用户名: 密码: 验证码:
星形胶质细胞TRPM2通道在LPS腹腔注射致小鼠脑内炎症中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒性脑病(sepsis-associated encephalopathy,SAE)是感染后全身炎症反应所致的弥漫性大脑功能障碍和意识改变,是多脏器功能不全综合征(multiple organ dysfunction syndrome,MODS)的重要组成部分及患者预后不良的独立危险因素。SAE的病因和病理机制非常复杂,以白细胞浸润、神经元细胞变性坏死、星型胶质细胞和小胶质细胞激活为标志的炎症反应起到了重要的作用。其中星形胶质细胞在中枢神经系统损伤后呈现保护或毒性作用的“双相”性及活化的时空性特点和SAE的临床表现有很好的契合性。星形细胞激活后出现反应性胶质化(reactive gliosis)、增殖迁移等状态,胞内游离ca2+浓度的升高起了重要作用。星形细胞过度活化可诱发凋亡,其中定位于线粒体参与非Caspase依赖凋亡途径的BNIP3/AIF/EndoG通路介导神经凋亡亦被证实和钙超载有关。瞬时感受器电位M2型(Transient Receptor Potential2Channels,TRPM2)通道是位于细胞膜上的一种多功能钙离子通透性的非选择性阳离子通道,通过调节胞内钙离子浓度可以调节氧化应激或再灌注等病理损伤中的细胞死亡。TRPM2通道很可能参与调节了LPS诱导的星形胶质细胞的活化和凋亡。本研究通过建立LPS腹腔注射致小鼠脑内炎症的模型及引入[RPM2基因敲除小鼠,研究脓毒症在小鼠脑内的炎症改变及星形胶质细胞增殖和胶质化的时间规律,TRPM2在LPS致炎小鼠脑内星形胶质细胞增殖和胶质化的调节作用及参与BNIP3/AIF/EndoG介导LPS致炎小鼠海马区神经细胞的凋亡;以及通过星形胶质细胞培养及TRPM2-siRNA转染,进一步研究LPS是否可以诱导星形胶质细胞的适应性表达,以及TRPM2-siRNA转染是否可以有效抑制LPS诱导的体外星形胶质细胞的活化和致炎性细胞因子TNF-α、IL-1β、IL-6的分泌。从而明确星形胶质细胞TRPM2通道与脓毒性脑病的关系和分子机制,期待为防治脓毒症及脓毒性脑病提供理论依据。
     目的:
     研究LPS致炎后野生型和基因敲除(TRPM2)小鼠的一般行为学、脑内炎症改变、星形胶质细胞活化、促炎因子分泌及凋亡的差异;同时研究LPS诱导后星形胶质细胞TRPM2的表达特点及基因沉默后的差异,探讨LPS致炎对小鼠星形胶质细胞的活化影响、诱导TRPM2的适应性表达及TRPM2通道在星形胶质细胞活化中的作用及对神经细胞凋亡的影响。
     方法:
     1.动物模型:成年雄性C57BL/6小鼠野生型小鼠分别腹腔注射LPS5mg/kg、10mg/kg、25mg/kg、50mg/kg、75mg/kg、100mg/kg;对照组注入等量生理盐水。监测小鼠体温、神经行为学改变、惊厥发作、摄食改变及死亡率;24h后取脑HE染色观察神经元及胶质细胞病理变化特点和观察脑膜、脑室及脑实质炎症反应;免疫荧光检测小鼠海马区GFAP阳性细胞数量;TUNEL法检测小鼠海马区神经细胞凋亡。
     2.在体实验:成年雄性C57BL/6小鼠野生型及同种系TRPM2小鼠分别腹腔注射LPS50mg/kg,对照组注入等量生理盐水,监测小鼠一般神经行为学改变、死亡率;并于注射后12h,24h,48h时间点取小鼠脑组织,通过免疫组化、Western blot方法检测LPS致炎后12h,24h,48h时间点野生型及TRPM2小鼠大脑海马区GFAP和TRPM2的表达变化和差异;荧光定量RT-PCR技术检测不同实验组小鼠脑组织TNF-a, IL-1β,IL-6mRNA的表达变化;Western blot方法检测海马BNIP3/AIF/EndoG的蛋白质表达变化。
     3.离体实验:培养纯化鉴定小鼠星形胶质细胞;MTT法检测不同浓度(LPS: Oμg/ml,1.0μg/ml,3.0μg/ml,5.0μg/ml,7.0μg/ml,10.0μg/ml,12.0μg/ml,15.0μg/ml)及不同时间(2h,6h,12h,24h,2d及3d)LPS刺激后星形胶质细胞存活率;免疫荧光法检测星形胶质细胞GFAP的表达,荧光定量RT-PCR法检测TRPM2-mRNA的表达,Western blot方法检测TRPM2蛋白的表达,ELISA法检测星形细胞培养液细胞因子(TNF-α、IL-1β、IL-6)浓度变化。以75ng TRPM2-siRNA和3μl HiPerFect Transfection Reagent转染星形胶质细胞进行基因沉默,以10.0μg/ml LPS分别诱导细胞0h、24h、48h后,荧光定量RT-PCR技术检测小鼠星形胶质细胞上TRPM2mRNA表达水平的变化,Western blot方法检测TRPM2蛋白表达,ELISA法检测星形胶质细胞培养液细胞因子(TNF-a, IL-1β, IL-6)浓度。
     结果:
     1.小鼠LPS腹腔注射后有相应体温改变,出现相应神经行为学改变及惊厥发作、拒食现象以及死亡,均较对照组明显,其中LPS (50mg/kg)腹腔注射组死亡率达到33.3%;LPS致炎后小鼠脑内出现典型炎症性病理改变,TUNEL结果还发现小鼠海马区神经元出现凋亡现象较对照组显著(P<0.05);随着LPS刺激剂量增加小鼠海马区GFAP阳性细胞数显著增加,细胞胞浆明显增加、突起增多(P<0.05)。
     2.野生型小鼠海马区GFAP阳性细胞数与TRPM2表达在脓毒症脑损伤后显著增加,LPS致炎野生型(L组)GFAP与TRPM2表达在12h即有增多,24h达到高峰,48h略有减少,均较生理盐水对照组(S组)显著增多(P<0.05)。LPS致炎后TRPM2基因敲除小鼠较野生型病死率增加,一般神经行为学指标改善。
     TRPM2基因敲除小鼠GFAP表达在脓毒症脑损伤后显著降低,TRPM2基因敲除LPS致炎组(KO/L组)小鼠海马区GFAP阳性细胞较野生型LPS致炎组(L组)显著减少(P<0.05)。小鼠海马区可见GFAP细胞与TRPM2细胞有共聚现象。
     LPS致炎后24h TRPM2基因敲除较野生型小鼠脑组织TNF-α,IL-1β, IL-6mRNA的表达下降。
     脓毒症脑损伤后4个实验组小鼠海马区BNIP3(F(3.16)=176.53, P<0.01、AIF (F(3.16)=98.61, P<0.01)\EndoG (F(3,16)=60.55, p<0.01)表达均有显著性差异。BNIP3蛋白质表达L组较S组显著增加(P<0.05),KO/L组较KO/S组(P<0.05)和L组(P<0.05)均显著降低,S组与KO/S组比较无统计学差异(P>0.05)。AIF蛋白质表达L组较S组显著增加(P<0.05),KO/L组较KO/S组(P<0.05)和L组(P<0.05)均显著降低。Endo G蛋白质表达L组较S组显著增加(P<0.05),KO/L组较L组显著降低(P<0.05),S组与KO/S组比较无统计学差异(P>0.05)。
     3.不同浓度LPS刺激24h后星形胶质细胞存活率差异具有统计学意义(F(7,72)=9.39,P<0.01);持续刺激24h后10.0μg/ml浓度的LPS是星形胶质细胞增殖活性的临界点。不同刺激时间点的星形胶质细胞存活率差异具有统计学意义(F(1,18)=6.41,P<0.05),早期随着LPS刺激时间的延长,星形胶质细胞增殖活性逐渐增加,且刺激24h时达高峰,在LPS刺激48h以后星形胶质细胞增殖活性明显降低,至72h达到最低。故10.0μg/ml浓度LPS刺激48h是星形胶质细胞从增殖转向凋亡的临界点。
     LPS不同刺激时间点星形胶质细胞培养液中细胞因子TNF-a (F(1.18)=66.21, P<0.01)、IL-1β(F(1.18)=430.76, P<0.01)、IL-6(F(1.18)=12725.06, P<0.01的浓度变化具有统计学意义。LPS刺激12h后培养液中TNF-a浓度显著上升,6h后IL-1β浓度显著上升,2h后IL-6浓度显著上升。LPS能诱导星形胶质细胞TRPM2mRNA和TRPM2蛋白表达显著增加(P<0.05)。
     TRPM2-siRNA转染能显著降低星形胶质细胞TRPM2mRNA和TRPM2蛋白表达(P<0.05)。TRPM2-siRNA转染后细胞GFAP蛋白表达显著低于非转染组细胞GFAP蛋白表达(P<0.05)。TRPM2-siRNA转染能抑制LPS诱导星形胶质细胞分泌TNF-a, IL-1β和IL-6。LPS+TRPM2-siRNA组TNF-a, IL-1β和IL-6浓度较LPS组均显著降低(P<0.05)。
     结论:
     1.小鼠LPS (50mg/kg)腹腔注射建模可诱发明显的脑内炎症和神经行为学改变,并最接近临床脓毒症标准。
     2.LPS可诱导星形胶质细胞增殖、胶质化及凋亡,并在时间上有一定的规律性;LPS可诱导星形胶质细胞TRPM2-mRNA和TRPM2蛋白的表达,这种表达在星形胶质细胞属于适应性表达;TRPM2通道参与LPS致炎小鼠脑内星形胶质细胞增殖和胶质化调节、星形胶质细胞致炎性细胞因子TNF-α、IL-1β、IL-6分泌调节及可能参与了BNIP3/AIF/EndoG介导的LPS致炎小鼠海马区神经细胞凋亡。
     3.PRPM2-siRNA转染基因沉默后可以有效抑制LPS诱导的体外星形胶质细胞TRPM2-mRNA和TRPM2蛋白的表达;抑制LPS诱导的体外星形胶质细胞的活化和致炎性细胞因子TNF-α、IL-1β、IL-6的分泌。
Sepsis associated encephalopathy (SAE) is a diffuse cerebral dysfunction resulted by systemic inflammatory response.SAE is the most common form of encephalopathy in critical ill patients with poor prognosis. The pathogenesis of SAE is very complex and the local inflammation play an important role with leukocyte infiltration, degenerated and necrotic neurons, activation of astrocyte and microglia. Clinical and experimental studies have shown significant associations between biphasic activation of astrocyte and clinical feature. Reactive gliosis, proliferation and migration are a characteristic response of astrocytes to inflammation and trauma of the central nervous system resulted by increase of intracellular calcium concentration [Ca2+];. Caspase-independent cell death in CNS cells and activation of BNIP3/AIF/Endo G pathway have been proved associations with calcium overload. Biphasic effect of lipopolysaccharide can lead to the astrocytes activation or apoptosis, and activation of astrocytes on neuronal protection and toxicity. Calcium homeostasis and abnormal calcium signaling may be a key factor in the activation of astrocytes. Transient receptor potential melastatin2(TRPM2) is a Ca2+-permeable ion channel of the melastatin-related TRP channels. TRPM2may participate into the regulation of activation and apoptosis of astrocytes. Thus, in order to investigate the inflamation in CNS and time law of astrocyte activation and apoptosis, we developed a model of lipopolysaccharide (LPS) induced sepsis in mouse to observe hippocampus dentate gyrus neuron apoptosis and activation of astrocytes in the LPS induced brain damage. Further, the mechanism of TRPM2pathway in LPS induced brain damage will be demonstrated. Both in vitro and in vivo data point to the role of astrocytes as both major source and target of LPS induced brain damage signaling. In this study, understanding the astroglial inflammatory response occurring in brain tissue may provide new strategies for targeting astrocyte-mediated LPS induced brain damage. Inhibition of cell TRPM2channel activation may improve the survival rate of astrocytes. Taken together, the present research will provide new targets for the future treatment and prevention of SAE.
     Objective:
     To study the changes characteristics of neurological behavior, cerebral inflammatory, activation of astrocytes and production of proinflammatory cytokines between C57BL/6wild-type and TRPM2-/-mice, and to investigate the characteristics of astrocyte TRPM2after LPS stimulated, and the expression of TRPM2mRNA and protein, cytokine (TNF-α, IL-1β, IL-6), BNIP3, AIF, Endo G after infection/inflammation, and to study the effect of TRPM2-siRNA to inhibit astrocyte proliferation and astrogliosis.
     Methods:
     1. Animal model:All C57BL/6male adult mice were intraperitoneal injected with5mg/kg、10mg/kg、25mg/kg、50mg/kg、75mg/kg、100mg/kg LPS and control group were injected with equal amount saline solution instead. Investigate the change of body temperature, neurological behavior, convulsive seizures, feeding behavior and mortality before and after LPS intraperitoneal injection. After24h, the mice brains were immediately collected and were studied by pathological examination. Histological characteristics of the cerebral inflammation of the mice were studied by hematoxylin-eosin (HE) staining and immunohistochemistry was used for evaluation of GFAP expression and nerve cells apoptosis were detected by TUNEL method.
     2. In vivo experiments:C57BL/6wild-type and TRPM2mice were intraperitoneal injected with50mg/kg LPS. After12h,24h,48h, the mice brains were immediately collected and were studied by immunohistochemistry, Western blot method to study the difference in levels of GFAP,TRPM2and BNIP3/AIF/EndoG proteins expression in any brain regions were found at12h,24h,48h between the two groups.
     3. In vitro experiment:MTT method were used for evaluation of survival rate of astrocytes after incubated for different times(2h,6h,12h,24h,2d and3d) with different concentrations (0μg/ml,1.0μg/ml,3.0μg/ml,5.0μg/ml,7.0μg/ml,10.0μg/ml,12.0μg/ml,15.0μg/ml) of LPS, and immunofluorescence methods were used for evaluation of GFAP expression after incubated with LPS, and the concentrations of cytokines(TNF-α, IL-1β, IL-6) in the samples of culture medium were analyzed by Enzyme-linked immunosorbent assays (ELISA). Further, real-time quantitative RT-PCR was used to analyze TRPM2-mRNA, and Western blot method was used to analyze TRPM2proteins of astrocytes after incubated with LPS.
     4. TRPM2-siRNA transfection:After PTGS (post-transcriptionalgene silencing) with TRPM2-siRNA and exposed to LPS, immunofluorescence methods were used for evaluation of GFAP expression, and the concentrations of cytokines (TNF-α, IL-1β, IL-6) in the samples of culture medium were analyzed by Enzyme-linked immunosorbent assays (ELISA).
     Results:
     1. Mice with LPS intraperitoneal injection were showed body temperature increase, abnormal neurological and feeding behavior, convulsive seizines, and33.3%mortality (50mg/kg LPS). Inflammation of the brain was induced after LPS intraperitoneal injection, but all cases of the control group had no histologic evidence of sepsis. The nerve cells apoptosis were detected significantly increase (P<0.05) compared with the control group after LPS injection by TUNEL methods.
     2. Compared with the control group, the numbers of GFAP+cells were significantly increased after exposed for12h with LPS (10μg/ml)(P<0.05), and close to its peak at24h, and the numbers of GFAP+cells were slightly decreased after exposed for48h with LPS (P<0.05).
     Compared with the control group, the expression of TRPM2mRNA and TRPM2protein in astrocytes were significantly increased after exposed for12h,24h and72h with LPS (10μg/ml)(P<0.05). Compared with the wild-type mice, TRPM2mice were detected significantly decreased in CNS inflammation and the numbers of GFAP+cells.
     Compared with the control group, the expression of BNIP3(F(3,16)=176.53, P<0.01), AIF (F(3,16)=98.61, P<0.01), EndoG (F(3,16)=60.55, P<0.01) proteins in hippocampus regions were significantly increased of LPS-induced group (L group). However, the expression of BNIP3, AIF and Endo G of KO/L group were significantly decreased compared with KO/S group and L group (P<0.05).
     3. Compared with the control group, the survival rate of astrocytes after incubated for different times(2h,6h,12h,24h,2d and3d)(F(7)72)=9.39, P<0.01)with different concentrations (Oμg/ml,1.0μg/ml,3.0μg/ml,5.0μg/ml,7.0μg/ml,10.0μg/ml,12.0μg/ml,15.0μg/ml)(F(1,18)=6.41, P<0.05) of LPS were significantly difference. As the concentration of LPS increased, the numbers of GFAP+cells were significantly increased after exposed for12h with LPS (10μg/ml)(P<0.05), and close to its peak at24h, and the numbers of GFAP+cells were slightly decreased after exposed for48h with LPS, closed to the trough for72h (P<0.05).
     Compared with the control group, the concentrations of cytokines (TNF-α, IL-1β, IL-6) in the samples of culture medium exposed for LPS were significantly difference(TNF-a:F(1.18)=66.21, P<0.01),(IL-Iβ:F(1.18)=430.76, P<0.01),(IL-6: F(1,18)=12725.06, P<0.01). Compared with the control group, the expression of TRPM2mRNA and TRPM2protein in astrocytes were significantly increased after exposed for LPS (P<0.05).
     After PTGS with TRPM2-siRNA, the expression of TRPM2mRNA and TRPM2protein in astrocytes were significantly decreased after exposed for LPS (P<0.05), the expression of GFAP in astrocytes decreased (P<0.05),and he concentrations of cytokines (TNF-a, IL-1β, IL-6) in the samples of culture medium exposed for LPS were significantly decreased (P<0.05).
     Conclusion:
     1. Mice with LPS intraperitoneal injection (50mg/kg) might sepsis mouse model with CNS inflamation.
     2. LPS could increase astrocyte activation, the expression of TRPM2and the concentrations of cytokines (TNF-a, IL-1p, IL-6). TRPM2protein expression in astrocyte is adaptive expression. TRPM2might play the important role on BNIP3/AIF/Endo G signalling pathway in LPS-induced nerve cells apoptosis of astrocvtes.
     3. TRPM2-siRNA transfection could inhibited the effect LPS on astrocytes. These results suggested that TRPM2channel might play important roles in the process of astrocyte activation.
引文
[1]Alberti C, Brun-Buisson C, Burchardi H, Martin C, Goodman S, Artigas A, Sicignano A, Palazzo M, et al. (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28: 108-121.
    [2]Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303-1310.
    [3]Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546-1554.
    [4]Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States:a trend analysis from 1993 to 2003. Crit Care Med 35:1244-1250.
    [5]Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC (2003) The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 167:695-701.
    [6]Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250-1256.
    [7]Ulloa L, Tracey KJ (2005) The "cytokine profile":a code for sepsis. Trends Mol Med 11:56-63.
    [8]Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275: 470-473.
    [9]Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A (2009) The development of stroke therapeutics:promising mechanisms and translational challenges. Neuropharmacology 56:329-341.
    [10]Ebersoldt M, Sharshar T, Annane D (2007) Sepsis-associated delirium. Intensive Care Med 33:941-950.
    [11]Napper GA, Kalloniatis M (1999) Neurochemical changes following postmortem ischemia in the rat retina. Vis Neurosci 16:1169-1180.
    [12]Sibbald WJ, Vincent JL (1995) Round table conference on clinical trials for the treatment of sepsis. Crit Care Med 23:394-399.
    [13]Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532-13542.
    [14]Bordey A, Lyons SA, Hablitz JJ, Sontheimer H (2001) Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 85:1719-1731.
    [15]Spapen H, Nguyen DN, Troubleyn J, Huyghens L, Schiettecatte J (2010) Drotrecogin alfa (activated) may attenuate severe sepsis-associated encephalopathy in clinical septic shock. Crit Care 14:R54.
    [16]Ohnesorge H, Bischoff P, Scholz J, Yekebas E, Schulte am Esch J (2003) Somatosensory evoked potentials as predictor of systemic inflammatory response syndrome in pigs? Intensive Care Med 29:801-807.
    [17]Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294: 1354-1357.
    [18]Gomes FC, Paulin D, Moura Neto V (1999) Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res 32:619-631.
    [19]Xie M, Wang W, Kimelberg HK, Zhou M (2008) Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J Cereb Blood Flow Metab 28: 456-467.
    [20]Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99.
    [21]Li G, Chen Y, Saari JT, Kang YJ (1997) Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 273:H1090-1095.
    [22]Didenko W, Ngo H, Minchew CL, Boudreaux DJ, Widmayer MA, Baskin DS (2002) Caspase-3-dependent and-independent apoptosis in focal brain ischemia. Mol Med 8:347-352.
    [23]Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels:from gene to biological function. Cell Calcium 33:519-531.
    [24]Montell C (2005) TRP channels in Drosophila photoreceptor cells. J Physiol 567: 45-51.
    [25]Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, et al. (2008) TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14: 738-747.
    [26]Wilson JX, Young GB (2003) Progress in clinical neurosciences:sepsis-associated encephalopathy:evolving concepts. Can J Neurol Sci 30:98-105.
    [27]Redl H, Schlag G, Bahrami S, Yao YM (1996) Animal models as the basis of pharmacologic intervention in trauma and sepsis patients. World J Surg 20: 487-492.
    [28]Parker SJ, Watkins PE (2001) Experimental models of gram-negative sepsis. Br J Surg 88:22-30.
    [29]Deitch EA (2005) Rodent models of intra-abdominal infection. Shock 24 Suppl 1: 19-23.
    [30]Remick DG, Ward PA (2005) Evaluation of endotoxin models for the study of sepsis. Shock 24 Suppl 1:7-11.
    [31]Pytel P, Alexander JJ (2009) Pathogenesis of septic encephalopathy. Curr Opin Neurol 22:283-287.
    [32]Czapski GA, Cakala M, Chalimoniuk M, Gajkowska B, Strosznajder JB (2007) Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. J Neurosci Res 85:1694-1703.
    [33]Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes. cellular and molecular cues to biological function. Trends Neurosci 20:570-577.
    [34]Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, et al. (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120:223-236.
    [35]Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+channel protein (TRPC7) highly expressed in brain. Genomics 54:124-131.
    [36]Naziroglu M, Luckhoff A (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270:152-158.
    [37]Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter:a confocal microscopy study. Glia 23:1-10.
    [38]Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137-149.
    [39]Salvesen GS, Dixit VM (1997) Caspases:intracellular signaling by proteolysis. Cell 91:443-446.
    [40]Strasser A, O'Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217-245.
    [41]Kim JS, Lee JH, Jeong WW, Choi DH, Cha HJ, Kim do H, Kwon JK, Park SE, et al. (2008) Reactive oxygen species-dependent EndoG release mediates cisplatin-induced caspase-independent apoptosis in human head and neck squamous carcinoma cells. Int J Cancer 122:672-680.
    [42]Nedergaard M, Rodriguez JJ, Verkhratsky A (2010) Glial calcium and diseases of the nervous system. Cell Calcium 47:140-149.
    [43]Girvin AM, Gordon KB, Welsh CJ, Clipstone NA, Miller SD (2002) Differential abilities of central nervous system resident endothelial cells and astrocytes to serve as inducible antigen-presenting cells. Blood 99:3692-3701.
    [44]van Noort JM, Bsibsi M (2009) Toll-like receptors in the CNS:implications for neurodegeneration and repair. Prog Brain Res 175:139-148.
    [45]Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge:Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide:evidence for TLR4 as the Lps gene product. J Immunol 162:3749-3752.
    [46]Yuan TM, Sun Y, Zhan CY, Yu HM (2010) Intrauterine infection/inflammation and perinatal brain damage:role of glial cells and Toll-like receptor signaling. J Neuroimmunol 229:16-25.
    [47]Matthews HR, Fain GL (2002) Time course and magnitude of the calcium release induced by bright light in salamander rods. J Physiol 542:829-841.
    [48]Bruel-Jungerman E, Davis S, Rampon C, Laroche S (2006) Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 26:5888-5893.
    [49]Scemes E, Spray DC (1998) Increased intercellular communication in mouse astrocytes exposed to hyposmotic shocks. Glia 24:74-84.
    [50]Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, van den Bosch de Aguilar P (2002) Compartmentalized coculture of rat brain endothelial cells and astrocytes:a syngenic model to study the blood-brain barrier. J Neurosci Methods 121:21-31.
    [51]Aschner M (1998) Immune and inflammatory responses in the CNS:modulation by astrocytes. Toxicol Lett 102-103:283-287.
    [52]Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380-412.
    [53]Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1 beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store-and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 293:C1103-1111.
    [54]Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, et al. (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191-200.
    [55]Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199-213.
    [56]Miller BA (2006) The role of TRP channels in oxidative stress-induced cell death. J Membr Biol 209:31-41.
    [57]Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138-145.
    [58]Rohl C, Lucius R, Sievers J (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43-52.
    [59]Tilleux S, Berger J, Hermans E (2007) Induction of astrogliosis by activated microglia is associated with a down-regulation of metabotropic glutamate receptor 5. JNeuroimmunol 189:23-30.
    [60]Eigler A, Sinha B, Hartmann Q Endres S (1997) Taming TNF:strategies to restrain this proinflammatory cytokine. Immunol Today 18:487-492.
    [61]Downen M, Amaral TD, Hua LL, Zhao ML, Lee SC (1999) Neuronal death in cytokine-activated primary human brain cell culture:role of tumor necrosis factor-alpha Glia 28:114-127.
    [62]Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788: 842-857.
    [63]Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, Hosotubo H, Kieko F, et al. (2004) Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 22:102-107.
    [64]Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-lbeta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg 92: 108-120.
    [65]Arand M, Melzner H, Kinzl L, Bruckner UB, Gebhard F (2001) Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans. Langenbecks Arch Surg 386:241-248.
    [66]Chiaretti A, Genovese O, Aloe L, Antonelli A, Piastra M, Polidori G, Di Rocco C (2005) Interleukin lbeta and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst 21:185-193; discussion 194.
    [67]Kossmann T, Hans V, Imhof HG, Trentz O, Morganti-Kossmann MC (1996) Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res 713: 143-152.
    [68]Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, et al. (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201-207.
    [69]Harteneck C, Frenzel H, Kraft R (2007) N-(p-amylcinnamoyl)anthranilic acid (ACA):a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev 25:61-75.
    [70j Sinkins WG, Gocl M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. J Biol Chem 279:34521-34529.
    [71]Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23: 2477-2487.
    [72]Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-296.
    [73]Muller U (1999) Ten years of gene targeting:targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3-21.
    [74]Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244-248.
    [75]Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110-119.
    [76]Miyagishi M, Hayashi M, Taira K (2003) Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 13:1-7.
    [77]Zhou X, Yang W, Li J (2006) Ca2+-and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J Biol Chem 281: 31337-31347.
    [78]Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia:focus on ischemic preconditioning. Glia 50:307-320.
    [79]Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132:2478-2486.
    [1]Alberti C, Brun-Buisson C, Burchardi H, Martin C, Goodman S, Artigas A, Sicignano A, Palazzo M, et al. (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28: 108-121.
    [2]Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303-1310.
    [3]Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546-1554.
    [4]Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States:a trend analysis from 1993 to 2003. Crit Care Med 35:1244-1250.
    [5]Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC (2003) The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 167:695-701.
    [6]Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368-1377.
    [7]Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699-709.
    [8]Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250-1256.
    [9]Ulloa L, Tracey KJ (2005) The "cytokine profile":a code for sepsis. Trends Mol Med 11:56-63.
    [10]Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275: 470-473.
    [11]Abe S, Okumura A, Fujii T, Someya T, Tadokoro R, Arai Y, Nakazawa T, Yamashiro Y (2008) Sepsis associated encephalopathy in an infant with biliary atresia. Brain Dev 30:544-547.
    [12]Ebersoldt M, Sharshar T, Annane D (2007) Sepsis-associated delirium. Intensive Care Med 33:941-950.
    [13]Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, Truman B, Speroff T, et al. (2001) Delirium in mechanically ventilated patients:validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 286:2703-2710.
    [14]Spapen H, Nguyen DN, Troubleyn J, Huyghens L, Schiettecatte J (2010) Drotrecogin alfa (activated) may attenuate severe sepsis-associated encephalopathy in clinical septic shock. Crit Care 14:R54.
    [15]Ohnesorge H, Bischoff P, Scholz J, Yekebas E, Schulte am Esch J (2003) Somatosensory evoked potentials as predictor of systemic inflammatory response syndrome in pigs? Intensive Care Med 29:801-807.
    [16]Jacob A, Brorson JR, Alexander JJ (2011) Septic encephalopathy:inflammation in man and mouse. Neurochem Int 58:472-476.
    [17]Miller RR,3rd, Ely EW (2007) Delirium and cognitive dysfunction in the intensive care unit. Curr Psychiatry Rep 9:26-34.
    [18]Napper GA, Kalloniatis M (1999) Neurochemical changes following postmortem ischemia in the rat retina. Vis Neurosci 16:1169-1180.
    [19]Schmitz T, Chew LJ (2008) Cytokines and myelination in the central nervous system. ScientificWorldJournal 8:1119-1147.
    [20]Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A (2009) The development of stroke therapeutics:promising mechanisms and translational challenges. Neuropharmacology 56:329-341.
    [21]Sibbald WJ, Vincent JL (1995) Round table conference on clinical trials for the treatment of sepsis. Crit Care Med 23:394-399.
    [22]Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge:Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide:evidence for TLR4 as the Lps gene product. J Immunol 162:3749-3752.
    [23]Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59:278-292.
    [24]Yuan TM, Sun Y, Zhan CY, Yu HM (2010) Intrauterine infection/inflammation and perinatal brain damage:role of glial cells and Toll-like receptor signaling. J Neuroimmunol 229:16-25.
    [25]Polazzi E, Contestabile A (2002) Reciprocal interactions between microglia and neurons:from survival to neuropathology. Rev Neurosci 13:221-242.
    [26]Liaudet L, Soriano FG, Szabo C (2000) Biology of nitric oxide signaling. Crit Care Med 28:N37-52.
    [27]Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372-376.
    [28]Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532-13542.
    [29]Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett ED (2000) Pathophysiology of septic encephalopathy:a review. Crit Care Med 28: 3019-3024.
    [30]Bordey A, Lyons SA, Hablitz JJ, Sontheimer H (2001) Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 85:1719-1731.
    [31]Gomes FC, Paulin D, Moura Neto V (1999) Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res 32:619-631.
    [32]Tomas-Camardiel M, Venero JL, de Pablos RM, Rite I, Machado A, Cano J (2004) In vivo expression of aquaporin-4 by reactive microglia. J Neurochem 91: 891-899.
    [33]Jiang Z, Zhang Y, Chen XQ, Lam PY, Yang H, Xu Q, Yu AC (2003) Apoptosis and activation of Erkl/2 and Akt in astrocytes postischemia. Neurochem Res 28: 831-837.
    [34]Girvin AM, Gordon KB, Welsh CJ, Clipstone NA, Miller SD (2002) Differential abilities of central nervous system resident endothelial cells and astrocytes to serve as inducible antigen-presenting cells. Blood 99:3692-3701.
    [35]Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9:259-275.
    [36]Temple S (2001) The development of neural stem cells. Nature 414:112-117.
    [37]Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, et al. (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120:223-236.
    [38]Toms NJ, Roberts PJ (1999) Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes:[Ca2+]i synergy with adenosine Al receptors. Neuropharmacology 38:1511-1517.
    [39]Xie M, Wang W, Kimelberg HK, Zhou M (2008) Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J Cereb Blood Flow Metab 28: 456-467.
    [40]Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia:focus on ischemic preconditioning. Glia 50:307-320.
    [41]Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132:2478-2486.
    [42]van Noort JM, Bsibsi M (2009) Toll-like receptors in the CNS:implications for neurodegeneration and repair. Prog Brain Res 175:139-148.
    [43]Park EK, Kwon KB, Park KI, Park BH, Jhee EC (2002) Role of Ca(2+) in diallyl disulfide-induced apoptotic ceil death of HCT-15 cells. Exp Mol Med 34:250-257.
    [44]Salvesen GS, Dixit VM (1997) Caspases:intracellular signaling by proteolysis. Cell 91:443-446.
    [45]Forrest AS, Ordog T, Sanders KM (2006) Neural regulation of slow-wave frequency in the murine gastric antrum. Am J Physiol Gastrointest Liver Physiol 290:G486-495.
    [46]Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99.
    [47]Bruel-Jungerman E, Davis S, Rampon C, Laroche S (2006) Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 26:5888-5893.
    [48]Li G, Chen Y, Saari JT, Kang YJ (1997) Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 273: H1090-1095.
    [49]Didenko W, Ngo H, Minchew CL, Boudreaux DJ, Widmayer MA, Baskin DS (2002) Caspase-3-dependent and-independent apoptosis in focal brain ischemia. MolMed 8:347-352.
    [50]Abed E, Moreau R (2007) Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif 40:849-865.
    [51]Montell C (2005) TRP channels in Drosophila photoreceptor cells. J Physiol 567: 45-51.
    [52]Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517-524.
    [53]Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter:a confocal microscopy study. Glia 23:1-10.
    [54]Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619-647.
    [55]Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118:337-351.
    [56]Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427-450.
    [57]Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429-472.
    [58]Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23: 183-191.
    [59]Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515-1520.
    [60]Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ, Kauffman M, McCarthy JJ (2001) Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19:568-576.
    [61]Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, et al. (2000) Co-assembly of polycystin-1 and-2 produces unique cation-permeable currents. Nature 408:990-994.
    [62]Hersh BM, Hartwieg E, Horvitz HR (2002) The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. ProcNatl Acad Sci U S A 99:4355-4360.
    [63]Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99:14994-14999.
    [64]Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, et al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819-829.
    [65]Kraft R, Harteneck C (2005) The mammalian melastatin-related transient receptor potential cation channels:an overview. Pflugers Arch 451:204-211.
    [66]Turner H, Fleig A, Stokes A, Kinet JP, Penner R (2003) Discrimination of intracellular calcium store subcompanments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity. BiochemJ 371:341-350.
    [67]Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267-278.
    [68]Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397-407.
    [69]Voets T, Nilius B, Koefs S, van der Kemp AW, Droogmans G, Biudels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19-25.
    [70]Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, et al. (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191-200.
    [71]Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, et al. (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14: 738-747.
    [72]Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124-131.
    [73]Nilius B (2007) Transient receptor potential (TRP) cation channels:rewarding unique proteins. Bull Mem Acad R Med Belg 162:244-253.
    [74]Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, et al. (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595-599.
    [75]Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385-398.
    [76]Bond CE, Greenfield SA (2007) Multiple cascade effects of oxidative stress on astroglia. Glia 55:1348-1361.
    [77]Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137-149.
    [78]Morale MC, Serra PA, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, et al. (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson's disease:glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138:869-878.
    [79]Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, et al. (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201-207.
    [80]Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, et al. (2002) LTRPC2 Ca2+- permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163-173.
    [81]Naziroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990-2001.
    [82]Freestone PS, Chung KK, Guatteo E, Mercuri NB, Nicholson LF, Lipski J (2009) Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+homeostasis. Eur J Neurosci 30: 1849-1859.
    [83]Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, et al. (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 133:1149-1161.
    [84]Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1 beta-induced Ca2+signals in mouse cortical astrocytes:roles of store-and receptor-operated Ca2+entry. Am J Physiol Cell Physiol 293:C1103-1111.
    [85]Massullo P, Sumoza-Toledo A, Bhagat H, Partida-Sanchez S (2006) TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17:654-666.
    [86]Halliwell B (2006) Oxidative stress and neurodegeneration:where are we now? J Neurochem 97:1634-1658.
    [87]Naziroglu M, Luckhoff A (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270:152-158.
    [88]Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375-429.
    [89]Kolisek M. Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61-69.
    [90]Miller BA (2006) The role of TRP channels in oxidative stress-induced cell death. JMembrBiol 209:31-41.
    [91]Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, Penn L, Barber DL, Stahl R, et al. (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146-1159.
    [92]Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R (2008) Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction*. Critical care medicine 36:2590-2596.
    [93]Wehrhahn J, Kraft R, Harteneck C, Hauschildt S (2010) Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol 184:2386-2393.
    [94]Feske S, Okamura H, Hogan PG, Rao A (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117-1132.
    [95]Lin ST, Wang Y, Xue Y, Feng DC, Xu Y, Xu LY (2008) Tetrandrine suppresses LPS-induced astrocyte activation via modulating IKKs-IkappaBalpha-NF-kappaB signaling pathway. Mol Cell Biochem 315:41-49.
    [96]Hur J, Kim SY, Kim H, Cha S, Lee MS, Suk K (2001) Induction of caspase-11 by inflammatory stimuli in rat astrocytes:lipopolysaccharide induction through p38 mitogen-activated protein kinase pathway. FEBS Lett 507:157-162.
    [97]Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+entry and endothelial hyperpermeability. Circ Res 102:347-355.
    [98]Sinkins WG, Goel M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. J Biol Chem 279:34521-34529.
    [99]Harteneck C, Frenzel H, Kraft R (2007) N-(p-amylcinnamoyI)anthranilic acid (ACA):a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev 25:61-75.
    [100]Cho H, Kim MS, Shim WS, Yang YD, Koo J, Oh U (2003) Calcium-activated cationic channel in rat sensory neurons. Eur J Neurosci 17:2630-2638.
    [101]Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23: 2477-2487.
    [102]Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol 370:227-237.
    [103]Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153:1324-1330.
    [104]Lievremont JP, Bird GS, Putney JW, Jr. (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758-762.
    [105]Hecquet CM, Ahmmed GU, Malik AB (2010) TRPM2 channel regulates endothelial barrier function. Adv Exp Med Biol 661:155-167.
    [106]Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+- release channel in beta cells. Sci Signal 2: ra23.
    [107]Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286:C129-137.
    [108]Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, et al. (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138-6148.
    [109]Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, et al. (2005) Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715-723.
    [110]Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204-214.
    [111]Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077:187-199.
    [112]Olah ME, Jackson MF, Li H, Perez Y, Sun HS, Kiyonaka S, Mori Y, Tymianski M, et al. (2009) Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587:965-979.
    [113]Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels:from gene to biological function. Cell Calcium 33:519-531.
    [114]Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, et al. (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66-76.
    [115]Cook NL, Vink R, Helps SC, Manavis J, van den Heuvel C (2010) Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats. J Mol Neurosci 42:192-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700