.
    7. Hu Q, Hill RP. Radiosensitivity, apoptosis and repair of DNA double-strand breaks inradiation-sensitive Chinese hamster ovary cell mutants treated at different dose rates.Radiation research. Dec1996;146(6):636-645.
    8. Lau P, Baumstark-Khan C, Hellweg CE, Reitz G. X-irradiation-induced cell cycledelay and DNA double-strand breaks in the murine osteoblastic cell line OCT-1.Radiation and environmental biophysics. May2010;49(2):271-280.
    9. Wei LC, Ding YX, Liu YH, Duan L, Bai Y, Shi M, Chen LW. Low-dose radiationstimulates Wnt/beta-catenin signaling, neural stem cell proliferation and neurogenesisof the mouse hippocampus in vitro and in vivo. Current Alzheimer research. Mar2012;9(3):278-289.
    10. Klokov D, Leskov K, Araki S, Zou Y, Goetz EM, Luo X, Willson D, Boothman DA.Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascadethat interferes with TGFbeta1signaling to confer a pro-survival bystander effect.Oncogene. Jan242013;32(4):479-490.
    11. Xiao M, Inal CE, Parekh VI, Li XH, Whitnall MH. Role of NF-kappaB inhematopoietic niche function of osteoblasts after radiation injury. Experimentalhematology. Jan2009;37(1):52-64.
    12. Nakano Y, Addison WN, Kaartinen MT. ATP-mediated mineralization of MC3T3-E1osteoblast cultures. Bone. Oct2007;41(4):549-561.
    13. Torii Y, Hitomi K, Yamagishi Y, Tsukagoshi N. Demonstration of alkalinephosphatase participation in the mineralization of osteoblasts by antisense RNAapproach. Cell biology international. Jul1996;20(7):459-464.
    14. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G. Fouriertransform infrared microspectroscopic analysis of bones of osteocalcin-deficient miceprovides insight into the function of osteocalcin. Bone. Sep1998;23(3):187-196.
    15. Wolf G. Function of the bone protein osteocalcin: definitive evidence. Nutritionreviews. Oct1996;54(10):332-333.
    16. Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects.Journal of cellular physiology. Jun2013;228(6):1149-1153.
    17. Matsumura S, Jikko A, Hiranuma H, Deguchi A, Fuchihata H. Effect of X-rayirradiation on proliferation and differentiation of osteoblast. Calcified tissueinternational. Oct1996;59(4):307-308.
    18. He J, Qiu W, Zhang Z, Wang Z, Zhang X, He Y. Effects of irradiation on growth anddifferentiation-related gene expression in osteoblasts. The Journal of craniofacialsurgery. Sep2011;22(5):1635-1640.
    19. Chae HJ, Chae SW, Kang JS, Bang BG, Han JI, Moon SR, Park RK, So HS, Jee KS,Kim HM, Kim HR. Effect of ionizing radiation on the differentiation of ROS17/2.8osteoblasts through free radicals. Journal of radiation research. Dec1999;40(4):323-335.
    20. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, Lee JC. X-ray radiation at low dosesstimulates differentiation and mineralization of mouse calvarial osteoblasts. BMBreports. Oct2012;45(10):571-576.
    21. Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S, Watanabe M.Radiation-induced senescence-like growth arrest requires TP53function but nottelomere shortening. Radiation research. Jan2001;155(1Pt2):248-253.
    22. Herskind C, Johansen J, Bentzen SM, Overgaard M, Overgaard J, Bamberg M,Rodemann HP. Fibroblast differentiation in subcutaneous fibrosis afterpostmastectomy radiotherapy. Acta Oncol.2000;39(3):383-388.
    23. Marie PJ. Signaling pathways affecting skeletal health. Current osteoporosis reports.Sep2012;10(3):190-198.
    24. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from humanmutations to treatments. Nature medicine. Feb2013;19(2):179-192.
    25. Regard JB, Zhong Z, Williams BO, Yang Y. Wnt signaling in bone development anddisease: making stronger bone with Wnts. Cold Spring Harbor perspectives in biology.Dec2012;4(12).
    26. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wntsignaling in bone cell biology and bone disease. Gene. Jan152012;492(1):1-18.
    27. Georgiou KR, Hui SK, Xian CJ. Regulatory pathways associated with bone loss andbone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy andradiotherapy. American journal of stem cells.2012;1(3):205-224.
    28. Su W, Chen Y, Zeng W, Liu W, Sun H. Involvement of Wnt signaling in the injury ofmurine mesenchymal stem cells exposed to X-radiation. International journal ofradiation biology. Sep2012;88(9):635-641.
    1. Chau JF, Leong WF, Li B. Signaling pathways governing osteoblast proliferation,differentiation and function. Histology and histopathology. Dec2009;24(12):1593-1606.
    2. Hofmann A, Ritz U, Hessmann MH, Schmid C, Tresch A, Rompe JD, Meurer A,Rommens PM. Cell viability, osteoblast differentiation, and gene expression arealtered in human osteoblasts from hypertrophic fracture non-unions. Bone. May2008;42(5):894-906.
    3. El-Naggar AK. Concurrent flow cytometric analysis of DNA and RNA. Methods MolBiol.2004;263:371-384.
    4. Szymczyk KH, Shapiro IM, Adams CS. Ionizing radiation sensitizes bone cells toapoptosis. Bone. Jan2004;34(1):148-156.
    5. Hu Y, Hellweg CE, Baumstark-Khan C, Reitz G, Lau P. Cell cycle delay in murinepre-osteoblasts is more pronounced after exposure to high-LET compared to low-LETradiation. Radiation and environmental biophysics. Mar2014;53(1):73-81.
    6. Lau P, Baumstark-Khan C, Hellweg CE, Reitz G. X-irradiation-induced cell cycledelay and DNA double-strand breaks in the murine osteoblastic cell line OCT-1.Radiation and environmental biophysics. May2010;49(2):271-280.
    7. He J, Qiu W, Zhang Z, Wang Z, Zhang X, He Y. Effects of irradiation on growth anddifferentiation-related gene expression in osteoblasts. The Journal of craniofacialsurgery. Sep2011;22(5):1635-1640.
    8. Datta NS, Chen C, Berry JE, McCauley LK. PTHrP signaling targets cyclin D1andinduces osteoblastic cell growth arrest. Journal of bone and mineral research: theofficial journal of the American Society for Bone and Mineral Research. Jun2005;20(6):1051-1064.
    9. Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC,Carano RA, Dixit VM. USP1deubiquitinates ID proteins to preserve a mesenchymalstem cell program in osteosarcoma. Cell. Sep162011;146(6):918-930.
    10. Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation.Bone. Aug1995;17(2Suppl):77S-83S.
    11. Baek WY, Kim JE. Transcriptional regulation of bone formation. Front Biosci (ScholEd).2011;3:126-135.
    12. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Naturereviews. Molecular cell biology. Jan2012;13(1):27-38.
    13. Schroeder TM, Jensen ED, Westendorf JJ. Runx2: a master organizer of genetranscription in developing and maturing osteoblasts. Birth defects research. Part C,Embryo today: reviews. Sep2005;75(3):213-225.
    14. Zhang S, Xiao Z, Luo J, He N, Mahlios J, Quarles LD. Dose-dependent effects ofRunx2on bone development. Journal of bone and mineral research: the officialjournal of the American Society for Bone and Mineral Research. Nov2009;24(11):1889-1904.
    15. Zheng H, Guo Z, Ma Q, Jia H, Dang G. Cbfa1/osf2transduced bone marrow stromalcells facilitate bone formation in vitro and in vivo. Calcified tissue international. Feb2004;74(2):194-203.
    16. Makita N, Suzuki M, Asami S, Takahata R, Kohzaki D, Kobayashi S, Hakamazuka T,Hozumi N. Two of four alternatively spliced isoforms of RUNX2control osteocalcingene expression in human osteoblast cells. Gene. Apr302008;413(1-2):8-17.
    17. Fu H, Doll B, McNelis T, Hollinger JO. Osteoblast differentiation in vitro and in vivopromoted by Osterix. Journal of biomedical materials research. Part A. Dec12007;83(3):770-778.
    18. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ. Cell-type-dependentup-regulation of in vitro mineralization after overexpression of the osteoblast-specifictranscription factor Runx2/Cbfal. Journal of bone and mineral research: the officialjournal of the American Society for Bone and Mineral Research. Nov2002;17(11):1931-1944.
    19. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptionalactivator of osteoblast differentiation. Cell. May301997;89(5):747-754.
    20. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y,Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S,Kishimoto T. Targeted disruption of Cbfa1results in a complete lack of boneformation owing to maturational arrest of osteoblasts. Cell. May301997;89(5):755-764.
    21. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, deCrombrugghe B. The novel zinc finger-containing transcription factor osterix isrequired for osteoblast differentiation and bone formation. Cell. Jan112002;108(1):17-29.
    22. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K,Takayanagi H. NFAT and Osterix cooperatively regulate bone formation. Naturemedicine. Aug2005;11(8):880-885.
    23. Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation.Journal of cellular biochemistry. May2013;114(5):975-984.
    24. Kaback LA, Soung do Y, Naik A, Smith N, Schwarz EM, O'Keefe RJ, Drissi H.Osterix/Sp7regulates mesenchymal stem cell mediated endochondral ossification.Journal of cellular physiology. Jan2008;214(1):173-182.
    25. Tai G, Polak JM, Bishop AE, Christodoulou I, Buttery LD. Differentiation ofosteoblasts from murine embryonic stem cells by overexpression of the transcriptionalfactor osterix. Tissue engineering. Sep-Oct2004;10(9-10):1456-1466.
    26. Khan SN, Bostrom MP, Lane JM. Bone growth factors. The Orthopedic clinics ofNorth America. Jul2000;31(3):375-388.
    27. Zuo C, Huang Y, Bajis R, Sahih M, Li YP, Dai K, Zhang X. Osteoblastogenesisregulation signals in bone remodeling. Osteoporosis international: a journalestablished as result of cooperation between the European Foundation forOsteoporosis and the National Osteoporosis Foundation of the USA. Jun2012;23(6):1653-1663.
    28. Verhaar HJ, Damen CA, Duursma SA, Scheven BA. Comparison of the action of17beta-estradiol and progestins with insulin-like growth factors-I/-II and transforminggrowth factor-beta1on the growth of normal adult human bone-forming cells.Maturitas. Apr1995;21(3):237-243.
    29. Ghayor C, Rey A, Caverzasio J. Prostaglandin-dependent activation of ERK mediatescell proliferation induced by transforming growth factor beta in mouse osteoblasticcells. Bone. Jan2005;36(1):93-100.
    30. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation andbone formation. International journal of biological sciences.2012;8(2):272-288.
    31. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, Lee JC. X-ray radiation at low dosesstimulates differentiation and mineralization of mouse calvarial osteoblasts. BMBreports. Oct2012;45(10):571-576.
    32. Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ,Osman N. Transforming growth factor-beta signalling: role and consequences ofSmad linker region phosphorylation. Cellular signalling. Oct2013;25(10):2017-2024.
    33. Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y, Yamada Y.Critical roles of the TGF-beta type I receptor ALK5in perichondrial formation andfunction, cartilage integrity, and osteoblast differentiation during growth platedevelopment. Developmental biology. Aug152009;332(2):325-338.
    34. Heldin CH, Moustakas A. Role of Smads in TGFbeta signaling. Cell and tissueresearch. Jan2012;347(1):21-36.
    35. Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L. Menin and TGF-beta superfamilymember signaling via the Smad pathway in pituitary, parathyroid and osteoblast.Hormone and metabolic research=Hormon-und Stoffwechselforschung=Hormoneset metabolisme. Jun2005;37(6):375-379.
    1. Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and thecoupling of formation to resorption. Bone. Aug1995;17(2Suppl):93S-98S.
    2. Birnbaum RS, Bowsher RR, Wiren KM. Changes in IGF-I and-II expression andsecretion during the proliferation and differentiation of normal rat osteoblasts. TheJournal of endocrinology. Feb1995;144(2):251-259.
    3. Klokov D, Leskov K, Araki S, Zou Y, Goetz EM, Luo X, Willson D, Boothman DA.Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascadethat interferes with TGFbeta1signaling to confer a pro-survival bystander effect.Oncogene. Jan242013;32(4):479-490.
    4. Niu T, Rosen CJ. The insulin-like growth factor-I gene and osteoporosis: a criticalappraisal. Gene. Nov212005;361:38-56.
    5. Singh AM, Reynolds D, Cliff T, Ohtsuka S, Mattheyses AL, Sun Y, Menendez L,Kulik M, Dalton S. Signaling network crosstalk in human pluripotent cells: aSmad2/3-regulated switch that controls the balance between self-renewal anddifferentiation. Cell stem cell. Mar22012;10(3):312-326.
    6. Chen YG, Li Z, Wang XF. Where PI3K/Akt meets Smads: the crosstalk determineshuman embryonic stem cell fate. Cell stem cell. Mar22012;10(3):231-232.
    7. Gevorgyan A, La Scala GC, Sukhu B, Leung IT, Ashrafpour H, Yeung I, Neligan PC,Pang CY, Forrest CR. An in vitro model of radiation-induced craniofacial bonegrowth inhibition. The Journal of craniofacial surgery. Sep2007;18(5):1044-1050.
    8. Gevorgyan A, Sukhu B, Alman BA, Bristow RG, Pang CY, Forrest CR. Radiationeffects and radioprotection in MC3T3-E1mouse calvarial osteoblastic cells. Plasticand reconstructive surgery. Oct2008;122(4):1025-1035.
    9. Xu W, Xu L, Chen M, Mao YT, Xie ZG, Wu SL, Dong QR. The effects of low doseX-irradiation on osteoblastic MC3T3-E1cells in vitro. BMC musculoskeletaldisorders.2012;13:94.
    10. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, Lee JC. X-ray radiation at low dosesstimulates differentiation and mineralization of mouse calvarial osteoblasts. BMBreports. Oct2012;45(10):571-576.
    11. Wu B, Wei Y, Liu FQ, Zhang Q, Wang CB, Bai H.[Biological effects of low doseX-irradiation on human bone marrow mesenchymal stem cells]. Zhongguo shi yanxue ye xue za zhi/Zhongguo bing li sheng li xue hui=Journal of experimentalhematology/Chinese Association of Pathophysiology. Oct2011;19(5):1214-1217.
    12. Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, Cai L, Li W. The low-dose ionizingradiation stimulates cell proliferation via activation of the MAPK/ERK pathway in ratcultured mesenchymal stem cells. Journal of radiation research.2011;52(3):380-386.
    13. Nakasaki M, Yoshioka K, Miyamoto Y, Sasaki T, Yoshikawa H, Itoh K. IGF-I secretedby osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone. Nov2008;43(5):869-879.
    14. Malpe R, Baylink DJ, Linkhart TA, Wergedal JE, Mohan S. Insulin-like growth factor(IGF)-I,-II, IGF binding proteins (IGFBP)-3,-4, and-5levels in the conditionedmedia of normal human bone cells are skeletal site-dependent. Journal of bone andmineral research: the official journal of the American Society for Bone and MineralResearch. Mar1997;12(3):423-430.
    15. Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone. Feb2012;50(2):452-456.
    16. Minuto F, Palermo C, Arvigo M, Barreca AM. The IGF system and bone. Journal ofendocrinological investigation.2005;28(8Suppl):8-10.
    17. Yamaguchi M, Ogata N, Shinoda Y, Akune T, Kamekura S, Terauchi Y, Kadowaki T,Hoshi K, Chung UI, Nakamura K, Kawaguchi H. Insulin receptor substrate-1isrequired for bone anabolic function of parathyroid hormone in mice. Endocrinology.Jun2005;146(6):2620-2628.
    18. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowaki T,Nakamura K, Kawaguchi H. Insulin receptor substrate-1in osteoblast is indispensablefor maintaining bone turnover. The Journal of clinical investigation. Apr2000;105(7):935-943.
    19. Panganiban RA, Day RM. Inhibition of IGF-1R prevents ionizing radiation-inducedprimary endothelial cell senescence. PloS one.2013;8(10):e78589.
    20. Isebaert SF, Swinnen JV, McBride WH, Haustermans KM. Insulin-like growthfactor-type1receptor inhibitor NVP-AEW541enhances radiosensitivity of PTENwild-type but not PTEN-deficient human prostate cancer cells. International journal ofradiation oncology, biology, physics. Sep12011;81(1):239-247.
    21. Turney BW, Kerr M, Chitnis MM, Lodhia K, Wang Y, Riedemann J, Rochester M,Protheroe AS, Brewster SF, Macaulay VM. Depletion of the type1IGF receptordelays repair of radiation-induced DNA double strand breaks. Radiotherapy andoncology: journal of the European Society for Therapeutic Radiology and Oncology.Jun2012;103(3):402-409.
    22. Chitnis MM, Lodhia KA, Aleksic T, Gao S, Protheroe AS, Macaulay VM. IGF-1Rinhibition enhances radiosensitivity and delays double-strand break repair by bothnon-homologous end-joining and homologous recombination. Oncogene. Nov42013.
    23. Goetz EM, Shankar B, Zou Y, Morales JC, Luo X, Araki S, Bachoo R, Mayo LD,Boothman DA. ATM-dependent IGF-1induction regulates secretory clusterinexpression after DNA damage and in genetic instability. Oncogene. Sep12011;30(35):3745-3754.
    24. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specificgenetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb191998;391(6669):806-811.
    25. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature.May242001;411(6836):494-498.
    26. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNAstructure in the RNA interference pathway. Cell. Nov22001;107(3):309-321.
    27. Bu YH, He YL, Zhou HD, Liu W, Peng D, Tang AG, Tang LL, Xie H, Huang QX, LuoXH, Liao EY. Insulin receptor substrate1regulates the cellular differentiation and thematrix metallopeptidase expression of preosteoblastic cells. The Journal ofendocrinology. Sep2010;206(3):271-277.
    28. Kurpinski K, Jang DJ, Bhattacharya S, Rydberg B, Chu J, So J, Wyrobek A, Li S,Wang D. Differential effects of x-rays and high-energy56Fe ions on humanmesenchymal stem cells. International journal of radiation oncology, biology, physics.Mar12009;73(3):869-877.
    29. Klein GL. Insulin and bone: Recent developments. World journal of diabetes. Feb152014;5(1):14-16.
    30. Ochiai H, Okada S, Saito A, Hoshi K, Yamashita H, Takato T, Azuma T. Inhibition ofinsulin-like growth factor-1(IGF-1) expression by prolonged transforming growth
    factor-beta1(TGF-beta1) administration suppresses osteoblast differentiation. The
    Journal of biological chemistry. Jun292012;287(27):22654-22661.
    1. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerativemedicine. Journal of cellular physiology. Nov2007;213(2):341-347.
    2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, MoormanMA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult humanmesenchymal stem cells. Science (New York, N.Y.). Apr21999;284(5411):143-147.
    3. Zaidi M, Sun L, Blair HC. Special stem cells for bone. Cell stem cell. Mar22012;10(3):233-234.
    4. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ,Gaur T, Lengner CJ, Young DW. Networks and hubs for the transcriptional control ofosteoblastogenesis. Reviews in endocrine&metabolic disorders. Jun2006;7(1-2):1-16.
    5. McCarthy TL, Centrella M. Novel links among Wnt and TGF-beta signaling andRunx2. Mol Endocrinol. Mar2010;24(3):587-597.
    6. Chau JF, Leong WF, Li B. Signaling pathways governing osteoblast proliferation,differentiation and function. Histology and histopathology. Dec2009;24(12):1593-1606.
    7. Singh AM, Reynolds D, Cliff T, Ohtsuka S, Mattheyses AL, Sun Y, Menendez L,Kulik M, Dalton S. Signaling network crosstalk in human pluripotent cells: aSmad2/3-regulated switch that controls the balance between self-renewal anddifferentiation. Cell stem cell. Mar22012;10(3):312-326.
    8. Chen YG, Li Z, Wang XF. Where PI3K/Akt meets Smads: the crosstalk determineshuman embryonic stem cell fate. Cell stem cell. Mar22012;10(3):231-232.
    9. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annualreview of cell and developmental biology.2004;20:781-810.
    10. Widelitz R. Wnt signaling through canonical and non-canonical pathways: recentprogress. Growth Factors. Jun2005;23(2):111-116.
    11. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F,Saint-Jeannet JP, He X. LDL-receptor-related proteins in Wnt signal transduction.Nature. Sep282000;407(6803):530-535.
    12. Bejsovec A. Wnt pathway activation: new relations and locations. Cell. Jan142005;120(1):11-14.
    13. Robling AG. The expanding role of Wnt signaling in bone metabolism. Bone. Jul2013;55(1):256-257.
    14. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science(New York, N.Y.). May312002;296(5573):1646-1647.
    15. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways inTGF-beta family signalling. Nature. Oct92003;425(6958):577-584.
    16. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to thenucleus. Cell. Jun132003;113(6):685-700.
    17. Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signaltransduction. Current opinion in cell biology. Apr2007;19(2):176-184.
    18. Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2controls alkalinephosphatase expression and osteoblast mineralization by a Wnt autocrine loop.Journal of bone and mineral research: the official journal of the American Societyfor Bone and Mineral Research. Oct2003;18(10):1842-1853.
    19. Vaes BL, Dechering KJ, van Someren EP, Hendriks JM, van de Ven CJ, Feijen A,Mummery CL, Reinders MJ, Olijve W, van Zoelen EJ, Steegenga WT. Microarrayanalysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts.Bone. May2005;36(5):803-811.
    20. Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M.Wnt/beta-catenin signaling activates bone morphogenetic protein2expression inosteoblasts. Bone. Jan2013;52(1):145-156.
    21. Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, Civitelli R.Beta-catenin and BMP-2synergize to promote osteoblast differentiation and newbone formation. Journal of cellular biochemistry. Feb12005;94(2):403-418.
    22. Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS,Lian JB, Komm BS. The Wnt antagonist secreted frizzled-related protein-1is anegative regulator of trabecular bone formation in adult mice. Mol Endocrinol. May2004;18(5):1222-1237.
    23. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling.The Journal of clinical investigation. May2006;116(5):1202-1209.
    24. Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. Journal ofbone and mineral metabolism.2009;27(3):265-271.
    25. Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW.1,25-Dihydroxyvitamin D3inducesexpression of the Wnt signaling co-regulator LRP5via regulatory elements locatedsignificantly downstream of the gene's transcriptional start site. The Journal of steroidbiochemistry and molecular biology. Mar2007;103(3-5):440-445.
    26. Glass DA,2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM,Long F, McMahon AP, Lang RA, Karsenty G. Canonical Wnt signaling indifferentiated osteoblasts controls osteoclast differentiation. Developmental cell. May2005;8(5):751-764.
    27. Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, Wang N, Wen S, Nan G, Deng F,Liao Z, Wu D, Zhang B, Zhang J, Haydon RC, Luu HH, Shi LL, He TC. Crosstalkbetween Wnt/beta-Catenin and Estrogen Receptor Signaling Synergistically PromotesOsteogenic Differentiation of Mesenchymal Progenitor Cells. PloS one.2013;8(12):e82436.
    28. Regard JB, Cherman N, Palmer D, Kuznetsov SA, Celi FS, Guettier JM, Chen M,Bhattacharyya N, Wess J, Coughlin SR, Weinstein LS, Collins MT, Robey PG, YangY. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins andcontributes to fibrous dysplasia. Proceedings of the National Academy of Sciences ofthe United States of America. Dec132011;108(50):20101-20106.
    29. Eijken M, Meijer IM, Westbroek I, Koedam M, Chiba H, Uitterlinden AG, Pols HA,van Leeuwen JP. Wnt signaling acts and is regulated in a human osteoblastdifferentiation dependent manner. Journal of cellular biochemistry. May152008;104(2):568-579.
    30. Centrella M, McCarthy TL, Canalis E. Skeletal tissue and transforming growth factorbeta. FASEB journal: official publication of the Federation of American Societies forExperimental Biology. Dec1988;2(15):3066-3073.
    31. Dunker N, Krieglstein K. Tgfbeta2-/-Tgfbeta3-/-double knockout mice displaysevere midline fusion defects and early embryonic lethality. Anatomy and embryology.Dec2002;206(1-2):73-83.
    32. Lieb E, Vogel T, Milz S, Dauner M, Schulz MB. Effects of transforming growthfactor beta1on bonelike tissue formation in three-dimensional cell culture. II:Osteoblastic differentiation. Tissue engineering. Sep-Oct2004;10(9-10):1414-1425.
    33. Ibbotson KJ, Orcutt CM, Anglin AM, D'Souza SM. Effects of transforming growthfactors beta1and beta2on a mouse clonal, osteoblastlike cell line MC3T3-E1.Journal of bone and mineral research: the official journal of the American Societyfor Bone and Mineral Research. Feb1989;4(1):37-45.
    34. Verhaar HJ, Damen CA, Duursma SA, Scheven BA. Comparison of the action of17beta-estradiol and progestins with insulin-like growth factors-I/-II and transforminggrowth factor-beta1on the growth of normal adult human bone-forming cells.Maturitas. Apr1995;21(3):237-243.
    35. Wergedal JE, Mohan S, Lundy M, Baylink DJ. Skeletal growth factor and othergrowth factors known to be present in bone matrix stimulate proliferation and proteinsynthesis in human bone cells. Journal of bone and mineral research: the officialjournal of the American Society for Bone and Mineral Research. Feb1990;5(2):179-186.
    36. Cheifetz S, Li IW, McCulloch CA, Sampath K, Sodek J. Influence of osteogenicprotein-1(OP-1;BMP-7) and transforming growth factor-beta1on bone formation invitro. Connective tissue research.1996;35(1-4):71-78.
    37. Chiou WF, Lee CH, Liao JF, Chen CC.8-Prenylkaempferol accelerates osteoblastmaturation through bone morphogenetic protein-2/p38pathway to activate Runx2transcription. Life sciences. Feb142011;88(7-8):335-342.
    38. Dong YF, Soung do Y, Chang Y, Enomoto-Iwamoto M, Paris M, O'Keefe RJ,Schwarz EM, Drissi H. Transforming growth factor-beta and Wnt signals regulatechondrocyte differentiation through Twist1in a stage-specific manner. MolEndocrinol. Nov2007;21(11):2805-2820.
    39. Liu S, Song W, Boulanger JH, Tang W, Sabbagh Y, Kelley B, Gotschall R, Ryan S,Phillips L, Malley K, Cao X, Xia TH, Zhen G, Ling H, Dechow PC, Bellido TM,Ledbetter SR, Schiavi SC. Role of TGF-beta in a Mouse Model of High TurnoverRenal Osteodystrophy. Journal of bone and mineral research: the official journal ofthe American Society for Bone and Mineral Research. Oct262013.
    40. Warner DR, Mukhopadhyay P, Brock GN, Pihur V, Pisano MM, Greene RM.TGFbeta-1and Wnt-3a interact to induce unique gene expression profiles in murineembryonic palate mesenchymal cells. Reprod Toxicol. Feb2011;31(2):128-133.
    41. Zhou S. TGF-beta regulates beta-catenin signaling and osteoblast differentiation inhuman mesenchymal stem cells. Journal of cellular biochemistry. Jun2011;112(6):1651-1660.
    42. Loots GG, Keller H, Leupin O, Murugesh D, Collette NM, Genetos DC. TGF-betaregulates sclerostin expression via the ECR5enhancer. Bone. Mar2012;50(3):663-669.
    43. Guerrero F, Herencia C, Almaden Y, Martinez-Moreno JM, Montes de Oca A,Rodriguez-Ortiz ME, Diaz-Tocados JM, Canalejo A, Florio M, Lopez I, Richards WG,Rodriguez M, Aguilera-Tejero E, Munoz-Castaneda JR. TGF-beta PreventsPhosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/beta-CateninPathways. PloS one.2014;9(2):e89179.
    44. Zhou S, Mizuno S, Glowacki J. Wnt pathway regulation by demineralized bone isapproximated by both BMP-2and TGF-beta1signaling. Journal of orthopaedicresearch: official publication of the Orthopaedic Research Society. Apr2013;31(4):554-560.
    45. Stewart S, Gomez AW, Armstrong BE, Henner A, Stankunas K. Sequential andOpposing Activities of Wnt and BMP Coordinate Zebrafish Bone Regeneration. Cellreports. Feb132014;6(3):482-498.
    46. Natsume H, Tokuda H, Matsushima-Nishiwaki R, Kato K, Yamakawa K, Otsuka T,Kozawa O. Wnt3a upregulates transforming growth factor-beta-stimulated VEGFsynthesis in osteoblasts. Cell biochemistry and function. Jul2011;29(5):371-377.
    47. Guo W, Flanagan J, Jasuja R, Kirkland J, Jiang L, Bhasin S. The effects of myostatinon adipogenic differentiation of human bone marrow-derived mesenchymal stem cellsare mediated through cross-communication between Smad3and Wnt/beta-cateninsignaling pathways. The Journal of biological chemistry. Apr42008;283(14):9136-9145.
    48. Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF. Axin and GSK3-controlSmad3protein stability and modulate TGF-signaling. Genes&development. Jan12008;22(1):106-120.
    49. Zhang M, Wang M, Tan X, Li TF, Zhang YE, Chen D. Smad3prevents beta-catenindegradation and facilitates beta-catenin nuclear translocation in chondrocytes. TheJournal of biological chemistry. Mar192010;285(12):8703-8710.
    50. Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S. TGF-beta modulatesbeta-Catenin stability and signaling in mesenchymal proliferations. Experimental cellresearch. Aug12007;313(13):2887-2895.
    51. Inoue Y, Canaff L, Hendy GN, Hisa I, Sugimoto T, Chihara K, Kaji H. Role ofSmad3, acting independently of transforming growth factor-beta, in the earlyinduction of Wnt-beta-catenin signaling by parathyroid hormone in mouseosteoblastic cells. Journal of cellular biochemistry. Sep12009;108(1):285-294.
    52. Waddell DS, Liberati NT, Guo X, Frederick JP, Wang XF. Casein kinase Iepsilonplays a functional role in the transforming growth factor-beta signaling pathway. TheJournal of biological chemistry. Jul92004;279(28):29236-29246.
    53. Salazar VS, Zarkadis N, Huang L, Watkins M, Kading J, Bonar S, Norris J,Mbalaviele G, Civitelli R. Postnatal ablation of osteoblast Smad4enhancesproliferative responses to canonical Wnt signaling through interactions withbeta-catenin. Journal of cell science. Dec152013;126(Pt24):5598-5609.
    54. Letamendia A, Labbe E, Attisano L. Transcriptional regulation by Smads: crosstalkbetween the TGF-beta and Wnt pathways. The Journal of bone and joint surgery.American volume.2001;83-A Suppl1(Pt1):S31-39.
    55. Liu W, Rui H, Wang J, Lin S, He Y, Chen M, Li Q, Ye Z, Zhang S, Chan SC, ChenYG, Han J, Lin SC. Axin is a scaffold protein in TGF-beta signaling that promotesdegradation of Smad7by Arkadia. The EMBO journal. Apr192006;25(8):1646-1658.
    56. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Naturereviews. Molecular cell biology. Jan2012;13(1):27-38.
    57. Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q,Krishnaveni MS, Liebler JM, Minoo P, Crandall ED, Borok Z. Interactions betweenbeta-catenin and transforming growth factor-beta signaling pathways mediateepithelial-mesenchymal transition and are dependent on the transcriptionalco-activator cAMP-response element-binding protein (CREB)-binding protein (CBP).The Journal of biological chemistry. Mar22012;287(10):7026-7038.
    58. Marcellini S, Henriquez JP, Bertin A. Control of osteogenesis by the canonical Wntand BMP pathways in vivo: cooperation and antagonism between the canonical Wntand BMP pathways as cells differentiate from osteochondroprogenitors to osteoblastsand osteocytes. BioEssays: news and reviews in molecular, cellular anddevelopmental biology. Nov2012;34(11):953-962.
    59. Shimmi O, Newfeld SJ. New insights into extracellular and post-translationalregulation of TGF-beta family signalling pathways. Journal of biochemistry. Jul2013;154(1):11-19.
    60. Dao DY, Yang X, Chen D, Zuscik M, O'Keefe RJ. Axin1and Axin2are regulated byTGF-and mediate cross-talk between TGF-and Wnt signaling pathways. Annals ofthe New York Academy of Sciences. Nov2007;1116:82-99.
    61. Dong YF, Soung do Y, Schwarz EM, O'Keefe RJ, Drissi H. Wnt induction ofchondrocyte hypertrophy through the Runx2transcription factor. Journal of cellularphysiology. Jul2006;208(1):77-86.
    62. Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cellular signalling. May2010;22(5):717-727.
    63. Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L. Nuclear Dvl, c-Jun, beta-catenin, andTCF form a complex leading to stabilization of beta-catenin-TCF interaction. TheJournal of cell biology. Mar242008;180(6):1087-1100.
    64. Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ,Tuan RS. Transforming growth factor-beta-mediated chondrogenesis of humanmesenchymal progenitor cells involves N-cadherin and mitogen-activated proteinkinase and Wnt signaling cross-talk. The Journal of biological chemistry. Oct172003;278(42):41227-41236.
    65. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL,Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M. Phosphorylation by p38MAPK as an alternative pathway for GSK3beta inactivation. Science (New York,N.Y.). May22008;320(5876):667-670.
    66. Bhukhai K, Suksen K, Bhummaphan N, Janjorn K, Thongon N, Tantikanlayaporn D,Piyachaturawat P, Suksamrarn A, Chairoungdua A. A phytoestrogen diarylheptanoidmediates estrogen receptor/Akt/glycogen synthase kinase3beta protein-dependentactivation of the Wnt/beta-catenin signaling pathway. The Journal of biologicalchemistry. Oct192012;287(43):36168-36178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700