用户名: 密码: 验证码:
白头翁皂苷主要活性成分的药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白头翁为毛茛科植物白头翁Pulsatilla chinensis (Bunge) Regel的干燥根,为传统的清热解毒中药,现代药理学表明其具有抗肿瘤活性,本研究以主要活性部位白头翁皂苷为研究对象,对其化学成分、药动学、组织分布、排泄以及肠道部位的吸收和代谢进行了系统研究,为该中药的现代临床应用和开发提供依据。研究内容如下:
     1、提取分离及含量测定
     利用制备色谱,动态轴向色谱获得具有抗肿瘤活性的白头翁皂苷57g,再对该组分进行分离纯化获得5种成分,通过现代波谱技术鉴定了其结构,为齐墩果烷母核的白头翁皂苷,课题组命名为B3(70mg), BD (50mg), B7(70mg), B10(50mg)和B11(40mg)。经HPLC归一化法检查纯度均达到98%以上,可作为白头翁皂苷对照品使用。在此基础上,对白头翁皂苷进行含量测定,经HPLC-ELSD分析,B3,BD,B7, B10和B11的含量分别为24.1%,7.4%,12.4%,13.5%和8.5%。
     2、药代动力学研究
     首次建立了同时测定大鼠血浆中B3, BD, B7, B10, B11的RRLC-MS/MS法,以连翘苷为内标,采用ESI源负离子模式,多反应离子(MRM)监测进行分析。被测成分分别在1.105~13821(B3),0.7508~93.84(BD),0.9960~124.88(B7),0.4148~51.84(B10),0.3322~41.52(B11) ng·mL-1范围内线性关系良好,定量下限分别为1.105(B3),0.7508(BD),0.9960(B7),0.4148(B10)和0.3322(B11) ng·mL-1,待测物和内标的提取回收率均大于70%,方法的专属性、基质效应、精密度、准确度和稳定性均符合生物样品分析要求。采用所建立的方法测定了大鼠灌胃与静注两种给药途径下给予白头翁皂苷及其钠盐后5种主要成分的血浆浓度,获得了其在大鼠体内的药动学参数与绝对生物利用度。灌胃给药后的Tmax分别为0.33(B3),0.37(BD),0.51(B7,B10,B11)h,T1/2分别为12.81(B3),18.52(BD),16.31(B7),7.03(B10),12.54(B11) h。静脉给药后T1/2分别为0.43(B3),2.23(BD),0.56(B7),0.35(B10),0.34(B11) h。B3,BD,B7,B10和B11的绝对生物利用度分别为1.16%,1.17%,0.55%,0.96%和2.50%。结果表明:白头翁皂苷大鼠灌胃给药吸收迅速,消除较快,绝对生物利用度较低。
     3、在体肠吸收研究
     为了寻找白头翁皂苷口服相对生物利用度低的原因,建立了HPLC-ELSD法对其在大鼠体内的小肠吸收情况进行了考察。结果显示:5种白头翁皂苷中B3和BD的吸收系数(Ka),B3和B7的渗透系数(Peff)在不同肠段具有显著性差异(P<0.05)。5种白头翁皂苷的渗透系数(Peff)在不同肠段的吸收为十二指肠>空肠>结肠>回肠,十二指肠是该类皂苷的主要吸收部位。0.05~2.5mg·mL-1浓度范围内,5种白头翁皂苷随着浓度提高出现过饱和现象。该类皂苷在十二指肠的渗透系数(Peff)与浓度间的线性关系不明显(0.6007≤r2≤0.7727),说明白头翁皂苷不完全依赖浓度梯度转运,细胞膜上的载体蛋白参与了药物的转运过程,其小肠吸收机制并不完全为被动转运。加入地高辛后,白头翁皂苷的渗透系数明显降低,而加入维拉帕米后,渗透系数明显提高,其中B3、BD、B7和B11有显著性差异(P<0.05),说明白头翁皂苷为P-gp底物。
     4、组织分布研究
     以300mg·kg-1白头翁皂苷均匀分散混悬液单次灌胃给予大鼠后,对B3, BD, B7,B10, B11在动物体内的组织分布情况进行了考察。结果表明:白头翁皂苷在动物体内的分布迅速且广泛,给药15min后,各组织脏器中即可检测到较高水平的药物浓度。5种皂苷在大部分组织器官中的达峰时间为30min,给药2h后,白头翁皂苷的浓度逐渐下降,给药6h后,药物基本消除,进一步说明其在体内不易蓄积。药物主要分布在心脏,肝,肺,肾,小肠等器官,心脏中药物浓度最高。在动物脑中亦可检测到药物的存在,证明其可以透过血脑屏障。
     5、排泄研究
     以300mg·kg-1白头翁皂苷均匀分散悬浮液单次灌胃给予大鼠后,对B3, BD, B7,B10, B11原型药物的排泄情况进行了考察。主要研究白头翁皂苷在大鼠尿、粪和胆汁中的排泄量及累积排泄率。其结果显示给药后0~18h,其在雄性大鼠胆汁中的累积排泄量分别为12788.07(B3),2875.85(BD),2295.23(B7),1393.55(B10),635.46(B11) ng,分别相当于给药量的0.7075‰,0.5182‰,0.2468‰,0.1376‰和0.09968‰,存在微弱的肝肠循环;在给药后的0~108h,药物在大鼠尿液中的累积排泄量分别为3791.25(B3),539.24(BD),875.38(B7),495.55(B10),255.95(B11) ng,分别相当于给药量的0.2098‰,0.0972‰,0.0941‰,0.0489‰和0.0402‰;在给药后的0~108h,5种皂苷在大鼠粪便中的累积排泄量分别为5.791(B3),1.227(BD),3.194(B7),1.205(B10),1.042(B11) mg,分别相当于给药量的32.04%,22.10%,34.35%,11.90%和16.34%,研究结果提示大部分药物未被吸收,直接以原型形式由粪便排出体外;被动物机体吸收的部分,在体内大部分也已被代谢掉,以代谢产物的形式排出体外。
     6、肠道代谢研究
     考虑到该类成分的分子量较大,不符合“five rules”法则,属于较难吸收化合物,并且大部分齐墩果烷型五环三萜皂苷未以原型形式被机体吸收利用,为了寻找白头翁皂苷在较低的生物利用度下能产生确切的抗肿瘤活性的原因,需要进一步对该类皂苷在肠道的代谢情况进行研究。
     6.1、肠道降解动力学
     建立HPLC-ELSD法,采用肠道内容物体外孵育的方法,对白头翁皂苷的肠道降解动力学进行了考察。结果表明白头翁皂苷在大鼠肠道中孵育结果符合一级降解动力学特征,48h内白头翁皂苷B3, BD, B7, B10和B11迅速降解,降解速率常数(KA)为0.0794(B3),0.0523(BD),0.0539(B7),0.0426(B10)和0.0468(B11),有效期(t0.9)为1.327(B3),2.015(BD),1.955(B7),2.473(B10)和2.251(B11) h,半衰期(t1/2)为8.730(B3),13.25(BD),12.86(B7),16.27(B10)和14.81(B11) h。肠道菌群是白头翁皂苷原型化合物发生代谢的重要因素。
     6.2、肠道代谢产物初探
     为进一步阐明白头翁皂苷在大鼠肠道菌群中发生降解后的代谢产物及代谢规律,采用UPLC-ESI-Q-TOF-MS/MS及Metabolite ID数据自动处理系统进行研究。结果显示,30小时内,正常大鼠肠内菌在实验条件下能有效代谢白头翁皂苷B3, BD, B7,B10, B11。实验发现8种B3代谢产物,7种BD代谢产物,8种B7代谢产物,7种B10代谢产物和9种B11代谢产物。白头翁皂苷在肠道的体外代谢产物共计40种。确证出该类成分在肠内菌群的作用下主要发生3-位侧链脱糖代谢,以及苷元母核上羟化,羧化和脱羧,甲基化和去甲基化等代谢反应。
Pulsatilla chinensis (Bunge) Regel, the dried root of its original botany, has been usedfor2000years as an antipyretic traditional oriental medicine. Taking the saponinscontained in Pulsatilla chinensis (Bunge) Regel (PRS) as research subjects which areresponsible for the antitumor activities, our research focused on their isolation andextraction, pharmacokinetics, absorption, tissue distribution, excretion and metabolism inthe biological system, so as to provide more evidences for further clinical applications anddevelopment.
     The major research content lists as follows:
     1. Extration, isolation and content determination
     Fifty seven gram of PRS which exerted potential antitumor activity has been extractedon preparative and dynamic axial chromatography. Then5oleanane pulchinenosides,which were named as B3(70mg), BD (50mg), B7(70mg), B10(50mg) and B11(40mg)by our team, has been isolated and purified from this PRS by various modern spectroscopictechniques and chemical methods.These components whose purities were all above98%determined by area normalization on HPLC could be used as reference substances for thecontent determination. Thereafter, the contents of B3, BD, B7, B10and B11in PRS weredetermined on HPLC-ELSD as24.1%,7.4%,12.4%,13.5%and8.5%, respectively.
     2. Pharmacokinetic research
     A simple, RRLC-ESI-MS/MS method was developed for the simultaneousdetermination of five oleanane pulchinenosides (B3, BD, B7, B10and B11) in rat plasmafor the first time. Applying forsythin as internal standard (IS), detection and quantitationwere performed by MS/MS using electrospray ionization (ESI) and multiple reactionmonitoring (MRM) mode. The5analytes showed good linearity for1.105~13821(B3),0.7508~93.84(BD),0.9960~124.88(B7),0.4148~51.84(B10),0.3322~41.52(B11)ng·mL-1, and the LLOQs for B3,BD,B7,B10and B11were1.105(B3),0.7508(BD),0.9960(B7),0.4148(B10) and0.3322(B11) ng·mL-1. Meanwhile, the recoveries of the analytes and IS were all above70%. The specificities, matrix effects, precisions, accuraciesand stabilities of the5components were validated in accordance with the guidance for thebioanalytical methods validation. The plasma concentrations of the5analytes for oral andintravenous administration in rat could be determined by the established method, then thepharmacokinetics parameters and bioavailabilities were obtained. After oral administration,Tmaxwere0.33(B3),0.37(BD),0.51(B7, B10, B11) h, respectively; T1/2were12.81(B3),18.52(BD),16.31(B7),7.03(B10),12.54(B11) h, respectively. After intravenous, T1/2were0.43(B3),2.23(BD),0.56(B7),0.35(B10),0.34(B11) h. The bioavailabilities of B3,BD, B7, B10and B11were1.16%,1.17%,0.55%,0.96%and2.50%, respectively. Theresults indicated that PRS exhibited rapid absorption and were eliminated quicklythereafter for oral administration. Therefor, the bioavailability were relatively lower.
     3. Intestinal absorption
     In order to search for the reason why the bioavailabilities were relatively lower,HPLC-ELSD was applied to explore the absorption mechanism of pulchinenosides (B3,BD, B7, B10, B11) in rats. The Ka value (B3,BD) and Peffvalue (B3,B7) displayedsignificant difference(P<0.05) in various intestinal segments.The Ka value and Peffvalue ofPRS was different from each other with the highest absorption in duodenum (duodenum>jejunum> colon> ileum), so the duodenum was the main absorption site.The PRSdisplayed excessive satuation as the concentration increased over0.05-2.5mg·mL-1. Therewere no obvious linear correlations between Peffvalues and concentrations in duodenum(0.6007≤r2≤0.7727), which demonstrated PRS didn’t entirely transported in aconcentration dependent manner, and the transporter-protein involved the transportation,so the intestinal absorption of the five pulchinenosides was not entirely passive diffusion.The Ka value and Peffvalue declined when the PRS was perfused with P-glycoproteinpromoter digoxin, on the other hand, inclined when perfused with P-glycoprotein inhibitorverapamil with significant difference among PRS B3, BD, B7, B11(P<0.05), whichmanifested that the PRS might be the substrates of P-glycoprotein.
     4. Tissue distribution
     The distribution of pulchinenosides (B3, BD, B7, B10, B11) in rats tissue has beeninvestigated after300mg·kg-1oral administration of PRS evenly dispersed suspension. Theresults suggested that PRS exhibited rapid and extensive distribution, and high levelconcentrations could be detected in rats’ tissues after0.25h for oral administration. Most of the Tmaxof5components in the tissues were about30min, then the concentrationsdeclined gradually after2h and a large proportion of PRS were almost eliminated after6h,which further indicated that PRS were difficult to accumulate in vivo. The medicine mainlydistributed in heart, liver, lungs, spleen and small intestine, and it was highest in the heartthan in other tissues. We can also detected PRS in the brain, which could demonstrated thatPRS could transmitted across blood-brain barrier (BBB).
     5. Excretion
     The excretion of pulchinenosides (B3, BD, B7, B10, B11) in rats has beeninvestigated after300mg·kg-1oral administration of PRS evenly dispersed suspension. Theexcretion amounts and accumulative excretion rates in rats’ bile, urine and feces have beendetermined. The result showed that the accumulative excretions of PRS in male rats’ bilein0-18h after oral administration were12788.07(B3),2875.85(BD),2295.23(B7),1393.55(B10),635.46(B11) ng, equivalently0.7075‰,0.5182‰,0.2468‰,0.1376‰and0.09968‰to the dosage, respectively, which demonstrated there was slightlyenterohepatic circulation in rats; the accumulative excretions of PRS in male rats’ urine in0-108h after oral administration were3791.25(B3),539.24(BD),875.38(B7),495.55(B10),255.95(B11) ng, equivalently0.2098‰,0.0972‰,0.0941‰,0.0489‰and0.0402‰to the dosage, respectively; the accumulative excretions of PRS in male rats’feces in0-108h after oral administration were5.791(B3),1.227(BD),3.194(B7),1.205(B10),1.042(B11) mg, equivalently32.04%,22.10%,34.35%,11.90%and16.34%to thedosage, respectively. The result suggested that a large proportion of PRS have not beenabsorbed and excreted with feces out of the body as the prototypes; the proportion whichwere absorbed in the body also have been metabolized and excreted with feces out of thebody as the metabolite types.
     6. Intestinal metabolism
     Taking the factors into consideration that the molecular weight of PRS were relativelyhigher so as not to accord with “five rules”, and were categorized as “hard to be absorbed”compounds, Meanwhile, most of which were not absorbed and utilized as the prototypesby the organism, it is necessary to further explore the metabolism of PRS in intestine tosearch for the reason why the bioavailabilities of PRS were relatively lower but exertedsignificant antitumor activity.
     6.1. Intestinal degradation dynamics
     The method of incubation with rat intestinal bacteria in vivo was applied to researchthe degradation dynamics of PRS on HPLC-ELSD. The result showed that PRS were inaccordance with first-order reaction with rapid degradation in rat intestinal flora declinedin48hours, and the degradation rate constants (KA) were0.0794(B3),0.0523(BD),0.0539(B7),0.0426(B10) and0.0468(B11), respectively; the t0.9were1.327(B3),2.015(BD),1.955(B7),2.473(B10) and2.251(B11) h, respectively; the t1/2were8.730(B3),13.25(BD),12.86(B7),16.27(B10) and14.81(B11) h, respectively. Therefor, ratintestinal flora was the most important factor on the metabolism of prototype compoundsof PRS under experimental conditions.
     6.2. The primary exploration of metabolites in rat intestinal flora.
     The metabolites of pulchinenosides B3, BD, B7, B10and B11in rat intestinal florahave been researched on UPLC-ESI-Q-TOF-MS/MS and Metabolite ID data processingsystem. The result was that normal rat intestinal flora could metabolite B3, BD, B7, B10,B11effectively under experimental conditions in30hours.8metabolites of B3,7metaboites of BD,8metaboites of B7,7metaboites of B10,9metaboites of B11have beendetected in rat intestinal bacteria, that was totally40metabolites. A variety of metabolitetypes have been concluded in intestinal bacteria mainly such as3-side chain sugar-remove,hydroxylation, carboxylation and decarboxylation, methylation and demethylation on theparent nucleus of glycoside.
引文
[1]刘昌孝.中药药代动力学研究的难点和热点[J].药学学报,2005,40(5):395-401.
    [2] Yuan R, Lin Y. Traditional Chinese medicine: an approach to scientific proof andclinical validation [J]. Pharmacol Ther,2000,86(2):191-198.
    [3]中国药典[S].一部.2010:96.
    [4]丁秀娟.中药白头翁化学成分研究[D].苏州:苏州大学,2010.
    [5]刘雅萱.中药白头翁的化学成分研究[D].长春:长春中医药大学,2010.
    [6]舒展.中药白头翁化学成分研究(二)[D].苏州:苏州大学,2012.
    [7] Zheng Y T, Zhou F, Wu X L,et al.23-Hydroxybetulinic acid from Pulsatilla chinensis(Bunge) Regel synergizes the antitumor activities of doxorubicin in vitro and in vivo[J]. J. Ethnopharmacol,2010,128(3):615–622.
    [8] Chen W K, Lin Q, Chen L, et al. The saponin of Chinese drug Bai-Tou-Weng: IV. Thestructures of anemosides B4and A3[J]. Acta Chim. Sin,1990,48(5):501–505.
    [9] Park H J, Kwon S.H, Lee J H, et al. Kalopanax saponin A is a basic spaonin structurefor the anti-tumor activity of hederagenin monodesmosides [J]. Planta Med,2001,67(2):118–121.
    [10] Lee K T, Sohn C, Park H J, et al. Essential moiety for antimutagenic and cytotoxicactivity of hederagenin monodesmosides and bisdesmosides isolated from the stembark of Kalopanax pictus [J]. Planta Med,2000,66(4):329-332.
    [11] Shu Z, Chen Z, Ding X J, Lu B Q,et al.Three New Triterpenoids from Pulsatillachinensis (Bunge) Regel and Their Cytotoxic Activities [J]. Heterocycles,2011,83(10):2365-2371.
    [12] Zhuang X H, Geng B Q, Yong D G. Experimental studies on antitumor effects ofPulsatilla chinensis (Bunge) Regel [J]. J. Pract. Oncol,1999,(14):94-96.
    [13]蔡鹰,张能方.白头翁体内抗肿瘤作用的实验研究[J].中草药,1999,30(12):929-931.
    [14]] Sun J, Liu B R, Hu W J,et al. In vitro Anticancer Activity of Aqueous Extracts andEthanol Extracts of Fifteen Traditional Chinese Medicines on Human DigestiveTumor Cell Lines [J]. PHYTOTHERAPY RESEARCH,2007,21(11):1102–1104.
    [15] Xu Q M, Shu Z, Yang S L, et al. Antitumor activity of Pulsatilla chinensis (Bunge)Regel saponins in human liver tumor7402cells in vitro and in vivo [J].Phytomedicine,2012,19(3-4):293-300.
    [16] Yan F L, Wang A X, Jia Z J. Pentacyclic triterpenoidsfrom Aster ageratoides var.pilosus [J]. Pharmaize,2004,59(11):882-884.
    [17]开桂青.乌苏烷和齐墩果烷型五环三萜的超分子配位色谱分析[D].合肥:合肥工业大学,2008.
    [18]孙婧.几种齐墩果烷型三萜皂苷的合成及其生物活性研究[D].西安:西北大学,2010.
    [19] Yu K, Chen F, Li C. Absorption, Disposition, and Pharmacokinetics of Saponins fromChinese Medicinal Herbs: What Do We Know and What Do We Need to Know More[J]. Current Drug Metabolism,2012,13(5):577-598.
    [20] Gü lü-stünda, Mazza G. Saponins: properties, applications and processing [J]. CritRev Food Sci Nutr,2007,47(3):231-258.
    [21] Barthomeuf C, Debiton E, Mshvildadze V, et al. In vitro activity of hederacolchisidA1compared with other saponins from Hedera colchica against proliferation ofhumancarcinoma and melanoma cells [J]. Planta Med,2002,68(8):672-675.
    [22] Bang S C, Lee J H, Song G Y, et al. Antitumor activity of Pulsatilla koreana saponinsand their structure–activity relationship [J]. Chem Pharm Bull,2005,53(11):1451-1454.
    [23] Song M, Hang T J, Wang Y, et al. Determination of oleanolic acid in human plasmaand study of its pharmacokinetics in Chinese healthy male volunteers by HPLCtandem mass spectrometry [J]. J pharm Biomed Anal,2006,40(1):190-196.
    [24] Cheng X, Shin Y G, Levine B S, et al. Quantitative analysis of betulinic acid inmouse,rat and dog plasma using electrospray liquid chromatography/massspectrometry [J]. Rapid Communical Mass Spectromet,2003,17(18):2089-2092.
    [25] Udeani G O, Zhao G M, Geun S Y, et al. Pharmacokinetics and tissue distribution ofbetulinic acid CD-1mice [J]. Biopharma Drug Disposit,1999,20(8):379-383.
    [26] Liao Q F, Yang W, Jia Y,et al. LC-MS determination and pharmacokinetic studies ofursolic acid in rat plasma after administration of traditional Chinese medicalpreparation Lu-Ying extract [J]. Yakugaku zasshi,2005,125(6):509-515.
    [27]冯亮,蒋学华.三七总皂苷在大鼠体内的药物动力学研究[J].华西药学杂志,2010,25(1):046-049.
    [28] Zhu H, Ding L, Shakya S, et al. Simultaneous determination of asperosaponin VI andits active metabolite hederagenin in rat plasma by liquid chromatography–tandemmass spectrometry with positive/negative ion-switching electrospray ionization and itsapplication in pharmacokinetic study [J]. Chromatogr. B,2011,879(30):3407-3414.
    [29] Zheng Y F, Qi L W, Zhou J L, et al. Structural characterization and identification ofoleanane-type triterpene saponins in Glycyrrhiza uralensis Fischer by rapid-resolutionliquid chromatography coupled with time-of-flight mass spectrometry [J]. RapidCommun. Mass Spectrom,2010,24(22):3261-3270.
    [30] Qiao X, Zhang X, Ye M, et al. Rapid characterization of triterpene saponins fromConyza blinii by liquid chromatography coupled with mass spectrometry [J]. RapidCommun. Mass Spectrom,2010,24(22):3340-3350.
    [31Liu H F, Yang J, Du F, et al. Absorption and disposition of ginsenosides after oraladministration of Panax notoginseng extract to rats [J]. Drug Metab. Dispos,2009,37(12):2290-2298.
    [32]刘史佳,居文政.柴胡皂苷a的药代动力学及药物相互作用研究[D].江苏:南京中医药大学,2007.
    [33] Jeong D W, Kim Y H, Kim H H, et al. Dose-linear pharmacokinetics of oleanolic acidafter intravenous and oral administration in rats [J]. Bio-phamra Drug Dispos,2007,28(2):51-57.
    [34] Gu Y, Wang G J. Pharmacokinetic characterization of ginsenoside Rh2,an anticancernutrient from ginseng in rats and dogs [J]. Food Chem Toxicol,2009,47(9):2257-2268.
    [35]陈振华,管咏梅,张妮,等.白头翁总皂苷在大鼠肠外翻试验中吸收特性考察[J].中国实验方剂学杂志,2012,18(18):30-33.
    [36] Imai T, Sakai M, Ohtake H, et al. Absorption-enhancing effect of glycyrrhizin inducedin the presence of capric acid [J]. Int J Pharm,2005,294(1-2):11-21.
    [37]陈晓燕,狄留庆,赵晓莉.通塞脉微丸活性成分的大鼠在体肠吸收研究[J].南京中医药大学学报,2007,23(4):231-233.
    [38]刘智宇,江蔚新,吴斌.皂苷类成分吸收分布和代谢及排泄研究进展[J].中国现代药物应用,2012,21(12):127-130.
    [39] Feng L, Wang L, Hu C, et al. Pharmacokinetics,Tissue Distri-bution,Metabolism,andExcretion of Ginsenoside Rg1in Rats [J]. Archives of Pharmacal Research,2010,33(12):1975-1984.
    [40Paek I B, Moon Y, Kim J, et al. Pharmacokinetics of a GinsengSaponin MetaboliteCompound K in Rats [J]. Biopharmaceutics and Drug Disposition,2006,27(1):39-45.
    [41] Zhang W D, Zhang C, Liu R H, et al, Quantitative determination of Astragaloside IV,anatural product with cardioprotective activi-ty,in plasma,urine and other biologicalsamples by HPLC cou-pled with tandem mass spectrometry [J]. JournalChromatography B,2005,822(1-2):170-177.
    [42]谭欣玮.羟基积雪草苷在SD大鼠体内的药代动力学研究[D].重庆:重庆医科大学,2010.
    [43] Han M, Sha X, Wu Y, et al. Oral absorption of ginsenoside Rb1using in vitro and invivo models [J]. Planta Medica,2006,72(5):398-404.
    [44] Hattori M, Sakamoto T, Kobashi K, et al. Metabolism of glycyrrhizin by humanintestinal flora [J]. Planta Med,1983,48(1):38-42.
    [45]于林芳,徐杰,陈士国,等.仿刺参皂苷类化合物的电喷雾负离子质谱裂解规律研究[J].质谱学报,2011,32(2):77-81.
    [46] Liu S Y, Cui M*, Liu Z Y, et al. Structural Analysis of Saponins from Medicinal HerbsUsing Electrospray Ionization Tandem Mass Spectrometry [J]. J Am Soc MassSpectrom,2004,15(2):133-141.
    [47] Tobias Madl, Heinz Sterk, and Martin Mittelbach. Tandem Mass SpectrometricAnalysisof a Complex Triterpene Saponin Mixture of Chenopodium quinoa [J].Journal of the American Society for Mass Spectrometry,2006,17(6):795–806.
    [48]Li M, Hou X F, Zhang J, et al. Applications of HPLC/MS in the analysis of traditionalChinese medicines [J]. J Pharm Anal,2011,4(2):81-91.
    [49]张文婷.虎杖质量控制方法及相关成分药物代谢动力学研究[D].沈阳:沈阳药科大学,2009.
    [50]滕燕妮.莫吉斯坦药代动力学及体内代谢研究[D].济南:山东大学,2012.
    [51]Ha Y W, Na Y C, Ha I J, et al. Liquid chromatography/mass spectrometry-basedstructural analysis of new platycoside metabolitestransformed by human intestinalbacteria [J]. J Pharm Biomed Anal,2010,51(1):202-209.
    [52]Zhang J, Cheng Z H, Yu B Y, et al.Novel biotransformation of pentacyclictriterpenoidacids by Nocardia sp. NRRL-5646[J]. Tetrahedron Lett,2005,46(13):2337-2340.
    [53]Kim D H, Jang L S, Lee S W. Bacteroides J-37, a human intestinal bacterium,produces alpha-glucuronidase [J]. Biological&Pharmaceutical Bulletin,1997,20(8):834-837.
    [54] e J, Lee E, Kim D, et al. Studies on absorption,distributionand metabolism ofginseng in humans after oral administration [J]. J Ethnopharmcol,2009,122(1):143.
    [55] egawa H, Suzuki R, Nagaoka T. Prevention of growth and metastasis of murinemelanoma through enhanced natural-killer cytotoxicity by fatty acid-conjugate ofprotopanaxatiol [J]. J.Biol.Pharm.Bull,2002,25(7):861-866.
    [56] Cai Z W,Qian T X,Wong R N S, et al. Liquid chromatography-electrospray ionizationmass spectrometry for metabolism and pharmacokinetic studies of ginsenoside Rg3[J]. Anal Chim Acta,2003,492(1-2):283.
    [57] Sharma S, Sharma OP, Singh B, et al. Biotransformation of lantadenes, the pentacyclictriterpenoid hepatotoxins of lantana plant, in guinea pig [J]. Taxicon,2000,38(9):1191-1202.
    [58] Sharma S, Sharma OP, Dawra RK, et al. Disposition of lantadene A,the pentacyclictriterpenoid hepatotoxin,orally administration to guinea pig [J]. Toxicol Lett,1999,105(1):59-66.
    [59] Hu J, Reddy M B, Hendrich S, et al. Soyasponin I and Sapong B have limitedabsorption by Caco-2intestinal cells and limited bioavail-ability in women [J]. JNutrit,2004,134(8):1869-1873.
    [60]张东明,宫濑敏,野口博司,等.黄花倒睡莲皂苷Reinioside C在大鼠体内代谢产物的鉴定[J].高等学校化学学报,2002,23(1):63-67.
    [61] Komoto N, Ichikawa M. Murine metaolism and absorption of lancemaside A,an activecompound in the roots of Codonopsis lanceolata [J]. J Nat Med,2010,64(3):321-329.
    [62] Takeda S,Iathara K,Wakui Y,et al.Bioavibility study of glycyrrhetic acid after oraladministration of glycyrrhizin in rats:relevance to the intestinal bacterial hydrolysis[J]. J Pharm Pharmacol,1996,48(9):902-905.
    [63] Liu H F, Yang J L, Du F F. Absorption and disposition of ginsenosides after oraladministration of Panaxnoginseng extract to rats [J]. Drug Merab Dispos,2009,37(12):2290-2298.
    [64] Zhang J, Cheng Z H, Yu B Y, et al. Novel biotranaformation of pentacyclictriterpenoid acids by Nocardia sp.NRRL-5646[J]. Tetrahedron Lett,2005,46(13):2337-2340.
    [65] Xin X, Liu Y, Ye M, et al. Micrebial transformation of glycymbetinic acid by Mucorpolymorphosporus [J]. Planta Med,2006,72(2):156-161.
    [66] Kim D H, Lee S W, Han M J. Biotransormation of glycyrrhizin to18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide by Streptococcus LJ-22,a humanintestinal bacterium [J]. Biol Pharm Bull,1999,22(3):320-322.
    [67]田莉,高晓黎.复方甘草酸苷片的研制与体外代谢研究[D].乌鲁木齐:新疆医科大学,2008.
    [68]高凯,余伟.大鼠肝微粒体CYP3A1/2和CYP2C9/10参与甘草次酸羟化代谢[J].中国临床药理学杂志,2007,12(11):1255-1260.
    [69] Liu L, Xiao J. In vitro metabolism of glycyrrhetic acid by human cytochrome P450[J].Acta Pharm Sin,2011,46(1):81-87.
    [70] Chatterjee P, Kouzi S A. Biotranaformation of the antimelanoma ATCC13368[J].Appl Environ Microbiol,2000,66:3850-3588.
    [71] Choudhary M I, Batool I, Khan S N, et al. Microbial transformantion of alranolic acidby Fussrium lini and alpha-glucosidase inhibitory activity of its transformed products[J]. Nat Prod Res,2008,22(20):489-494.
    [72] Young W H. Liquid chromatography/mass spectrometrybased structural analysis ofnew platycoside metabolites transformed by human intestinal bacteria [J]. J PharmBiomed Anal,2010,51(1):202-209.
    [73]严梅桢.人肠道菌对柴胡皂苷的代谢[J].国外医学:中医中药分册,2001,23(3):156-158.
    [74]余伯阳,张剑.五环三萜生物转化研究概述[J].中国天然药物,2007,5(6):457-462.
    [75]张剑,程志红,余伯阳. Nocardia sp NRRL-5646对三种五环三萜皂苷元代谢的研究[J].中国天然药物,2004,2(6):3762-3781.
    [76]梁文权,李高,刘建平.生物药剂学与药物动力学[M].北京:人民卫生出版社,2000.
    [77]韦凤华,宋林,何毅,等.人参皂苷Rg1在大鼠体内的代谢与排泄研究[J].华西药学杂志,2010,25(3):302-305.
    [78]杨秀伟,桂方晋,田建明,等.人参皂苷-Rg2在大鼠体内的药代动力学[J].中国药理学通报,2009,25(7):967-970.
    [79]邴飞虹,易艳东,张国斌.蜈蚣三七有效成分W3单次给药后在小鼠体内的药代动力学[J].中国药科大学学报,2006,37(6):523-526.
    [80] Egan W J, Jauric G. Prediction of intestinal permeability [J]. Adv Drug Rev,2002,54(3):273-289.
    [81] Han M, Sha X, Wu Y, et al. Oral absorption of ginsenoside Rb1using in vitro and invivo models [J]. Planta Med,2006,72(5):398-404.
    [1]徐国均,袁昌齐,秦慧贞,等.中药白头翁的生药学鉴定研究(续).[J]药学学报,1958,6(5):256.
    [2]张庆文,叶文才,车镇涛,等.朝鲜白头翁的三萜皂苷成分研究究[J].药学学报,2000,35(10):756-759.
    [3]刘雅娟,徐东铭.中药白头翁的化学成分研究[D].吉林:长春中医药大学,2010.
    [4] Mimaki Y, Kuroda M, Asano T, et al. Triterpene Saponins and Lignans from the Rootsof Pulsatilla Chinensis and Their Cytoxic Activity against HL-60Cells [J]. J Nat Prod,1999,62(9):1279-1283.
    [5]石宝俊,李茜,张晓琦,等.中药白头翁地上部分的三萜皂苷成分[J].药学学报,2007,42(8):862-866.
    [6] Sun H, Wang Y, Zhang X Q, et al. Chemical constituents of Pulsatilla dahurica [J].Chemistry of Natural Compounds,2009,45(5):764-765.
    [7]吴振洁,丁林生,赵守训,等.中药白头翁的苷类成分[J].中国药科大学学报,1991,22(5):265-269.
    [8]丁秀娟,杨世林.中药白头翁的化学成分研究[D].苏州:苏州大学,2010.
    [9]付云明,张忠敏,陈虹.朝鲜白头翁化学成分的研究[D].河北:河北医科大学,2007.
    [10]舒展.中药白头翁化学成分研究(二)[D].苏州:苏州大学,2012.
    [11] Shu Z, Chen Z, Ding X J, Lu B Q,et al.Three New Triterpenoids from Pulsatillachinensis (Bunge) Regel and Their Cytotoxic Activities [J]. Heterocycles,2011,83(10):2365-2371.
    [12]王冠.人参花蕾中人参皂苷的分离纯化与生物转化[D].北京:北京化工大学,2010.
    [13] Sun B S, Gu L J, Fang Z M, et al. Simultaneous quantification of19ginsenosides inblack ginseng developed from Panax ginseng by HPLC-ELS [J]. Journal ofpharmaceutical and biomedical analysis,2009,50(1):15-22.
    [1] Chen C Y, Qi L W, Yi L, et al. Liquid chromatography–mass spectrometry analysis ofmacranthoidin B, macranthoidin A, dipsacoside B, and macranthoside B in rat plasmafor the pharmacokinetic investigation [J]. J Chromatogr B,2008,877(3):159–165.
    [2] Li P F, Zhang Y, Xiao L, et al. Simultaneous determination of harpagoside andcinnamic acid in rat plasma by high-performance liquid chromatography: applicationto a pharmacokinetic study [J]. Anal Bioanal Chem,2007,389(7-8):2259-2264.
    [3] Liu W Y, Li P, Feng F, et al. Quantitative determination of ilexgenin A in rat plasma byliquid chromatography coupled with mass spectrometry and its pharmacokinetics [J].J Chin Pharm Sci,2010,19(1):38-42.
    [4] Liu, H F, Yang J L, Du F F, et al. Absorption and disposition of ginsenosides after oraladministration of Panax notoginseng extract to rats [J]. Drug Metab. Dispos,2009,37(12):2290-2298.
    [5] Li X Y, Wang G J, Sun J G, et al. Pharmacokinetic and absolute bioavailability study oftotal panax notoginsenoside, a typical multiple constituent traditional Chinesemedicine (TCM) in rats [J]. Biol. Pharm. Bull,2007,30(5):847-851.
    [6] Xu Q F., Fang X,L, Chen D F. Pharmacokinetics and bioavailability of ginsenoside Rb1and Rg1from Panax notoginseng in rats [J]. J. Ethnopharmacol,2003,84(2-3):187-192.
    [7] Egan W J, Jauric G. Prediction of intestinal permeability [J]. Adv Drug Rev,2002,54(3):273-289.
    [8] Liu L, Liu K N, Wen Y B, et al. Development of a fully automated on-line solid phaseextraction and high-performance liquid chromatography with diode array detectionmethod for the pharmacokinetic evaluation of bavachinin: a study on absolutebioavailability and dose proportionality [J]. J Chromatogr B Analyt Technol BiomedLife Sci,2012,893-894:21-28.
    [9] Guidance for industry, Bioanalytical method validation (updated2001).http://www.fda.gov/cder/guidance/index.htm.(U.S.Department of Health and Human Services, Guidance forIndustry—Bioanalytical Method Validation, Food and Drug Administration,CenterforDrugEvaluationandResearch,May2001,http://www.fda.gov/cder/guidance/4252fnl.pdf.)
    [10] Yuan R, Lin Y. Traditional Chinese medicine: an approach to scientific proof andclinical validation [J]. Pharmacology&Therapeutics,2000,86(4):191–198.
    [11] Cai Z W; Lee F S C, Wang X R, et al. A Capsule Review of Recent Studies on theApplication of Mass Spectrometry in the Analysis of Chinese Medicinal Herbs [J].Mass Spectrom,2002,37(10):1013–1024.
    [12] Zhu H, Ding L, Shakya S,et al. Simultaneous determination of asperosaponin VI andits active metabolite hederagenin in rat plasma by liquid chromatography–tandemmass spectrometry with positive/negative ion-switching electrospray ionization and itsapplication in pharmacokinetic study [J]. Journal of Chromatography B,2011,879(30):3407-3414.
    [13] Zheng Y F, Qi L W, Zhou J L, et al. Structural characterization and identification ofoleanane-type triterpene saponins in Glycyrrhiza uralensis Fischer by rapid-resolutionliquid chromatography coupled with time-of-flight mass spectrometry [J]. RapidCommun Mass Spectrom,2010,24(22):3261–3270.
    [14] Qiao X, Zhang X, Ye M, et al. Rapid characterization of triterpene saponins fromConyza blinii by liquid chromatography coupled with mass spectrometry [J]. RapidCommun. Mass Spectrom,2010,24(22):3340-3350.
    [15] Ha Y W, Na Y C, Ha I J, et al. Liquid chromatography/mass spectrometry-basedstructural analysis of new platycoside metabolites transformed by human intestinalbacteria [J]. J Pharm Biomed Anal,2010,51(1):202-209.
    [16] Komoto N, Ichikawa M, Ohta S, et al. Murine metabolism and absorption oflancemaside A, an active compound in the roots of Codonopsis lanceolata [J]. J NatMed,2010,64(3):321-329.
    [17] Cai Z, Qian T, Wong R N S, et al. Liquid chromatography–electrospray ionizationmass spectrometry for metabolism and pharmacokinetic studies of ginsenoside Rg3[J]. Analytica Chimica Acta,2003,492(1-2):283-293.
    [1] Dressman J B, Lennernas H. Oral Drug Absorption:Prediction and Assessment [M].Marcel Dekker,Inc,2000.
    [2]刘亚丽,熊贤兵,苏丹,等.丰城鸡血藤中刺芒柄花素的大鼠肠吸收研究[J].中国中药杂志,2013,38(20):3571-3575.
    [3陈振华,管咏梅,张妮,等.白头翁总皂苷在体外肠外翻试验中吸收特性考察[J].中国实验方剂学杂志,2012,18(18):30-33.
    [4] Amidon G L,Lennernas H,Shah V P, et al. A theoretical basis for a biopharmaceuticsdrug classification:the correlation of in vitro drug product dissolution and in vivobioavailability [J].Pharm Res,1995,12(3):413-420.
    [1]闫海霞.鼠尾草酸在大鼠体内的药物动力学及代谢研究[D].沈阳:沈阳药科大学,2005.
    [2] Liu Y L, Song Y G, Xu Q M, et al. Validated rapid resolution LC-ESI–MS/MS methodfor simultaneous determination of five pulchinenosides fromPulsatilla chinensis(Bunge) Regel in rat plasma: Application to pharmacokinetics and bioavailabilitystudies [J]. J Chromatogra B,2013,942-943:141-150.
    [3Feng L, Wang L, Hu C, et al. Pharmacokinetics,Tissue Distri-bution,Metabolism,andExcretion of Ginsenoside Rg1in Rats [J]. Archives of Pharmacal Research,2010,33(12):1975-1984.
    [4] Udeani G O, Zhao G M, Geun S Y, et al. Pharmacokinetics and tissue distribution ofbetulinic acid CD-1mice [J]. Biopharma Drug Disposit,1999,20(8):379-383.
    [5]刘智宇,江蔚新,吴斌.皂苷类成分吸收分布和代谢及排泄研究进展[J].中国现代药物应用,2012,24(21):106.
    [6] Egan W J, Jauric G. Prediction of intestinal permeability [J]. Adv Drug Rev,2002,54(3):273-289.
    [7] Xu Q M, Shu Z, Yang S L, et al. Antitumor activity of Pulsatilla chinensis (Bunge)Regel saponins in human liver tumor7402cells in vitro and in vivo [J].Phytomedicine,2012,19(3-4):293-300.
    [1]梁文权,李高,刘建平.生物药剂学与药物动力学[M].北京:人民卫生出版社,2000.
    [2] Paradkar A. Biopharmaceutics&Pharmacokinetics [M]. Pune:Pragati Books Pvt.Ltd,2008.
    [3] Liu Y L, Song Y G, Xu Q M, et al. Validated rapid resolution LC-ESI–MS/MS methodfor simultaneous determination of five pulchinenosides fromPulsatilla chinensis(Bunge) Regel in rat plasma: Application to pharmacokinetics and bioavailabilitystudies [J].J Chromatogra B,2013,942-943:141-150.
    [4]韦凤华,宋林,何毅,等,人参皂苷Rg1在大鼠体内的代谢与排泄研究[J].华西药学杂志,2010,25(3):302-305.
    [5]杨秀伟,桂方晋,田建明,等.人参皂苷-Rg2在大鼠体内的药代动力学[J].中国药理学通报,2009,25(7):967-970.
    [6]邴飞虹,易艳东,张国斌.蜈蚣三七有效成分W3单次给药后在小鼠体内的药代动力学[J].中国药科大学学报,2006,37(6):523-526.
    [1] Li C, Homma M, Oka K. Characteristica of delayed excretion of flavonoids in humanurine after administration of sho-saiko-to,a herbal medicine [J]. Biological&Pharmaceutical Bulletin,1999,21(12):1251-1257.
    [2] Zuo F,Yan M Z,Zhou Z M,et al.Reasearch Progress on Metabbolism of effectiveingredients of Chinese material medica in intestina flora [J]. China Journal of ChineseMateria Medica,2002,27(8):568-572.
    [1]程晓华,熊玉卿.五环三萜皂苷的药代动力学研究进展[J].中国临床药理学杂志,2008,24(5):443-445.
    [2]张怡红.离体培养的肠道菌群对黄山药总皂苷的代谢研究[D].广州:广东药学院,2008.
    [3]赵雷,陈昕,陈晓.肠内菌群对人参皂苷Rb1的代谢特点[J].长春:长春中医学院学报,2004,20(1):45-46,49.
    [4]陈昕,周秋丽,王本祥.人参皂苷Rb1的肠内菌代谢[J].药学学报,1999,34(6):410-414.
    [5]张钰哲.离体大鼠肠内菌群对知母甾体皂苷代谢研究[J].大理学院学报,2012,11(3):5-8.
    [6] Han M, Sha X, Wu Y, et al. Oral absorption of ginsenoside Rb1using in vitro and invivo models [J]. Planta Med,2006,72(5):398-404.
    [7]张怡红.离体培养的肠道菌群对黄山药总皂苷的代谢研究[D].广州:广东药学院,2008.
    [8]陈昕,周秋丽,王本祥.人参皂苷Rb1的肠内菌代谢[J].药学学报,1999,34(6):410-414.
    [9]张钰哲.离体大鼠肠内菌群对知母甾体皂苷代谢研究[J].大理学院学报,2012,11(3):5-8.
    [10] Ha Y W, Na Y C, Ha I J, et al. Liquid chromatography/mass spectrometry-basedstructural analysis of new platycoside metabolites transformed by human intestinalbacteria [J]. J Pharm Biomed Anal,2010,51(1):202-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700