用户名: 密码: 验证码:
模式识别受体在中华绒螯蟹特异性先天免疫中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华绒螯蟹是我国重要的养殖经济动物品种,是长江流域居民的重要传统食物。随着对其集约化养殖的大规模发展,由细菌,病毒或立克次氏体引起的各种疾病随之大规模爆发,造成了巨大的经济损失。因此针对该物种先天免疫系统以及生物防御机制的深入研究刻不容缓。先天免疫和适应性免疫(获得性免疫)是动物宿主(Host)防御病毒、细菌和寄生虫等病原体(Pathogen)的两种免疫防御形式,两者间本质的区别在于:适应性免疫包括抗原特异性识别和免疫记忆,而先天免疫则没有。目前认为,先天免疫存在于所有后生动物中,而适应性免疫则仅存在于高等脊椎动物。无脊椎动物先天免疫“非己”识别的基础是其体内存在某些模式识别受体(PRRs),能够特异性地识别并结合病原体表面保守的病原相关分子模式(PAMPs),如脂多糖(LPS)、肽聚糖(PGN)和葡聚糖(GLU)等。通过识别PAMPs,这些受体可以激活免疫系统中的蛋白酶以及通过免疫细胞内的信号转导途径引发免疫反应。本研究通过RNA-Seq高通量二代测序技术,构建了中华绒螯蟹血细胞经病原相关模式分子差异诱导后的转录组文库,从中筛选得到了无脊椎动物重要的模式识别受体分子。其中C型凝集素蛋白(C-type lectin domain,CTLD containing proteins)家族基因具有庞大的基因组分子多样性(至少存在40种以上的亚型分子),从而能够在蛋白质水平产生丰富的功能多样性。同时,本研究还发现单个免疫基因能够通过转录水平的外显子可变剪切调控,从而使得单个免疫分子产生数以万级的分子多样性,例如免疫球蛋白超家族基因Dscam,并针对其在中华绒螯蟹先天免疫系统中的重要功能进行了深入研究。
     针对无脊椎动物模式识别受体C型凝集素在甲壳动物中的分子多样性和特异性免疫功能,我们基于E.sinensis进行了以下研究。通过本实验室成功构建的一系列基于RNA-Seq的表达序列标签cDNA文库以及血细胞转录组文库,我们克隆得到四条C型凝集素基因,分别是EsLecA、EsLecF和EsLecG。通过序列比对和聚类分析发现上述基因序列均具有一个N端信号肽和一个C端糖类识别功能域(Carbohydrate Recognition Domain)。转录水平检测结果表明(1)EsLecA和EsLecG在所有检测组织中均表达;(2)经脂多糖(LPS)诱导后,EsLecA和EsLecG在肝胰腺、鳃和血细胞等免疫器官中均有不同程度的诱导表达;而EsLecF仅在肝胰腺中特异性表达,并且经LPS诱导后能够大量表达。原核表达重组rEsLecA、rEsLecF和rEsLecG蛋白能够广泛结合不同的病原微生物,包括革兰氏阳性菌、革兰氏阴性菌和真菌,并且其微生物结合活性是钙离子不依赖的。病原微生物生长抑制检测和抗菌活性检测结果表明rEsLecA、rEsLecF和rEsLecG蛋白均能够不同程度地抑制细菌生长甚至直接杀死细菌。体外细胞包裹实验验证了rEsLecA、rEsLecF和rEsLecG蛋白均具有不同程度的细胞调理活性,并能够在体外刺激血细胞的包裹活性。通过上述研究,初步阐明了中华绒螯蟹C型凝集素具有核酸水平的分子多样性和蛋白水平的功能多样性,为甲壳动物乃至其他无脊椎动物先天免疫特异性分子机制的研究提供了重要参考。
     近年来,无脊椎动物先天免疫的特异性水平及其免疫记忆受到了极大关注,“替代适应性免疫”(Alternative adaptive immunity)在节肢动物、软体动物以及棘皮动物等无脊椎动物中的发现,使得“适应性免疫是脊椎动物免疫的一种专有特征”这一传统观点受到了严峻挑战。节肢动物Dscam基因可通过外显子选择性剪切方式产生惊人的分子多态性从而特异性地识别不同的病原体。我们从大量转录组信息的分析中发现并成功克隆得到了中华绒螯蟹Dscam基因(EsDscam),通过生物信息学比对分析发现其由典型功能域组成,包括1个信号肽(Signal-peptide),10个免疫球蛋白功能域(Immunoglobulin,Ig domains),6个三型纤连蛋白功能域(Fibronectin type Ⅲ domains,FNⅢ),一个跨膜功能域(Transmembrane domain, TM)和一个细胞质尾(Cytoplasmic tail)。在EsDscam中我们通过TA克隆测序技术发现了4个可变剪切区:Ig2功能域的N端部分(25个亚型),Ig3功能域的N端部分(30个亚型),Ig7功能域(18个亚型)和跨膜功能域(2个亚型),至少可以产生27000种不同的亚型。EsDscam在E.sinensis的所有组织中均广泛表达,尤其是在免疫系统、消化系统和神经系统中表达最高。使用脂多糖(LPS)、肽聚糖(PGN)和葡聚糖(GLU)分别对E.sinensis进行体内免疫刺激后,EsDscam基因在血细胞中表现出了差异诱导表达模式。通过RACE-PCR技术,我们发现EsDscam具有两种表达类型,分别是跨模型(Transmembrane或Membrane-bound)和分泌型(Secreted或Cytosolic).且与跨模型相比,分泌型在不同模式分子(PAMPs)刺激后显著表达。免疫荧光定位结果证明EsDscam蛋白定位在中华绒螫蟹血细胞表面。本研究初步阐明中华绒螯蟹Dscam基因能够通过外显子可变剪切产生数以万级的分子多样性及其经病原刺激后的差异诱导剪切现象,为后续针对其免疫识别的功能多样性研究提供数据支持,为中华绒螯蟹乃至甲壳动物疫苗的研发提供了一定的理论基础。
The freshwater Chinese mitten crab, Eriocheir sinensis (Henri Milne Edwards1854), is a traditional savory food especially in the Yangtze River Area, and comprises one of the most economically important freshwater aquatic species of China. With the development of intensive aquaculture, various diseases caused by bacteria, viruses or rickettsia-like organisms have also begun to emerge and have resulted in enormous economic loss. Therefore, an improved understanding of the innate immunity of this particular crab and its bio-defense mechanisms has become a research priority. In the absence of an adaptive immune system, which in the higher vertebrates is characterized by the vast diversity of somatically rearranged immunological receptors like antibodies, invertebrates including E. sinensis rely solely on innate immune mechanism to alleviate the long lasting selective pressure from various kinds of parasites. The most straightforward basis for immune specificity in these organisms relies on the genetic diversity of pattern recognition receptors (PRRs) and/or immune effectors. In my PhD project, I firstly constructed comparative transcriptomic libraries using Next Generation Sequencing approach (e.g. via Roche454and Illumina), subsequently carried out sequence alignments and annotations. Aiming to dissect the molecular mechanisms of invertebrate specific immune responses, I focused on the function of some important PRRs in crustaceans such as the C-type lectin domain-(CTLD) containing proteins which were identified to be abundant in immune organs or cells like the hepatopancreas or hemocytes with highly molecular diversity (40isoforms at least). I also studied other pattern recognition molecules such as Dscam, which was detected to have surprisingly molecular diversity using exons alternative splicing, acted as important role in the innate immune system of E.sinensis.
     As an important member of PRRs, CTLD containing proteins exist as either transmembrane receptors or soluble proteins in circulating fluids. They play crucial roles in innate immunity such as non-self-recognition and clearance of invading microorganisms, via recognizing and non-covalently binding to specific sugar moieties and agglutinating pathogens by binding to cell surface glycoproteins and glycoconjugates. Based on our previously performed transcriptomic analysis using large-scale RNA-Seq (plus unpublished data from differentially expression transcriptomes from hemocytes), we successively obtained numerous sequences with identical CTLDs inclusions (approximately40unique sequences). Subsequently, we performed a set of in-vivo immuno-challenge tests of these CTLDs (to be continued) using Lipopolysaccharide (LPS:an endotoxin from Gram-negative bacterial Escherichia coli) as a stimulus. Real-time quantitative PCR results revealed that:i) two of these CTLDs (EsLecA and EsLecG) were immune-inducible in all tested immune organs/cells such as hepatopancreas, gills and hemocytes; and ii) an additional CTLD (EsLecF) was immune-inducible in hepatopancreas only. To dissect their exact roles in innate immunity, we performed a series of in-vitro tests with the respective recombinant CTLD proteins, which were generated using prokaryotic expression systems combined with affinity chromatography. The in-vitro protein-level analysis demonstrated that, these selected three CTLD proteins consistently expressed wide spectrum microbial binding activities and could all differentially induced microbe aggregation. Surprisingly, their microbial-binding and microbial-aggregation activities were calcium-independent. Moreover, microbial growth inhibitory and also antibacterial activity assays revealed the proteins'abilities of suppressing microbial growth and directly killing microbes respectively. Furthermore, an encapsulation assay demonstrated an opsonic function of these CTLD proteins.
     As discussed above, invertebrates lack adaptive immunity which can mediate both immune specificity and memory. At the same time, invertebrate taxa are known from phenotypic analysis to express high levels of immune specificity which possibly depends on some diversified protein family involved in pathogen recognition or elimination. The Dscam proteins (Down syndrome cell adhesion molecule) belong to the immunoglobulin super family (IgSF) and are of particular interest in this context because of their diversified domain architecture. We were able to successfully isolate and characterize the first crab Dscam from E. sinensis. EsDscam shows the typical Dscam domain architecture, including one signal-peptide,10immunoglobulin (Ig) domains,6fibronectin type III domains (FNIII), one transmembrane domain (TM) and one cytoplasmic tail. It was detected to have four hypervariable regions in the N-terminal halves of Ig2(25) and Ig3domain (30), the complete Ig7(18) and also the transmembrane domain (2), thus potentially generating at least27,000unique isoforms through exons alternative splicing mechanisms. Transcription of EsDscam was both i) detected in all tissues, especially those of the immune system, digestive system and nerve system; and ii) significantly induced in hemocytes upon exposure to pathogen surface molecules, e.g. LPS, peptidoglycans (PGN) and β-1,3-glucans (Glu) injection. Importantly, both membrane-bound and secreted Dscam isoforms were expressed in E. sinensis. Moreover, the secreted isoforms were extensively transcribed upon challenge with different pathogen molecules. Results from immuno-localization assay revealed that EsDscam evenly distributed on the cell surface of hemocytes. These findings strongly suggest that EsDscam is a hypervariable PRR in the innate immune system of the E. sinensis.
引文
Ao, J., E. Ling and X. Q. Yu (2007). Drosophila C-type lectins enhance cellular encapsulation. Mol Immunol 44(10):2541-2548.
    Baldridge, G. D., T. J. Kurtti and U. G. Munderloh (2005). Susceptibility of Rickettsia monacensis and Rickettsia peacockii to Cecropin A, Ceratotoxin A, and lysozyme. Curr Microbiol 51(4):233-238.
    Barrow, A. D. and J. Trowsdale (2006). You say ITAM and I say ITIM, let's call the whole thing off:the ambiguity of immunoreceptor signalling. Eur J Immunol 36(7):1646-1653.
    Brites, D., S. McTaggart, K. Morris, J. Anderson, K. Thomas, I. Colson, T. Fabbro, T. J. Little, D. Ebert and L. Du Pasquier (2008). The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 25(7):1429-1439.
    Brown, K. L. and R. E. Hancock (2006). Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18(1):24-30.
    Cerenius, L., P. Jiravanichpaisal, H.-p. Liu and I. Soderhall (2010). Crustacean Immunity. Invertebrate Immunity. K. Soderhall, Springer US.708:239-259.
    Cerenius, L., S. Kawabata, B. L. Lee, M. Nonaka and K. Soderhall (2010). Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35(10):575-583.
    Cerenius, L. and K. Soderhall (2013). Variable immune molecules in invertebrates. J Exp Biol 216(Pt 23):4313-4319.
    Chang, C. I., Y. Chelliah, D. Borek, D. Mengin-Lecreulx and J. Deisenhofer (2006). Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311(5768):1761-1764.
    Chang, C. I., K. Ihara, Y. Chelliah, D. Mengin-Lecreulx, S. Wakatsuki and J. Deisenhofer (2005). Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci U S A 102(29):10279-10284.
    Chen, D.-W., M. Zhang and S. Shrestha (2007). Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chemistry 103(4):1343-1349.
    Cheng, L., X. K. Jin, W. W. Li, S. Li, X. N. Guo, J. Wang, Y. N. Gong, L. He and Q. Wang (2013). Fatty acid binding proteins FABP9 and FABP10 participate in antibacterial responses in Chinese mitten crab, Eriocheir sinensis. PLoS One 8(1): e54053.
    Cherry, S. and N. Silverman (2006). Host-pathogen interactions in drosophila:new tricks from an old friend. Nat Immunol 7(9):911-917.
    Chiang, Y.-A., H.-Y. Hung, C.-W. Lee, Y.-T. Huang and H.-C. Wang (2013). Shrimp Dscam and its cytoplasmic tail splicing activator serine/arginine (SR)-rich protein B52 were both induced after white spot syndrome virus challenge. Fish Shellfish Immunol 34(1):209-219.
    Chou, P.-H., H.-S. Chang, I. T. Chen, C.-W. Lee, H.-Y. Hung and K. C. Han-Ching Wang (2011). Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish Shellfish Immunol 30(4-5):1109-1123.
    Chou, P.-H., H.-S. Chang, I. T. Chen, H.-Y. Lin, Y.-M. Chen, H.-L. Yang and K. C. H.-C. Wang (2009). The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Dev Comp Immunol 33(12): 1258-1267.
    Christophides, G. K., E. Zdobnov, C. Barillas-Mury, E. Birney, S. Blandin, C. Blass, P. T. Brey, F. H. Collins, A. Danielli, G. Dimopoulos, C. Hetru, N. T. Hoa, J. A. Hoffmann, S. M. Kanzok, I. Letunic, E. A. Levashina, T. G. Loukeris, G. Lycett, S. Meister, K. Michel, L. F. Moita, H.-M. Muller, M. A. Osta, S. M. Paskewitz, J.-M. Reichhart, A. Rzhetsky, L. Troxler, K. D. Vernick, D. Vlachou, J. Volz, C. von Mering, J. Xu, L. Zheng, P. Bork and F. C. Kafatos (2002). Immunity-Related Genes and Gene Families in Anopheles gambiae. Science 298(5591):159-165.
    Cooper, M. D. and M. N. Alder (2006). The Evolution of Adaptive Immune Systems. Cell 124(4):815-822.
    Crayton, M., B. Powell, T. Vision and M. Giddings (2006). Tracking the evolution of alternatively spliced exons within the Dscam family. BMC Evol Biol 6(1):16.
    Davis, S. J. and P. A. van der Merwe (2006). The kinetic-segregation model:TCR triggering and beyond. Nat Immunol 7(8):803-809.
    De Gregorio, E., P. T. Spellman, G. M. Rubin and B. Lemaitre (2001). Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 98(22):12590-12595.
    Dermody, T. S., E. Kirchner, K. M. Guglielmi and T. Stehle (2009). Immunoglobulin Superfamily Virus Receptors and the Evolution of Adaptive Immunity. PLoS Pathog 5(11):e1000481.
    Dheilly, N. M., C. Adema, D. A. Raftos, B. Gourbal, C. Grunau and L. Du Pasquier (2014). No more non-model species:The promise of next generation sequencing for comparative immunology. Dev Comp Immunol.
    Dodd, R. B. and K. Drickamer (2001). Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiol 11(5): 71R-79R.
    Dong, Y., Chris M. Cirimotich, A. Pike, R. Chandra and G. Dimopoulos (2012). Anopheles NF-κB-Regulated Splicing Factors Direct Pathogen-Specific Repertoires of the Hypervariable Pattern Recognition Receptor AgDscam. Cell Host & Microbe 12(4):521-530.
    Dong, Y., H. E. Taylor and G. Dimopoulos (2006). AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System. PLoS Biol 4(7):e229.
    Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263(20):9557-9560.
    Drickamer, K. and M. E. Taylor (1993). Biology of Animal Lectins. Annu Rev Cell Biol 9(1):237-264.
    Du Pasquier, L. (2001). The immune system of invertebrates and vertebrates. Comp Biochem Phys B:Biochem Mol Biol 129(1):1-15.
    Endo, Y., M. Takahashi and T. Fujita (2006). Lectin complement system and pattern recognition. Immunobiol 211(4):283-293.
    Fanning, A. S. and J. M. Anderson (1999). PDZ domains:fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103(6):767-772.
    FAO (2007). Yearbook of fishery and aquaculture statistics 2006. Rome, FAO publications.
    Frank, S. A. (2000). Specific and non-specific defense against parasitic attack. J Theor Biol 202(4):283-304.
    Gabius, H. J. (2006). Cell surface glycans:the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 26(1):43-79.
    Gobert, V., M. Gottar, A. A. Matskevich, S. Rutschmann, J. Royet, M. Belvin, J. A. Hoffmann and D. Ferrandon (2003). Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302(5653):2126-2130.
    Gottar, M., V. Gobert, A. A. Matskevich, J. M. Reichhart, C. Wang, T. M. Butt, M. Belvin, J. A. Hoffmann and D. Ferrandon (2006). Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127(7):1425-1437.
    Gottar, M., V. Gobert, T. Michel, M. Belvin, G. Duyk, J. A. Hoffmann, D. Ferrandon and J. Royet (2002). The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416(6881): 640-644.
    Guo, H. Z., P. F. Zou, J. P. Fu, Z. Guo, B. K. Zhu, P. Nie and M. X. Chang (2011). Characterization of two C-type lectin-like domain (CTLD)-containing proteins from the cDNA library of Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol 30(2):515-524.
    Guo, X. N., X. K. Jin, S. Li, A. Q. Yu, M. H. Wu, S. J. Tan, Y. T. Zhu, W. W. Li, P. Zhang and Q. Wang (2013). A novel C-type lectin from Eriocheir sinensis functions as a pattern recognition receptor with antibacterial activity. Fish Shellfish Immunol 35(5):1554-1565.
    He, L., H. Jiang, D. Cao, L. Liu, S. Hu and Q. Wang (2013). Comparative transcriptome analysis of the accessory sex gland and testis from the Chinese mitten crab (Eriocheir sinensis). PLoS One 8(1):e53915.
    He, L., Q. Wang, X. Jin, Y. Wang, L. Chen, L. Liu and Y. Wang (2012). Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS One 7(3):e33735.
    Heard, N. A., C. C. Holmes, D. A. Stephens, D. J. Hand and G. Dimopoulos (2005). Bayesian coclustering of Anopheles gene expression time series:study of immune defense response to multiple experimental challenges. Proc Natl Acad Sci U S A 102(47):16939-16944.
    Herrin, B. R. and M. D. Cooper (2010). Alternative Adaptive Immunity in Jawless Vertebrates. J Immunol 185(3):1367-1374.
    Imler, J. L. and P. Bulet (2005). Antimicrobial peptides in Drosophila:structures, activities and gene regulation. Chem Immunol Allergy 86:1-21.
    Irving, P., L. Troxler, T. S. Heuer, M. Belvin, C. Kopczynski, J. M. Reichhart, J. A. Hoffmann and C. Hetru (2001). A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A98(26):15119-15124.
    Iwanaga, S. and B. L. Lee (2005). Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38(2):128-150.
    Janeway C A, T. P., Walport M,Shlomchik M., Ed. (2001). Immunobiology. The Immune System in Health and Disease. New York:, Garland Science.
    Janeway, C. A. (1989). Approaching the Asymptote? Evolution and Revolution in Immunology. Cold Spring Harbor Symposia on Quantitative Biology 54:1-13.
    Janeway, C. A., Jr. and R. Medzhitov (2002). Innate immune recognition. Annu Rev Immunol 20:197-216.
    Jiang, H., Y.-M. Cai, L.-Q. Chen, X.-W. Zhang, S.-N. Hu and Q. Wang (2009). Functional Annotation and Analysis of Expressed Sequence Tags from the Hepatopancreas of Mitten Crab (Eriocheir sinensis). Mar Biotechnol 11(3): 317-326.
    Jiang, H., Y. Yin, X. Zhang, S. Hu and Q. Wang (2009). Chasing relationships between nutrition and reproduction:A comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. Comp Biochem Phys D: Genomics Proteomics 4(3):227-234.
    Jin, X.-K., S. Li, X.-N. Guo, L. Cheng, M.-H. Wu, S.-J. Tan, Y.-T. Zhu, A.-Q. Yu, W.-W. Li and Q. Wang (2013). Two antibacterial C-type lectins from crustacean, Eriocheir sinensis, stimulated cellular encapsulation in vitro. Dev Comp Immunol 41(4)544-552.
    Jin, X.-K., W.-W. Li, L. Cheng, S. Li, X.-N. Guo, A.-Q. Yu, M.-H. Wu, L. He and Q. Wang (2012). Two novel short C-type lectin from Chinese mitten crab, Eriocheir sinensis, are induced in response to LPS challenged. Fish Shellfish Immunol 33(5):1149-1158.
    Jin, X. K., X. N. Guo, S. Li, M. H. Wu, Y. T. Zhu, A. Q. Yu, S. J. Tan, W. W. Li, P. Zhang and Q. Wang (2013). Association of a hepatopancreas-specific C-type lectin with the antibacterial response of Eriocheir sinensis. PLoS One 8(10): e76132.
    Jin, X. K., W. W. Li, M. H. Wu, X. N. Guo, S. Li, A. Q. Yu, Y. T. Zhu, L. He and Q. Wang (2013). Immunoglobulin superfamily protein Dscam exhibited molecular diversity by alternative splicing in hemocytes of crustacean, Eriocheir sinensis. Fish Shellfish Immunol 35(3):900-909.
    Jiravanichpaisal, P., B. L. Lee and K. Soderhall (2006). Cell-mediated immunity in arthropods:hematopoiesis, coagulation, melanization and opsonization. Immunobiol 211(4):213-236.
    Jomori, T. and S. Natori (1992). Function of the lipopolysaccharide-binding protein of Periplaneta americana as an opsonin. FEBS Lett 296(3):283-286.
    Junkunlo, K., A. Prachumwat, A. Tangprasittipap, S. Senapin, S. Borwornpinyo, T. W. Flegel and K. Sritunyalucksana (2012). A novel lectin domain-containing protein (LvCTLD) associated with response of the whiteleg shrimp Penaeus (Litopenaeus) vannamei to yellow head virus (YHV). Dev Comp Immunol 37(3-4):334-341.
    Kaneko, T., T. Yano, K. Aggarwal, J. H. Lim, K. Ueda, Y. Oshima, C. Peach, D. Erturk-Hasdemir, W. E. Goldman, B. H. Oh, S. Kurata and N. Silverman (2006). PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7(7): 715-723.
    Kerrigan, A. M. and G. D. Brown (2009). C-type lectins and phagocytosis. Immunobiol 214(7):562-575.
    Koizumi, N., M. Imamura, T. Kadotani, K. Yaoi, H. Iwahana and R. Sato (1999). The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett 443(2):139-143.
    Kuo, T. H., S. C. Chuang, S. Y. Chang and P. H. Liang (2006). Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. Biochem J 393(Pt 3):757-766.
    Kurata, S., S. Ariki and S. Kawabata (2006). Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiol 211(4):237-249.
    Kurtz, J. (2004). Memory in the innate and adaptive immune systems. Microbes Infect 6(15):1410-1417.
    Kurtz, J. and S. A. Armitage (2006). Alternative adaptive immunity in invertebrates. Trends Immunol 27(11):493-496.
    Kurtz, J. and K. Franz (2003). Innate defence:evidence for memory in invertebrate immunity. Nature 425(6953):37-38.
    Lazzaro, B. P. and M. R. Galac (2006). Disease pathology:wasting energy fighting infection. Curr Biol 16(22):R964-965.
    Lazzaro, B. P., T. B. Sackton and A. G. Clark (2006). Genetic variation in Drosophila melanogaster resistance to infection:a comparison across bacteria. Genetics 174(3):1539-1554.
    Lazzaro, B. P., B. K. Sceurman and A. G. Clark (2004). Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303(5665): 1873-1876.
    Lee, C.-W., I. T. Chen, P.-H. Chou, H.-Y. Hung and K. C. H.-C. Wang (2012). Heterogeneous nuclear ribonucleoprotein hrp36 acts as an alternative splicing repressor in Litopenaeus vannamei Dscam. Dev Comp Immunol 36(1):10-20.
    Li, F. and J. Xiang (2013). Recent advances in researches on the innate immunity of shrimp in China. Dev Comp Immunol 39(1-2):11-26.
    Li, S., X. K. Jin, X. N. Guo, A. Q. Yu, M. H. Wu, S. J. Tan, Y. T. Zhu, W. W. Li and Q. Wang (2013). A double WAP domain-containing protein Es-DWD1 from Eriocheir sinensis exhibits antimicrobial and proteinase inhibitory activities. PLoS One 8(8):e73563.
    Li, W. W., L. He, X. K. Jin, H. Jiang, L. L. Chen, Y. Wang and Q. Wang (2011). Molecular cloning, characterization and expression analysis of cathepsin A gene in Chinese mitten crab, Eriocheir sinensis. Peptides 32(3):518-525.
    Li, W. W, X. K. Jin, L. He, H. Jiang, Y. N. Gong, Y. N. Xie and Q. Wang (2010). Molecular cloning, characterization, expression and activity analysis of cathepsin L in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol 29(6): 1010-1018.
    Li, W. W, X. K. Jin, L. He, H. Jiang, Y. N. Xie and Q. Wang (2010). Molecular cloning, characterization and expression analysis of cathepsin C gene involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis. Dev Comp Immunol 34(11):1170-1174.
    Lim, J. H., M. S. Kim, H. E. Kim, T. Yano, Y. Oshima, K. Aggarwal, W. E. Goldman, N. Silverman, S. Kurata and B. H. Oh (2006). Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J Biol Chem 281(12):8286-8295.
    Lin, X. and I. Soderhall (2011). Crustacean hematopoiesis and the astakine cytokines. Blood 117(24):6417-6424.
    Lin, X., K. Soderhall and I. Soderhall (2011). Invertebrate hematopoiesis:an astakine-dependent novel hematopoietic factor. J Immunol 186(4):2073-2079.
    Ling, E. and X. Q. Yu (2006). Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Dev Comp Immunol 30(3):289-299.
    Ling, E. and X. Q. Yu (2006). Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells. Dev Comp Immunol 30(3):301-309.
    Lis, H. and N. Sharon (1998). Lectins:Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem Rev 98(2):637-674.
    Litman, G. W. and M. D. Cooper (2007). Why study the evolution of immunity? Nat Immunol 8(6):547-548.
    Little, T. J., B. O'Connor, N. Colegrave, K. Watt and A. F. Read (2003). Maternal Transfer of Strain-Specific Immunity in an Invertebrate. Curr Biol 13(6): 489-492.
    Liu, Y. C., F. H. Li, B. Dong, B. Wang, W. Luan, X. J. Zhang, L. S. Zhang and J. H. Xiang (2007). Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Mol Immunol 44(4):598-607.
    Livak, K. J. and T. D. Schmittgen (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta] [Delta]CT Method. Methods 25(4):402-408.
    Luijckx, P., F. Ben-Ami, L. Mouton, L. Du Pasquier and D. Ebert (2011). Cloning of the unculturable parasite Pasteuria ramosa and its Daphnia host reveals extreme genotype-genotype interactions. Ecol Lett 14(2):125-131.
    Ma, T. H., J. A. Benzie, J. G. He and S. M. Chan (2008). PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon. J Invertebr Pathol 99(3):332-341.
    Ma, T. H., S. H. Tiu, J. G. He and S. M. Chan (2007). Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei:early gene down-regulation after WSSV infection. Fish Shellfish Immunol 23(2):430-437.
    Mellroth, P., J. Karlsson, J. Hakansson, N. Schultz, W. E. Goldman and H. Steiner (2005). Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc Natl Acad Sci U S A 102(18):6455-6460.
    Norton, N., D. Li and R. E. Hershberger (2012). Next-generation sequencing to identify genetic causes of cardiomyopathies. Curr Opin Cardiol 27(3):214-220.
    Pancer, Z. (2000). Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci U S A 97(24): 13156-13161.
    Pasare, C. and R. Medzhitov (2003). Toll pathway-dependent blockade of CD4+CD25+T cell-mediated suppression by dendritic cells. Science 299:1033-1036.
    Pasquier, L. D. (2006). Germline and somatic diversification of immune recognition elements in Metazoa. Immunol Lett 104(1-2):2-17.
    Pham, L. N., M. S. Dionne, M. Shirasu-Hiza and D. S. Schneider (2007). A Specific Primed Immune Response in Drosophila Is Dependent on Phagocytes. PLoS Pathog 3(3):e26.
    Pope, E. C., A. Powell, E. C. Roberts, R. J. Shields, R. Wardle and A. F. Rowley (2011). Enhanced Cellular Immunity in Shrimp (Litopenaeus vannamei) after 'Vaccination'. PLoS ONE 6(6):e20960.
    Riesgo, A., S. C. Andrade, P. P. Sharma, M. Novo, A. R. Perez-Porro, V. Vahtera, V. L. Gonzalez, G. Y. Kawauchi and G. Giribet (2012). Comparative description often transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool 9(1):33.
    Rowley, A. F. and A. Powell (2007). Invertebrate Immune Systems-Specific, Quasi-Specific, or Nonspecific? J Immunol 179(11):7209-7214.
    Royet, J., J. M. Reichhart and J. A. Hoffmann (2005). Sensing and signaling during infection in Drosophila. Curr Opin Immunol 17(1):11-17.
    Soderhall, I., E. Bangyeekhun, S. Mayo and K. Soderhall (2003). Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Dev Comp Immunol 27(8):661-672.
    Soderhall, K. and L. Cerenius (1992). Crustacean immunity. Annu Rev Fish Dis 2(0): 3-23.
    Soderhall, K. and L. Cerenius (1998). Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10(1):23-28.
    Soderhall, K. and V. J. Smith (1986). The Prophenoloxidase Activating System:The Biochemistry of Its Activation and Role in Arthropod Cellular Immunity, with Special Reference to Crustaceans. Immunity in Invertebrates. M. Brehelin, Springer Berlin Heidelberg:208-223.
    Sadd, B. M. and P. Schmid-Hempel (2006). Insect Immunity Shows Specificity in Protection upon Secondary Pathogen Exposure. Curr Biol 16(12):1206-1210.
    Sakai, M. (1999). Current research status of fish immunostimulants. Aquaculture 172(1-2):63-92.
    Schamel, W. W., R. M. Risueno, S. Minguet, A. R. Ortiz and B. Alarcon (2006). A conformation- and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol 27(4):176-182.
    Schmid-Hempel, P. (2005). Natural insect host-parasite systems show immune priming and specificity:puzzles to be solved. Bioessays 27(10):1026-1034.
    Schmucker, D., J. C. Clemens, H. Shu, C. A. Worby, J. Xiao, M. Muda, J. E. Dixon and S. L. Zipursky (2000). Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity. Cell 101(6):671-684.
    Schnare, M., G. Barton, A. Holt, K. Takeda, S. Akira and R. Medzhitov (2001). Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947-950.
    Schulenburg, H., C. Boehnisch and N. K. Michiels (2007). How do invertebrates generate a highly specific innate immune response? Mol Immunol 44(13): 3338-3344.
    Schulenburg, H. and J. Ewbank (2004). Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. BMC Evol Biol 4(1):49.
    Schulenburg, H., M. P. Hoeppner, J. Weiner Iii and E. Bornberg-Bauer (2008). Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) poteins in the nematode Caenorhabditis elegans. Immunobiol 213(3-4): 237-250.
    Schulenburg, H., J. Kurtz, Y. Moret and M. T. Siva-Jothy (2009). Introduction. Ecological immunology. Philos Trans R Soc Lond B Biol Sci 364(1513):3-14.
    Schulenburg, H., C. Leopold Kurz and J. J. Ewbank (2004). Evolution of the innate immune system:the worm perspective. Immunol Rev 198(1):36-58.
    Schwarz, R. S. and J. D. Evans (2013). Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev Comp Immunol 40(3-4):300-310.
    Smith, V. J. and J. R. S. Chisholm (1992). Non-cellular immunity in crustaceans. Fish Shellfish Immunol 2(1):1-31.
    Sun, Y. D., L. D. Fu, Y. P. Jia, X. J. Du, Q. Wang, Y. H. Wang, X. F. Zhao, X. Q. Yu and J. X. Wang (2008). A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol Immunol 45(2):348-361.
    Suzuki, T., T. Takagi, T. Furukohri, K. Kawamura and M. Nakauchi (1990). A calcium-dependent galactose-binding lectin from the tunicate Polyandrocarpa misakiensis. Isolation, characterization, and amino acid sequence. J Biol Chem 265(3):1274-1281.
    Tunkijjanukij, S. and J. A. Olafsen (1998). Sialic acid-binding lectin with antibacterial activity from the horse mussel:further characterization and immunolocalization. Dev Comp Immunol 22(2):139-150.
    Wang, D.-L., D. Zuo, L.-M. Wang, T. Sun, Q. Wang and Y.-L. Zhao (2012). Effects of white spot syndrome virus infection on immuno-enzyme activities and ultrastructure in gills of Cherax quadricarinatus. Fish Shellfish Immunol 32(5): 645-650.
    Wang, J., R. Nakad and H. Schulenburg (2012). Activation of the Caenorhabditis elegans FOXO family transcription factor DAF-16 by pathogenic Bacillus thuringiensis. Dev Comp Immunol 37(1):193-201.
    Wang, L. and P. Ligoxygakis (2006). Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiol 211(4):251-261.
    Wang, L.,L. Wang, D. Zhang, F. Li, M. Wang, M. Huang, H. Zhang and L. Song (2013). A novel C-type lectin from crab Eriocheir sinensis functions as pattern recognition receptor enhancing cellular encapsulation. Fish Shellfish Immunol 34(3):832-842.
    Wang, P. H., Z. H. Gu, X. D. Huang, B. D. Liu, X. X. Deng, H. S. Ai, J. Wang, Z. X. Yin, S. P. Weng, X. Q. Yu and J. G. He (2009). An immune deficiency homolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes. Mol Immunol 46(8-9):1897-1904.
    Wang, W., W. Gu, G. E. Gasparich, K. Bi, J. Ou, Q. Meng, T. Liang, Q. Feng, J. Zhang and Y. Zhang (2011). Spiroplasma eriocheiris sp. nov., associated with mortality in the Chinese mitten crab, Eriocheir sinensis. Int J Syst Evol Microbiol 61(Pt 4):703-708.
    Wang, W. and Z. Gu (2002). Rickettsia-like organism associated with tremor disease and mortality of the Chinese mitten crab Eriocheir sinensis. Dis Aquat Organ 48(2):149-153.
    Wang, W., N. Zhu, Z. Gu, K. Du and Z. Xu (2002). Study on the transmission of tremor disease (TD) in the Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda). J Invertebr Pathol 81(3):202-204.
    Wang, X. W. and J. X. Wang (2013). Diversity and multiple functions of lectins in shrimp immunity. Dev Comp Immunol 39(1-2):27-38.
    Wang, X. W., X. W. Zhang, W. T. Xu, X. F. Zhao and J. X. Wang (2009). A novel C-type lectin (FcLec4) facilitates the clearance of Vibrio anguillarum in vivo in Chinese white shrimp. Dev Comp Immunol 33(9):1039-1047.
    Watson, F. L., R. Puttmann-Holgado, F. Thomas, D. L. Lamar, M. Hughes, M. Kondo, V. I. Rebel and D. Schmucker (2005). Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects. Science 309(5742):1874-1878.
    Watthanasurorot, A., P. Jiravanichpaisal, H. Liu, I. Soderhall and K. Soderhall (2011). Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus. PLoS Pathog 7(6):e1002062.
    Weis, W. I., R. Kahn, R. Fourme, K. Drickamer and W. A. Hendrickson (1991). Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254(5038):1608-1615.
    Xu, Q., R. Zeng, X. F. Wu and K. Y. Wang (2000). Expression of isolated C-type carbohydrate recognition domains. Biochem Biophys Res Commun 271(3): 677-681.
    Xu, W. T., X. W. Wang, X. W. Zhang, X. F. Zhao, X. Q. Yu and J. X. Wang (2010). A new C-type lectin (FcLec5) from the Chinese white shrimp Fenneropenaeus chinensis. Amino Acids 39(5):1227-1239.
    Yamakawa, K., Y.-K. Huo, M. A. Haendel, R. Hubert, X.-N. Chen, G. E. Lyons and J. R. Korenberg (1998). DSCAM:A Novel Member of the Immunoglobulin Superfamily Maps in a Down Syndrome Region and is Involved in the Development of the Nervous System. Hum Mol Genet 7(2):227-237.
    Young Lee, S. and K. Soderhall (2002). Early events in crustacean innate immunity. Fish Shellfish Immunol 12(5):421-437.
    Yu, A. Q., X. K. Jin, X. N. Guo, S. Li, M. H. Wu, W. W. Li and Q. Wang (2013). Two novel Toll genes (EsTolll and EsTol12) from Eriocheir sinensis are differentially induced by lipopolysaccharide, peptidoglycan and zymosan. Fish Shellfish Immunol 35(4):1282-1292.
    Yu, A. Q., X. K. Jin, S. Li, X. N. Guo, M. H. Wu, W. W. Li and Q. Wang (2013). Molecular cloning and expression analysis of a dorsal homologue from Eriocheir sinensis. Dev Comp Immunol 41(4):723-727.
    Yu, X. Q., H. Gan and M. R. Kanost (1999). Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem Mol Biol 29(7):585-597.
    Yu, X. Q. and M. R. Kanost (2000). Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. J Biol Chem 275(48):37373-37381.
    Yu, X. Q. and M. R. Kanost (2004). Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev Comp Immunol 28(9):891-900.
    Yu, X. Q. and Y. Ma (2006). Calcium is not required for immulectin-2 binding, but protects the protein from proteinase digestion. Insect Biochem Mol Biol 36(6): 505-516.
    Yu, X. Q., M. E. Tracy, E. Ling, F. R. Scholz and T. Trenczek (2005). A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes. Insect Biochem Mol Biol 35(4):285-295.
    Yu, Y, Y. Yu, H. Huang, K. Feng, M. Pan, S. Yuan, S. Huang, T. Wu, L. Guo, M. Dong, S. Chen and A. Xu (2007). A Short-Form C-Type Lectin from Amphioxus Acts as a Direct Microbial Killing Protein via Interaction with Peptidoglycan and Glucan. J Immunol 179(12):8425-8434.
    Zelensky, A. N. and J. E. Gready (2005). The C-type lectin-like domain superfamily. FEBS J 272(24):6179-6217.
    Zhang, H., L. Chen, J. Qin, D. Zhao, P. Wu, C. Qin, N. Yu and E. Li (2011). Molecular cloning, characterization and expression of a C-type lectin cDNA in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol 31(2):358-363.
    Zhang, S.-M., C. M. Adema, T. B. Kepler and E. S. Loker (2004). Diversification of Ig Superfamily Genes in an Invertebrate. Science 305(5681):251-254.
    Zhang, W., H. Wan, H. Jiang, Y. Zhao, X. Zhang, S. Hu and Q. Wang (2011). A transcriptome analysis of mitten crab testes (Eriocheir sinensis). Genet Mol Biol 34(1):136-141.
    Zhang, Y, L. Qiu, L. Song, H. Zhang, J. Zhao, L. Wang, Y. Yu, C. Li, F. Li, K. Xing and B. Huang (2009). Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei. Fish Shellfish Immunol 26(1):183-192.
    Zhao, Z. Y, Z. X. Tin, X. P. Xu, S. P. Weng, X. Y. Rao, Z. X. Dai, Y. W. Luo, G. Yang, Z. S. Li, H. J. Guan, S. D. Li, S. M. Chan, X. Q. Yu and J. G. He (2009). A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol 83(1):347-356.
    陈爱平.2004年中国水产养殖病害监测报告(二)[J].病情测报,2005(10):48-49.
    陈爱平.2005年中国水产养殖病害监测报告(三)[J].病情测报,2006(8):64-75.
    陈爱平.2006年中国水产养殖病害监测报告(三)[J].病情测报,2007(9):48-49.
    顾志峰,王文,杜开河等,2000.中华绒螯蟹“颤抖病”病原、病理学初步研究.湖泊科学,12:367-372.
    杨先乐,黄志华,陈力.中华绒螯蟹病害的流行态势及其对产业持续发展的思考.淡水渔业,2010,40(1):74-79.
    徐海圣,舒妙安.中华绒螯蟹疾病研究进展[J].渔业现代化,2000(4):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700