用户名: 密码: 验证码:
禽网状内皮组织增生病基因工程亚单位疫苗及DNA疫苗的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网状内皮组织增生病(Reticuloendotheliosis,RE)是由网状内皮组织增生病病毒(Reticuloendotheliosis virus,REV)群的反转录病毒引起的鸡、鸭、火鸡和其他禽类的一群病理综合征。动物感染REV后主要引起慢性肿瘤、矮小综合症等,还可以引起免疫器官的萎缩,导致机体免疫功能显著下降,从而造成免疫失败并使感染动物继发其它传染病。REV与马立克氏病病毒混合感染时,经常因其基因重组而增强马立克氏病病毒的致病性和变异率。近年来,REV已在全球范围内流行,国内鸡群中REV的感染也非常严重,分布日益广泛。REV通过免疫抑制、混合感染及对疫苗的污染等对养禽业造成了严重的危害,市场和现地迫切期望RE能像其他动物传染病一样有适宜、安全、有效的疫苗来进行防控。然而,目前国内外还没有相应的商品化疫苗用于RE的预防。
     本研究首先对实验室分离的一株REV病毒(HLJR0901株)在不同日龄SPF鸡上的致病特性进行了系统的研究,建立了REV在SPF鸡上的动物感染模型。通过对攻毒后感染鸡临床症状、体重、器官指数、病理变化、病毒载量的检测表明,1日龄SPF雏鸡感染REV后出现生长迟缓,法氏囊、胸腺萎缩,肝脏、脾脏和腺胃肿大的症状;大日龄鸡(5周龄)感染REV后上述症状均不明显;然而,不同日龄的SPF鸡感染REV后在法氏囊、胸腺、肝脏、脾脏和腺胃中均可检测到病毒存在,并出现病毒血症。另外,1日龄SPF雏鸡感染REV后出现了严重的免疫抑制,使AIV灭活疫苗和NDV弱毒疫苗的免疫效果明显降低。REV动物感染模型的建立为REV疫苗的效力评价奠定了基础,并为深入研究REV致病机理和免疫抑制机制提供了材料。
     将REV HLJR0901毒株的保护性抗原gp90蛋白在毕赤酵母表达系统中进行了分泌表达,并对构建的重组酵母菌株在宿主菌、基因拷贝数、启动子和表达条件等方面进行了优化。结果表明,重组gp90蛋白在毕赤酵母中成功获得分泌表达,在酵母宿主菌SMD1168中的表达量显著高于GS115和KM71;gp90重组蛋白的表达量与酵母菌株中gp90基因表达盒的插入拷贝数呈正相关;联合使用诱导型启动子AOX1和组成型启动子GAP使gp90蛋白在酵母中的表达量进一步提高了41.1%;共表达毕赤酵母分子伴侣PDI和Ubi4降低了gp90重组蛋白在发酵过程中的蛋白酶降解;经过对表达条件的优化,表明重组酵母菌株在28°C和pH6.0下表达量最高,在发酵培养基中加入1%的干酪素进一步提高了gp90蛋白的表达水平。经过对表达菌株和发酵条件的优化,重组酵母菌株SMD1168/GA90在摇瓶中的表达量平均可达到200mg/L,在发酵罐中进行发酵培养后的表达量平均可达1.0g/L。将发酵蛋白进行Western blot分析,结果表明,发酵表达的gp90重组蛋白可以与gp90单克隆抗体发生特异性反应;将该重组gp90蛋白免疫鸡后可以诱导产生REV特异性抗体,说明酵母表达的gp90蛋白具有良好的抗原性。
     以毕赤酵母分泌表达的重组gp90蛋白作为免疫原制备了RE重组亚单位疫苗。为了对RE亚单位疫苗的免疫效力和安全性进行评价,在SPF雏鸡上进行了最小免疫剂量和免疫程序的研究,确定了该疫苗免疫后的抗体消长规律、免疫持续期以及抗体滴度与攻毒保护的相关性;并进一步在SPF蛋种鸡和商品蛋种鸡上进行了免疫试验,研究了RE亚单位疫苗对种鸡的免疫效力以及母源抗体对子代雏鸡的免疫保护作用。试验结果表明,该重组亚单位疫苗对雏鸡的最小免疫剂量为20微克/只;免疫程序为3周龄首免,间隔三周后二免;免疫鸡血清具有良好的中和活性;当ELISA抗体滴度达到2800时可以对REV感染造成的病毒血症提供完全保护;疫苗免疫持续期为6个月。种鸡的免疫试验表明,RE亚单位疫苗可以诱导种鸡产生高水平的抗体反应,子代鸡通过被动免疫获得的母源抗体可以抵抗REV早期感染造成的病毒血症和生长迟缓。以上结果表明,RE亚单位疫苗对雏鸡和种鸡均具有良好的免疫效力。另外,对研制的RE亚单位疫苗进行单剂量免疫、单剂量重复免疫和大剂量免疫后,试验鸡均未出现任何不良临床反应,对种鸡的生产性能也没有明显的影响,说明该重组亚单位疫苗对雏鸡和种鸡是安全可靠的。
     本研究还同时构建了表达REV保护性抗原gp90的DNA疫苗,并就其免疫效力与亚单位疫苗进行了比较研究。结果表明,本研究构建的DNA疫苗免疫鸡后可以诱导试验鸡产生体液免疫和细胞免疫应答,目的基因gp90的密码子优化和土拨鼠肝炎病毒转录后调控元件(WPRE)的使用可以有效提高目的基因的表达量和DNA疫苗的免疫原性。免疫100微克双重优化后的DNA疫苗pCAGWoptigp90后获得了87%的保护率,而40微克重组gp90蛋白免疫组可以达到完全保护;DNA疫苗诱导产生的抗体反应同样弱于亚单位疫苗。试验进一步表明,DNA疫苗首免-亚单位疫苗加强的联合免疫方式比单独使用DNA疫苗或亚单位疫苗免疫两次诱导产生了更高水平的体液免疫和细胞免疫应答,提示了该联合免疫方式在REV预防中的潜在应用价值。
Reticuloendotheliosis virus (REV) is a member of gammaretrovirus with a variety of strains, whichcauses an oncogenic, immunosuppressive and runting syndrome in multiple avian hosts includingchickens, ducks, turkeys and some other bird species. REV causes immunosuppression in infectedchickens, resulting in an increased susceptibility to concurrent or secondary bacterial and viralinfections and poor immune responses to other vaccines. REV fragments could integrate into thegenome of Marek’s disease virus (MDV) and increase its virulence when co-infecting with MDV. REVis widely distributed around the world and also highly prevalent in China, causing severe damages toour poultry industry. The oncogenicity and the immunosuppressive ability of REVs, their co-infectionwith other infectious viruses and their presence as contaminants in poultry biologics warrantdevelopment of a suitable vaccine. However, no commercially effective vaccine is available forpreventing this disease until now.
     The pathogenicity of REV HLJR0901strain in different ages of specific-pathogen-free (SPF)chickens was investigated, and the infection model of REV HLJR0901strain was established. Theinfected chickens were monitored weekly after infection for signs of illness and pathological changes.Decline in body weight, atrophy in bursa and thymus, tumefaction in liver, spleen and proventriculuswere observed after REV infection in1-day-old SPF chickens. The chickens infected with REV at5-week-old showed no or mild clinical signs. However, both the early infected chickens and the lateinfected chickens showed viremia and high proviral loads in multiple organs including bursa, thymus,liver, spleen and proventriculus. Additionally, the antibody responses to AIV and NDV vaccines weresignificantly inhibited by REV early infection compared with the control chickens. The detailedinfection model of REV in SPF chickens could be used to evaluate the efficacy of potential vaccines andantiviral agents.
     For the development of the recombinant subunit vaccine against REV, the gp90protein wasexpressed in yeast Pichia pastoris. The construction of recombinant Pichia strains and the expressionconditions were optimized in order to enhance the gp90production. The results showed that the REVgp90protein was secretory expressed in P. Pastoris successfully and SMD1168was the optimal hoststrain for gp90expression than the GS115and KM71strains. An increase in gp90copy number canimprove the yield of gp90protein in P. pastoris. The combined usage of both constitutive promoterGAP and inducible promoter AOX1further enhanced the gp90expression by41.1%. The results alsoindicated that co-expression of gp90protein with the yeast chaperones PDI and Ubi4reduced theproteolytically degradation of the gp90protein. In addition, the fermentation culture was optimized, and28°C and pH6.0were found to be the optimal conditions for gp90expression. The gp90productionwas further improved by adding1%casanimo acids in the fermentation medium. Following large-scalefermentation, the average gp90production level from strain SMD1168/GA90reached up to200mg/L inflask cultures, and1.0g/L after fermentation. The recombinant gp90protein could react with thegp90-specific MAb and induced high levels of REV antibody in immunized chickens, which showed that the yeast-expressed gp90protein had good antigenicity.
     To evaluate the efficacy and safety of the recombinant gp90as a subunit vaccine against REV,3-week-old SPF chickens as well as the SPF and commercial layer breeders were immunized with thegp90protein. The results showed that the minimum immunizing dose of the recombinant gp90proteinwas20μg; the optimal immunizing procedure was two shots at3week intervals, and the protectiveantibody duration was six months. The minimum antibody titer that could confer protection from REVinfection was2800as detected by ELISA. The immunization assay further showed that the recombinantsubunit vaccine induced high levels of antibody responses in SPF and commercial breeders, and thematernal antibody of the new-born chicks protected them from REV-induced viremia and runtingsyndrome. The results demonstrated that the chickens immunized with the recombinant gp90protein didnot show any abnormal clinical signs, and the immunization of the subunit vaccine made no influenceon the egg production rate of the breeder chickens. Overall, the yeast-expressed recombinant gp90protein was capable of inducing high levels of protective immune responses in both SPF chickens andlayer breeders with good safety.
     The DNA vaccines expressing the gp90protein of REV was constructed and also evaluated in SPFchickens in this study. The results showed that the DNA vaccines containing gp90gene induced bothhumoral and cellular immune responses and were efficacious in conferring protection against REVchallenge in chickens. Further, codon optimization and woodchuck hepatitis virus posttranscriptionalregulatory element (WPRE) were very powerful approaches in improving the immunogenicity of theDNA vaccines. Immunization of100μg of the optimized plasmid pCAGWoptigp90provided87%protection against REV challenge, lower than that conferred by40μg recombinant gp90protein whichconferred full protection against REV-induced viremia. Additionally, a DNA prime-protein booststrategy produced higher levels of humeral and cellular immune respinses in chickens than did either ofthe component parts of this vaccine alone. These findings highlight the potential value of combinationusage of both DNA and subunit vaccines for the prevention of REV infection.
引文
1.陈关平,吴涛,黄勤锋,等.融合表达牛疱疹病毒N型VP22基因和O型口蹄疫病毒P12A3C基因的DNA疫苗的构建及其免疫应答.中国兽医学报,2009,29:973-977.
    2.戴秀玉,王辒恂,周坚,等.毕赤酵母醇氧化酶2基因启动子突变体的分离和鉴定.遗传学报,2000,27:641.
    3.丁家波,崔治中,于立娟.含有禽网状内皮组织增生病病毒基因组片段的天然重组禽痘病毒的研究.微生物学报,2004,44:588-592.
    4.葛金英,温志远,高宏雷,等.表达传染性法氏囊病毒超强毒流行株VP2基因重组新城疫病毒LaSota疫苗株的构建.中国农业科学,2008,41:243-251.
    5.何宏虎,陈溥言,蔡宝祥.禽网状内皮组织增殖病病毒的分离鉴定.中国畜禽传染病,1988,2:1-3.
    6.何勇群,张中直,杨汉春.北京地区鸡群网状内皮组织增殖病感染的血清学调查研究.畜牧兽医学报,1998,29:71-78.
    7.胡北侠,黄艳艳,路希山,等.肉种禽网状内皮增生症、鸡传染性贫血和禽白血病血清学调查.广东畜牧兽医科技,2009,34:25-27.
    8.吉荣,刘岳龙,秦爱建.免疫抑制鸡群鸡传染性贫血病毒和网状内皮增生症病毒共感染检测.中国兽药杂志,2001,35:1-3.
    9.姜世金,孟珊珊,崔治中,等.我国自然发病鸡群中MDV、REV和CAV共感染的检测.中国病毒学,2005,20:164-167.
    10.姜世金,张志,孙淑红,等.用斑点杂交法同时检测鸡群中的CAV、MDV和REV.中国兽医杂志,2003,39:6-8.
    11.金文杰,崔治中,刘岳龙,等.传染性法氏囊病病料中MDV、CAV、REV的共感染检测.中国兽医学报,2001,21:6-8.
    12.李建丽,席瑞珍,马仲斌.我国兽医生物制品研究现状及前景.动物医学进展,2004,25:126-128.
    13.李娜,孙元,仇华吉.猪瘟DNA疫苗研究进展.生物工程学报,2010,26:281-289.
    14.李天增,朱刚,刘宏,等.口蹄疫O型、亚洲型二价合成肽疫苗对山羊免疫持续期的研究.兽医导刊,2010,6:42-44.
    15.李延鹏,崔治中,姜世金,等. CAV与REV共感染SPF鸡对疫苗免疫反应的抑制作用.中国兽医学报,2008,28:1243-1246.
    16.刘生峰,彭远义.植酸酶基因工程研究进展.生命科学研究,2003,7:30-33.
    17.孟珊珊,崔治中,孙淑红.REV和ALV-J共感染鸡病毒血症及抗体反应的相互影响.中国兽医学报,2006,26:363-366.
    18.倪楠.鸭群中REV感染的流行病学调查及囊膜糖蛋白基因的序列分析.山东农业大学,
    2008.
    19.秦立廷,高玉龙,潘伟,等.我国部分地区蛋鸡群ALV-J及与REV、MDV、CAV混合感染检测.中国预防兽医学报,2010,32:90-93.
    20.孙淑红.禽网状内皮组织增生症病毒和J-亚群白血病病毒的致病性及其疫苗研究[博士学位论文].泰安:山东农业大学,2007.
    21.童光志,王云峰.动物基因工程疫苗原理与方法.北京:化学工业出版社,2009,81-91.
    22.王云峰,石星明,王玫,等.抗禽流感或传染性喉气管炎两种重组鸡痘病毒疫苗联合免疫的相互影响.中国动物传染病学报,2009,17:7-14.
    23.王云峰,智海东.兽用生物制品研发与产业现状.生物技术产业,2010,6:82-86.
    24.杨汉春,高云.应用改良ELISA检测禽网状内皮增殖病抗体血清.中国兽医杂志,1997,23:3-5.
    25.殷震,刘景华.动物病毒学(第二版).科学出版社.1997.329-331.
    26.张洪海.山东省家禽肿瘤性疾病流行病学调查及GIS预警系统的建立.泰安:山东农业大学,2009.
    27.张康.华东北部地区禽肿瘤性传染病流行病学调查.中国动物检疫,2013,30:55-57.
    28.张巧颖,景志忠,栗震亚,等.猪IL-2基因真核表达载体的构建及在酵母中的表达.中国兽医科学,2006,36:315-319.
    29.张玉强.规模鸡场网状内皮增生症的血清学调查.中国畜牧通讯,养殖顾问,2011.
    30.张志,王锡乐,庄国庆,等.用单抗介导的免疫荧光试验检测组织切片中的禽网状内皮组织增生病病毒.中国兽医学报,2005,25:122-124.
    31.张志,崔治中,姜世金.从J亚群禽白血病肿瘤中检测出网状内皮组织增生病病毒.中国兽医学报,2004,1:10-23.
    32.赵翔,霍克克,李育阳,等.毕赤酵母的密码子用法分析.生物工程学报,2000,16:308.
    33.郑宝亮,田志军,李若,等.表达H3N2亚型猪流感病毒HA的重组伪狂犬病病毒对仔猪的免疫效力评价.中国预防兽医学报,2007,29:115-119.
    34.曾婷婷.2010-2012年广西鸡三种肿瘤病病毒的流行病学研究及其在商品马立克活疫苗中污染的检测.广西大学预防兽医学,2012,23:29-31.
    35. Abdulaev N.G., Popp M.P., Smith W.C., et al. Functional expression of bovine opsin in themethylotrophic yeast Pichia pastoris. Protein Express Purif1997,10:61-69.
    36. Abdulaev N.G., Ridge K.D. Heterologous expression of bovine opsin in Pichia pastoris.Vertebrate Phototransduct2000,315:3-11.
    37. Alien P.T., Mullins J.A., Harris C.L., et al. Replication of reticuloendotheliosis virus inmammalian cells. Amer Soc Microbiol Annual Meeting1979,100:256-257.
    38. Almeida M.S., Cabral K.S., Medeiros L.N., et al. cDNA cloning and heterologous expressionof functional cysteine-rich antifugal protein Psd1in the yeast Pichia pastoris. Arch BiochemBiophys2001,395:199-207.
    39. Aly M.M., Fadly A.M., Witter R.L. Effects of serotype2Marek’s disease virus ondevelopment of viremia, antibody, and lymphoma induced by reticuloendotheliosis virus.4thInternational Symposium on Marek,s disease,19thworld,s Poultry Congress, world’s PoultryScience Assn. Amsterdam1992,1:272-276.
    40. Aly M.M., Hassan M.K., Elzahr A.A., et al. Serological survey on retieuloendotheliosis virusinfection in comercial chicken and turkey flocks in EgyPt. Proceedings of the5thScienceConference. Egypt Vet Poultry Association1998,23:51-68.
    41. Aly M.M., Smith E.J., Fadly A.M. Detection of reticuloendotheliosis virus infection using thepolymerase chain reaction. Avian Pathology1993,22:543-554.
    42. Andreu D., Ubach J., Boman A., et al. Shortened cecropin A-melittin hybrids SigniWcantsize reduction retains potent antibiotic activity. FEBS Lett1992,296:190-194.
    43. Bagust T.J., Grimes T.M., Dennett D.P. Infection studies on a reticuloendotheliosis viruscontaminant of a commercial Marek’s disease vaccine. Aust Vet J1979,55:153-157.
    44. Bagust T.J., Grimes T.M., Ratnamohan N. Experimental infection of chickens with anAustralian strain of reticuloendotheliosis virus persistent infection and transmission by theadult hen. Avian Patholoy1981,10:375-385.
    45. Barbacid M., Hunter E., Aaronson S.A. Avian reticuloendotheliosis viruses: evolutionarylinkage with mammalian type C retroviruses. J Virol1979,30:508-514.
    46. Barbosa T., Zavala G., Cheng S., et al. Full genome sequence and some biological propertiesof reticuloendotheliosis virus strain APC-566isolated from endangered Attwater’s prairiechickens. Virus Res2007,124:68-77.
    47. Barteling S.J., Vreeswij K.J. Development of foot-and-mouth disease vaccines. Vaccine1991,9:75-88.
    48. Baxter-Gabbard K.L., Campbell W.F., Padgett F. Avian reticuloendotheliosis virus(strainT).Ⅱ. Biochemical and biophysical properties. Avian Disease1971,15:850-862.
    49. Beall M.J., Pearce E.J. Human transforming growth factor-beta activates a receptorserine/threonine kinase from the intravascular parasite Schistosoma mansoni. J Biol Chem2001,276:31613-31619.
    50. Bellu A.R., Komori M., van der Klei I.J., et al. Peroxisome biogenesis and selectivedegradation converge at Pex14p. J Biol Chem2001,276:44570-44574.
    51. Berger D.H., Feng X.H., Yao J., et al. Resistance to transforming growth factor-beta occursin the presence of normal Smad activation. Surgery2002,132:310-316.
    52. Berglund P., Smerdou C., Fleeton M.N., et al. Enhancing immune responses using suicidalDNA vaccines. Nat Biotechnol1998,16:562-565.
    53. Bohls R.L., Linares J.A., Gross S.L., et al. Phylogenetic analyses indicate little variationamong reticuloendotheliosis viruses infecting avian species, including the endangeredAttwater’s prairie chicken. Virus Res2006,119:187-194.
    54. Bose H.R., Levine A.S. Replication of the reticuloendotheliosis virus (strain T) in chickenembryo cell culture. J Virol1967,1:1117-1121.
    55. Breitman M.L., Lai M.M.C., Vogt P.K. Attenuation of avian reticuloendotheliosis virus: Lossof the defective transforming component during serial passage of oncogenic virus infibroblasts. Virology1980,101:304-306.
    56. Bryksa B.C., Macdonald L.D., Patrzykat A., et al. A C-terminal glycine suppressesproduction of pleurocidin as a fusion peptide in Escherichia coli. Protein Expr Purif2006,45:88-98.
    57. Cabral K.M.S., Almeida M.S., Valente A.P., et al. Production of the active antifugual Pisumsativum defensin1(Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13protease. Protein Expr Purif2003,31:115-122.
    58. Calvert, J.G., Nazerian, K., Witter, R.L., et al. Fowlpox virus recombinants expressing theenvelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizingantibodies and reduce viremia in chickens. J Virol1993,67:3069-3076.
    59. Celine G., Howard M.T. Nondefective spleen necrosis virus-derived vectors define the uppersize limit for packaging reticuloendotheliosis viruses. Proc Nati Acad Sci1986,83:9211-9215.
    60. Cereghino G.P.L., Cregg J.M. Applications of yeast in biotechnology: protein production andgenetic analysis. Curr Opin Biotechnol1999,10:422-427.
    61. Cereghino J.L., Cregg J.M. Heterologous protein expression in the methylotrophic yeastPichia pastoris. FEMS Microbiology Reviews2000,24:45-66.
    62. Chaudhuri T.K., Horii K., Yoda T., et al. Effect of the extra Nterminal methionine residue onthe stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli. JMol Biol1999,285:1179-1194.
    63. Chen I.S., Malk T.W., O’Pear J.J., et al. Characterization of retieuloendotheliosis virusstrainT/DNA and isolation of a novel variant of reticuloendotheliosis virus strain T bymolecular cloning. J Virol1981,40:800-811.
    64. Chen J.J., Chen G.H., Hsu H.C., et al. Cloning and functional expression of a mung beandefensin VrD1in Pichia pastoris. J Agric Food Chem2004,52:2256-2261.
    65. Chen P.Y., Cui Z.Z., Lee L.F., et al. Serologic difference among nondefectivereticuloendotheliosis viruses. Arch Virol1987,93:233-246.
    66. Cheng W.H., Huang Y.P., Wang C.H. Serological and virological surveys ofreticuloendotheliosis in chickens in Taiwan. J Vet Med Sci2006,68:1315-1320.
    67. Cheng, Z., Shi, Y., Zhang, L., et al. Occurrence of reticuloendotheliosis in Chinese partridge.J Vet Med Sci2007,69:1295-1298.
    68. Clare J.J., Rayment F.B., Ballantine S.P., et al. High-level expression of tetanus toxinfragment C in Pichia pastoris strains containing multiple tandem integrations of the gene.BioTechnology1991,9:455-460.
    69. Clare J.J., Romanos M.A., Rayment F.B., et al. Production of mouse epidermal growth factorin yeast highlevel secretion using pichia-pastoris strains containing multiple gene copies.Gene1991,105:205-212.
    70. Coffin J.M. Structure of the retroviral genome. RNA tumor viruses. Molecular Biology ofTumor Viruses.2Cold Spring Harbor Laboratory. Cold Spring Harbor1982, NY:261-368.
    71. Cohen M., Rein A., Stephens R.M, et al. Baboon endogenous virus genome. Ⅲ.non-Molecular cloning and structural characterization of defective viral genomes from the DNAof ababoon cell strain. Proc National Academy Science1981,78:5207-5211.
    72. Cole P.A. Chaperone-assisted protein expression. Structure1996,4:239-242.
    73. Cook M.K. Cultivation of filterable agent associated with Marek,s disease. Joumal of theNational Cancer Institute1969,43:203-212.
    74. Cos, O., Ramón, R., Montesinos, J.L., et al. Operational strategies, monitoring and control ofheterologous protein production in the methylotrophic yeast Pichia pastoris under differentpromoters: a review. Microbial Cell Factories2006,5:17-18.
    75. Couderc R., Baratti J. Oxidation of methanol by the yeast Pichia pastoris: purification andproperties of alcohol oxidase. Agric Biol Chem1980,44:2279-2289.
    76. Cregg J.M., Barringer K.J., Hessler A.Y., et al. Pichia-pastoris as a host system fortransformations. Mol Cell Biol1985,5:3376-3385.
    77. Cregg J.M., Higgins D.R. Production of foreign proteins in the yeast Pichia pastoris. Can JBot1995,73:891-897.
    78. Cregg J.M., Madden K.R., Barringer K.J., et al. Functional characterization of the twoalcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol1989,9:1316-1323.
    79. Cregg J.M., Madden K.R. Development of methylotrophic yeast, Pichia pastoris, as a hostsystem for the production of foreign proteins. Dev Ind. Microbiol1988,29:33-41.
    80. Cregg J.M., Vedvick T.S., Raschke W.C. Recent advances in the expression of foreign genesin Pichia Pastoris. Bio Technology1993,11:905-910.
    81. Crittenden L.B., Fadly A.M., Smith E.J. Effect of endogenous leukosis virus genes onresponse to infection with avian leucosis and reticuloendotheliosis virus. Avian Disease1982,26:279-294.
    82. Cui Z., Sun S., Zhang Z., et al. Simultaneous endemic infections with subgroup J avianleukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens.Avian Pathol2009,38:443-448.
    83. Cui Z.Z., Lee L. Monoclonal antibody mediated enzyme linked immunosorbent assay fordetection of reticuloendotheliosis virus. Avian Dis1988,32:32-40.
    84. Cui Z.Z., Zhuang G., Xu X., et al. Molecular and biological characterization of a Marek’sdisease virus field strain with reticuloendotheliosis virus LTR insert. Virus gene2009,15:437-445.
    85. Davidson I., Borenshtain R. In vivo events of retroviral long terminal repeat integration intoMarek's disease virus in commercial poultry: detection of chimeric molecules as a marker.Avian Dis2004,45:102-121.
    86. Davidson I., Borovskays A., Peri S., et al. Use of the polymerase chain reaction for thediagnosis of natural infection chickens and turkeys with Marek’s disease virus andreticuloendotheliosis virus. Avian Pathology1995,24:69-94.
    87. Davidson I., Yang H., Witter R.L., et al. The immunodominant proteins ofreticuloendotheliosis virus. Vet Microbiol1995,49:273-284.
    88. Deng X.Y., Qi X.L., Gao Y.L., et al. Development of a loop-mediated isothermalamplification method for rapid detection of reticuloendotheliosis virus. J Virol Methods2010,168:82-86.
    89. Dhama, K., Mahendran, M., Gupta, P.K., et al. DNA vaccines and their applications inveterinary practice: current perspectives. Vet Res Commun2008,32:341-356.
    90. Diallo I.S., Mackenzie M.A., Spradbrow P.B., et al. Field isolates of fowlpox viruscontaminated with reticuloendotheliosis virus. Avian Pathol1998,27:60-66.
    91. Ding, X., Lillehoj, H.S., Dalloul, R.A., et al. In ovo vaccination with the Eimeria tenellaEtMIC2gene induces protective immunity against coccidiosis. Vaccine2005,23:3733-3740.
    92. Eckart M.R., Bussineau C.M. Quality and authenticity of heterologous proteins synthesizedin yeast. Curr Opin Biotechnol1996,7:525-530.
    93. Ellis S.B., Brost P.F., Koutz P.J, et al. Isolation of alcohol oxidase and two other methanolregulatable genes from the yeast Pichia pastoris. Mol Cell Biol1985,5:1111-1121.
    94. Fadly A.M., Garcia M.C. Detection of reticuloendotheliosis virus in live virus vaccines ofpoultry. Dev Biol (Basel)2006,126:301-305.
    95. Fadly A.M., Witter R.L., Smith E.J, et al. An outbreak of lymphomas in commercial broilerbreeder chickens vaccinated with a fowlpox vaccine contaminated with reticuloendotheliosisvirus. Avian Pathol1996,25:35-47.
    96. Fadly AM, Witter RL. Comparative evaluation of in vitro and in vivo assays for the detectionof reticuloendotheliosis virus as a contaminant in a live virus vaccine of poultry. Avian Dis1997,41:695-701.
    97. Fan, M.W., Bian, Z., Peng, Z.X., et al. A DNA vaccine encoding a cell-surface proteinantigen of Streptococcus mutans protects gnotobiotic rats from caries. J Dental Res2002,81:784-787.
    98. Fleeton M.N., Liljestrom P., Sheahan B.J., et al. Recombinant Semliki Forest virus particlesexpressing louping ill virus antigens induce a better protective response than plasmid-basedDNA vaccines or an inactivated whole particle vaccine. J Gen Virol2000,81:749-758.
    99. Fritsch R.B., Kang C.Y., Wan K.M.M., et al. Transformation of chick embryo fibroblasts byreticuloendotheliosis virus. Virology1977,83:313-321.
    100. García M., Narang N., Reed W.M., et al. Molecular characterization of reticuloendotheliosisvirus insertions in the genome of field and vaccine strains of fowl poxvirus. Avian Dis2003,47:343-354.
    101. Garry R.F., Shackleford G.M., Berry L.F., et al. Inhibition of hepatic phosphoenolpyruvatecarboxykinase by avian reticuloendotheliosis viruses. Cancer Research2005,45:5020-5026.
    102. Ge J.Y., Deng G.H., Wen Z.Y., et al. Newcastle disease virus-based live attenuated vaccinecompletely protects chickens and mice from lethal challenge of homologous andheterologous H5N1avian influenza viruses. J Virol2007,81:150-158.
    103. Gellissen G., Melber K., Janowicz Z.A., et al. Heterologous protein production in yeast.Antonie Leeuwenhoek1992,62:79-93.
    104. Gellissen G. Heterologous protein production in methylotrophic yeasts. Appl MicrobiolBiotechnol2000,54:741-750.
    105. Golovan S.P., Hayes M.A., Phillips J.P., et al. Transgenic mice expressing bacterial phytaseas a model for phosphorus pollution control. Nature biotechnology2001,19:429-433.
    106. Greenwald J., Le V., Corrigan A., et al. Characterization of the extracellular ligand-bindingdomain of the type II activin receptor. Biochemistry1998,37:16711-16718.
    107. Guillermo Z., Sunny C., Taylor B., et al. Enzootic Reticuloendotheliosis in the EndangeredAttwater’s and Greater Prairie Chickens. Avian Dis2006,50:520-525.
    108. Hartikka, J., Sawdey, M., Cornefert-Jensen, F., et al. An improved plasmid DNA expressionvector for direct injection into skeletal muscle. Hum. Gene Ther1996,7:1205-1217.
    109. Hauck R., Prusas C., Hafez H.M., et al. Serologic response against fowl poxvirus andreticuloendotheliosis virus after experimental and natural infections of chickens with fowlpoxvirus. Avian Dis2009,53:205-210.
    110. Herscovics A., Orlean P. Glycoprotein biosynthesis in yeast. FASEB J1993,7:540-550.
    111. Hertig C., Coupar B.E., Gould A.R., et al. Field and vaccine strains of fowlpox virus carryintegrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virology1997,235:367-376.
    112. Hlodan R., Hartl U.F. How the protein folds in the cell. In Mechanisms of Protein Folding,Pain RH (ed.). Oxford University Press: New York1994,194-228.
    113. Hoelzer J.D., Franklin R.B., Bose J.H.R. Transformation by reticuloendotheliosis virus:development of a focus assay and isolation of a non-transforming virus. Virology1979,93:20-30.
    114. Holm, L. Codon usage and gene expression. Nucleic Acids Res1986,14:3075-3087.
    115. Holst B., Bruun A.W., Kiellandbrandt M.C., et al. Competition between folding andglycosylation in the endoplasmic reticulum. EMBO J1996,15:3538-3546.
    116. Hu Sylvia S.F., Lai Michael M.C., Wong T.C. Avian reticuloendotheliosis virus:characterization of genome structure by heteroduplex mapping. J Virol Methods1981,37:899-907.
    117. Huang C., Chien M., Hu C.M., et al. Secreted expression of the classical swine fever virusglycoprotein Erns in yeast and application to a sandwich blocking ELISA. J Virol Methods2006,132:40-47.
    118. Humphries E.H., Zhang G. V-rel and C-rel modulate the expression of both bursal andnon-bursal antigens on avian B-cell lymphomas. Current Topics in Microbiology andImmunology1992,182:475-483.
    119. Ianconescu M. Reticuloendotheliosis antigen for the agar gel precipitation test. AvianPathology1977,6:259-267.
    120. Ianconeseu M., Aharonovici A. Persistant viraemia in chickens subsequent to in ovoinoculation of reticuloendotheliosis virus. Avian Pathology1978,7:237-247.
    121. Inan M., Meagher M.M. Non-repressing carbon sources for alcohol oxidase (AOX1)promoter of Pichia pastoris. J Biosci Bioengng2001,92:585-589.
    122. Inan M., Meagher M.M. The effect of ethanol and acetate on protein expression in Pichiapastoris. J Biosci Bioengng2001,92:337-341.
    123. Isfort R., Jones D., Kost R., et al. Retrovirus insertion into herpesvirus in vitro and in vivo.Proc Natl Acad Sci1992,89:991-995.
    124. Jackson C.A.W., Dunn S.E., Smith D.I, et al. Proventriculitis “Nakanuke” andreticuloendoheliosis in chickens following vaccination with herpesvirus of turkeys (HVT).Aust Vet J1977,53:457-458.
    125. Jenkins N., Parekh R.B., James D.C. Getting the glycosylation right-implications for thebiotechnology industry. Nat Biotechnol1996,14:975-981.
    126. Jiang, Y., Yu, K., Zhang, H., et al. Enhanced protective efficacy of H5subtype avianinfluenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector.Antiviral Res2007,75:234-241.
    127. Jin H., Li Y., Ma Z., et al. Effect of chemical adjuvants on DNA vaccination. Vaccine,2004,22:2925-2935.
    128. Jones D., Brunovskis P., Witter R., et al. Retroviral insertional activation in a herpesvirus:Transcriptional activation of US genes by an integrated long terminal repeat in a Marek’sdisease virus clone. J Virol1996,70:2460-2467.
    129. Jones D., Isfort R., Witter R., et al. Retroviral insertions into a herpesvirus are clustered at thejunctions of the short repeat and short unique sequences. Proc Natl Acad Sci1993,90:3855-3859.
    130. Kang C.Y., Howard M.T. Reticuloendotheliosis virus nucleic acid sequences in cellular DNA.J Virol1974,14:1179-1188.
    131. Kang C.Y., Temin H.M. Lack of sequence homology among RNAs of avian leukosissarcoma viruses, reticuloendotheliosis viruses, and chicken endogenous RNA-directed DNApolymerase activity. J Virol1973,12:1314-1324.
    132. Katakura Y., Zhang W.H., Zhuang G.Q., et al. Effect of methanol concentration on theproduction of human beta(2)-glycoprotein I domain V by a recombinant Pichia pastoris: asimple system for the control of methanol concentration using a semiconductor gas sensor. JFerment Bioengng1998,86:482-487.
    133. Kawamura H., Wakabayashi T., Yamaguchi S., et al. Inoculation experiment of Marek’sdisease vaccine contaminated with reticuloendotheliosis virus. Natl Inst Anim Health Q1976,16:135-140.
    134. Khandekar S.S., Silverman C., Wells-Marani J., et al. Determination of carbohydratestructures N-linked to soluble CD154and characterization of the interactions of CD40withCD154expressed in Pichia pastoris and Chinese hamster ovary cells. Protein Express Purif2001,23:301-310.
    135. Klinman, D.M., Yamshchikov, G., Ishigatsubo, Y. Contribution of CpG motifs to theimmunogenicity of DNA vaccines. J Immunol1997,158:3635-3639.
    136. Kobayashi H., Shibata N., Suzuki S. Acetolysis of Pichia pastoris IFO0948strain mannancontaining alpha-1,2and beta-1,2linkages using acetolysis medium of low sulfuric acidconcentration. Arch Biochem Biophys1986,245:494-503.
    137. Koganesawa N., Aizawa T., Masaki K., et al. Construction of an expression system of insectlysozyme lacking thermal stability: the effect of selection of signal sequence on level ofexpression in the Pichia pastoris expression system. Protein Engng2001,14:705-710.
    138. Koyama H., Sasaki T., Ohwada Y., et al. The relationship between feathering abnormalities(“Nakanuke”) and tumour production in chickens inoculated with reticuloendotheliosis virus.Avian Pathology1980,9:331-340.
    139. Larose R.N., Sevoian M. Avian lymphomatosis. IX. Mortality and serologicalresponse of chickens of various ages to graded doses of T strain. Avian Dis1965,9:604-610.
    140. Li J., Calnek B.W., Schat K.A., et al. Pathogenesis of retieuloendotheliosis virus infection inducks. Avian Dis1983,27:1090-1105.
    141. Li K., Gao H.L., Gao L., et al. Recombinant gp90protein expressed in Pichia pastorisinduces a protective immune response against reticuloendotheliosis virus in chickens.Vaccine2012,30:2273-2281.
    142. Li L., Wang J.X., Zhao X.F. High level expression, purification, and characterization of theshrimp antimicrobial peptide, Chpenaeidin, in Pichia pastoris. Protein Expr Purif2005,39:144-151.
    143. Li P.Z., Go X.G., Arellano R.O., et al. Glycosylated and phosphorylated proteins-expressionin yeast and oocytes of Xenopus: prospects and challenges-relevance to expression ofthermostable proteins. Protein Express Purif2001,22:369-380.
    144. Li Z.J., Xiong F., Lin Q.S., et al. Low-temperature increases the yield of biologically activeherring antifreeze protein in Pichia pastoris. Protein Express Purif2001,21:438-445.
    145. Li, K., Gao, H., Gao, L., et al. Development of TaqMan real-time PCR assay for detectionand quantitation of reticuloendotheliosis virus. J Virol Methods2012,179:402-408.
    146. Liu Q., Zhao J., Su J., et al. Full genome sequences of two reticuloendotheliosis virusescontaminating commercial Vaccines. Avian Dis2009,53:341-346.
    147. Logg C.R., Logg A., Tai C.K., et al. Genomic stability of murine leukemia viruses containinginsertions at the Env-3V untranslated region boundary. J Virol2001,75:6989-6998.
    148. Lovinger G.G., Mark G., Todaro G.J., et al.5’-terminal nucleotide noncoding sequences ofretroviruses: relatedness of two Old World primate type C viruses and avian spleen necrosisvirus. J Virol1981,39:238-245.
    149. Ludford, C.G., Purchase, H.G., Cox, H.W. Duck infectious anemia virus associated withplasmodium lophurae. Exp Parasitol1972,31,29-38.
    150. Lueking A, Holz C, Gotthold C, et al. A system for dual protein expression in Pichia pastorisand Escherichia coli. Protein Express Purif2000,20:372-378.
    151. Majerle A, Kidric J, Jerala R. Expression and refolding of functional fragments of the humanlipopolysaccharide receptor CD14in Escherichia coli and Pichia pastoris. Protein ExpressPurif1999,17:96-104.
    152. Makrides S.C. Strategies for achieving high-level expression of genes in Escherichia coli.Microbiol Rev1996,60:512-515.
    153. Marston F.A. The purification of eukaryotic polypeptides synthesized in Escherichia coli.Biochem J1986,240:1-12.
    154. Martinet W., Maras M., Saelens X., et al. Modification of the protein glycosylation pathwayin the methylotrophic yeast Pichia pastoris. Biotechnol Lett1998,20:1171-1177.
    155. Masami T., Kiyoyasu I., Hideki N., et al. Detection of contamination of vaccines with thereticuloendotheliosis virus by reverse transcriptase polymerase chain reaction (RT-PCR).Virus Res1996,40:113-121.
    156. Mason A.B., Woodworth R.C., Oliver R.W.A., et al. Production and isolation of therecombinant N-lobe of human transferrin from the methylotrophic yeast Pichia pastoris.Protein Express Purif1996,8:119-125.
    157. Mays J., Silva R., Lee L., et al. Characterization of reticuloendotheliosis virus isolatesobtained from broiler breeders, turkeys, and prairie chickens located in various geographicalregions in the United States. Avian Pathol2010,39:383-389.
    158. Mcdougall J.S., Shilleto R.F.W., Biggs.PM. Experimental infection and vertical transmissionof reticuloendotheliosis virus in the turkey. Avian Pathol1980,9:445-454.
    159. Meldgaard M., Svendsen I. Different effects of n-glycosylation on the thermostability ofhighly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast. Microbiol1994,140:159-166.
    160. Monsalve R.I., Lu G., King T.P. Expressions of recombinant venom allergen, antigen5ofyellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast.Protein Express Purif1999,16:410-416.
    161. Moore K.M., Davis J.R., Sato T., et al. Reticuloendotheliosis virus (REV) long terminalrepeats incorporated in the genomes of commercial fowl poxvirus vaccines and pigeonpoxviruses without indication of the presence of infectious REV. Avian Dis2000,44:827-841.
    162. Motha M.X.J., Egerton J.R., Sweeney A.W. Some evidence of mechanicaltransmission of reticuloendotheliosis virus by mosquitos. Avian Dis1984,28:858-867.
    163. Narhi L.O., Arakawa T., Aoki K.H., et al. The effect of carbohydrate on the structure andstability of erythropoietin. J Biol Chem1991,266:23022-23026.
    164. Nicholas R.A.J., Thornton D.H. An enzymelinked immunosorbent assay for the detection ofantibodies to avian reticuloendotheliosis virus using whole cell antigen. Res Vet Sci1987,43:403-404.
    165. Oshop, G.L., Elankumaran, S., Heckert, R.A. DNA vaccination in the avian. Vet ImmunolImmunop2002,89:1-12.
    166. Paifer E., Margolles E., Cremata J., et al. Efficient expression and secretion of recombinantalpha amylase in Pichia pastoris using two different signal sequences. Yeast1994,10:1415-1419.
    167. Pakkanen O., Hamalainen E.J., Kivirikko K.I., et al. Assembly of stable human type I and IIIcollagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. J BiolChem2003,278:32478-32483.
    168. Paul P.S., Johnson K.H., Pomeroy K.A., et al. Experimental transmission ofreticuloendothelios is in turkeys with the cell culture propagated reiculoendotheliosis virusesof turkey origin. J Nat Can Institute1977,58:1819-1824.
    169. Peterson D.A., Levine A.S. Avian reticuloendotheliosis virus (strain T) IV Infectivity andtransmissibility in day-old cockerels. Avian Dis1971,15:874-883.
    170. Pitcovski J., Cutter B., Gallili G., et al. Development and large-scale use of recombinant VP2vaccine for the prevention of infectious bursal disease of chickens. Vaccine2003,21:4736-4743.
    171. Rees G.S., Gee C.K., Ward H.L., et al. Rat tumour necrosis factor-alpha: expression inrecombinant Pichia pastoris purification, characterization and development of a novelELISA. Eur Cytokine Netw1999,10:383-392.
    172. Reimann I., Werner O. Use of the polymerase chain reaction for the detection ofreticuloendotheliosis virus in Marek’s disease vaccines and chicken tissues. J Vet Med1996,43:75-84.
    173. Rice N.R., Bonner T.I., Gilden R.V. Nucleic acid homology between avian and mammaliantype C viruses: relatedness of reticuloendotheliosis virus cDNA to cloned proviral DNA ofthe endogenous colobus virus CPC-1. Virology1981,114:286-290.
    174. Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol2003,27:449-464.
    175. Robinson F.R., Twiehaus M.J. Isolation of the avian reticuloendotheliosis virus (strain T).Avian Dis1974,18:278-288.
    176. Roggenkamp R., Janowicz Z., Stanikowski B., et al. Biosynthesis and regulation of theperoxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha.Molecul gen genetics1984,194:489-493.
    177. Romanos M.A., Scorer C.A., Clare J.J. Foreign gene expression in yeast: a review. Yeast1992,8:423-488.
    178. Romanos M.A. Advances in the use of Pichia pastoris for high-level gene expression. CurrOpin Biotechnol1995,6:527-533.
    179. Ruitenberg K.M., Walker C., Love D.N., et al. A prime-boost immunization strategy withDNA and recombinant baculovirus-expressed protein enhances protective immunogenicity ofglycoprotein D of equine herpesvirus1in naive and infection-primed mice. Vaccine2000,18:1367-1373.
    180. Scorer C.A., Buckholz R.G., Clare J.J, et al. The intracellular production and secretion ofHIV-1envelope protein in the methylotrophic yeast Pichia pastoris. Gene1993,136:111-119.
    181. Sears I.B., Oconnor J., Rossanese O.W., et al. A versatile set of vectors for constitutive andregulated gene expression in Pichia pastoris. Yeast1998,14:783-790.
    182. Segev N., Mulholland J., Botstein D. The yeast gtpbinding ypt1protein and a mammaliancounterpart are associated with the secretion machinery. Cell1988,52:915-924.
    183. Seong H.W., Kim S.J., Kim J.H., et al. Outbreaks of reticuloendotheliosis in Korea. RDA JAgr Sci Vet1996,38:707-715.
    184. Sevoian M., Larose R.N., Chamberlain D.M. Avian lymphomatosis. VI. A virus of unusualpotency and pathogenicity. Avian Dis1964,3:336-347.
    185. Shakin-Eshleman S.H., Spitalnik S.L., Kasturi L. The amino acid at the X position of anAsn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. JBiol Chem1996,271:6363-6366.
    186. Shelikoff M., Sinskey A.J., Stephanopoulos G. A modeling framework for the study of proteinglycosylation. Biotechnol Bioengng1996,50:73-90.
    187. Shi X.J., Wang B., Wang M. Immune enhancing effects of recombinant bovine IL-18onfoot-and-mouth disease vaccination in mice model. Vaccine2007,25:1257-1264.
    188. Shin Y.S., Kang J.H., Jang S.Y., et al. Effects of the hinge region of cecropin A(1-8)-magainin-(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumorcells. Biochim Biophys Acta2000,1463:209-218.
    189. Sinclair G., Choy F.Y.M. Synonymous codon usage bias and the expression of humanglucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Express Purif2002,26:96-105.
    190. Singh M., Ohagan D.T. Advances in vaccine adjuvants. Nat Biotechnol1999,17:1075-1081.
    191. Singh P., Kim T.J., Tripathy D.N. Re-emerging fowPox: evaluation of isolates fromvaccinated flocks. Avian Pathol2000,29:449-455.
    192. Singh P., Schnitzlein W.M., Tripathy D.N. Reticuloendotheliosis virus sequences within thegenomes of field strains of fowlpox virus display variability. J Virol2003,77:5855-5862.
    193. Smeekens S.P. Processing of protein precursors by a novel family of subtilisin-relatedmammalian endoproteases. BioTechnology1993,11:182-186.
    194. Solly S.K., Trajcevski S., Frisen C., et al. Replicative retroviral vectors for cancer genetherapy. Cancer Gene Ther2003,10:30-39.
    195. Sreekrishna K., Brankamp R.G., Kropp K.E., et al. Strategies for optimal synthesis andsecretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene1997,190:55-62.
    196. Sreekrishna K., Nelles L., Potenz R., et al. High-level expression purification andcharacterization of recombinant human tumor necrosis factor synthetized in themethylotrophic yeast Pichia-pastoris. Biochemistry1989,28:4117-4125.
    197. Steiner D.F., Smeekens S.P., Ohagi S., et al. The new enzymology of precursor processingendoproteases. J. Biol Chem1992,267:23435-23438.
    198. Sun A.J., Xu X.Y. Petherbridge L, et al. Functional evaluation of the role ofreticuloendotheliosis virus long terminal repeat (LTR) integrated into the genome of a fieldstrain of Marek's disease virus. Virology2009,11:17-23.
    199. Tadese T., Fitzgerald S., Reed W.M. Detection and differentiation of reemerging fowlpoxvirus (FWPV) strains carrying integrated reticuloendotheliosis virus (FWPV-REV) byreal-time PCR. Vet Microbiol2008,127:39-49.
    200. Takano K., Tsuchimori K., Yamagata Y., et al. Effect of foreign N-terminal residues on theconformational stability of human lysozyme. Eur J Biochem1999,266:675-682.
    201. Taniguchi T., Palmieri M., Weissmann C. QB DNA-containing hybrid plasmids giving riseto QB phage formation in the bacterial host. Nature1978,27:223-228.
    202. Temin H.M., Kassner V.K. Replication of reticuloendotheliosis viruses in cell culture: acuteinfection. J Virol1974,13:291-297.
    203. Theilen G.H., Zeigel R.F., Twiehaus M.J. Biological studies with RE virus (strain T) thatinduces reticuloendotheliosis in turkeys, chickens, and Japanese quail. J Nat Can Inst1966,37:731-743.
    204. Thiry M., Cingolani D. Optimizing scale-up fermentation processes. Trends Biotechnol2002,20:103-105.
    205. Trager W. A new virus of ducks interfering with development of malaria parasite(Plasmodium lophurae). Proc Soc Exper Biol Med1959,101:578-582.
    206. Tsai W.P., Copeland T.D., Oroszlan S. Biosynthesis and chemical and immunologicalcharacterization of avian reticuloendotheliosis virus env gene-encoded proteins. Virology1986,155:567-583.
    207. Tschopp J.F., Brust P.F., Cregg J.M., et al. Expression of the LacZ gene form twomethanol-regulated promoters in Pichia pastoris. Nucleic Acids Res1987,15:3859-3876.
    208. Tschopp J.F., Brust P.F., Cregg J.M., et al. Expression of the lacZ gene from twomethanolregulated promoters in Pichia pastoris. Nucl. Acids Res1987,15:3859-3876.
    209. Tsujikawa M., Okabayashi K., Morita M., et al. Secretion of a variant of human single-chainurokinasetype plasminogen activator without an N-glycosylation site in the methylotrophicyeast, Pichia pastoris and characterisation of the secreted product. Yeast1996,12:541-553.
    210. Tull D., Gottschalk T.E., Svendsen I., et al. Extensive N-glycosylation reduces the thermalstability of a recombinant alkalophilic Bacillus alpha-amylase produced in Pichia pastoris.Protein Express Purif2001,21:13-23.
    211. Vassileva A., Chugh D.A., Swaminathan S., et al. Effect of copy number on the expressionlevels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. ProteinExpress Purif2001,21:71-80.
    212. Vassileva A., Chugh D.A., Swaminathan S., et al. Expression of hepatitis B surface antigenin the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol2001,88:21-35.
    213. Veenhuis M., Van Dijken J.P, White D.F., et al. The significance of peroxisomes in themetabolism of one carbon compounds in yeast. Adv Microb Physiol1983,24:1-82.
    214. Wang P., Zhang J., Sun Z.Y., et al. Glycosylation of prourokinase produced by Pichiapastoris impairs enzymatic activity but not secretion. Protein Express Purif2000,20:179-185.
    215. Waterham H.R., Digan M.E., Koutz P.J., et al. Isolation of the Pichia pastorisglyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter.Gene1997,186:37-44.
    216. Waterham, H.R., Digan, M.E., Koutz, P.J., et al. Isolation of the Pichia pastorisglyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter.Gene1997,186:37-44.
    217. White C.E., Kempi N.M., Komives E.A. Expression of highly disulfide-bonded proteins inPichia pastoris. Structure1994,2:1003-1005.
    218. Witter R.L., Smith E.J., Crittenden L.B., et al. Tolerance, viral shedding, and neoplasis inchickens infected with non-defective reticuloendotheliosis viruses. Avian Dis1981,25,374-394.
    219. Witter R.L., Fadly A.M. Reticuloendotheliosis. In: Saif YM, Barnes HJ, Glisson JR, FadlyAM, McDougal LR, Swayne DE, editors. Diseases of Poultry,11th ed, Ames, IA: Iowa StateUniversity Press;2003, p.517-535.
    220. Witter R.L., Johnson D.C. Epidemiology of reticuloendotheliosis virus in broiler breederflocks. Avian Dis1985,29:1140-1154.
    221. Witter R.L., Purchase H.G., Burgoyne G.H. Peripheral nerve lesions similar to those ofMarek,s disease in chickens inoculated with reticuloen-dotheliosis virus. J Nat Can Inst1970,45:567-577.
    222. Witter R.L. Reticuloendothelisis. B W Calnek. Diseases of Poultry (10th). Iowa StateUniversity Press.1997,467-484.
    223. Wong T.C., Lai M.M.C. Avian reticuloendotheliosis virus contains a new class of oneogeneof turkey origin. Virology1981,111:289-293.
    224. Woo J.H., Liu Y.Y., Mathias A., et al. Gene optimization is necessary to express a bivalentanti-human anti-T cell immunotoxin in Pichia pastoris. Protein Express Purif2002,25:270-282.
    225. Wu S., Fallon R.D., Payne M.S. Engineering Pichia pastoris for stereoselective nitrilehydrolysis by coproducing three heterologous proteins. Appl Microbiol Biotechnol1999,52:186-190.
    226. Yan B.X., Zhang W.Y., Ding J.P., et al. Sequence pattern for the occurrence ofN-glycosylation in proteins. J Protein Chem1999,18:511-521.
    227. Yoshida I., Sakata M., Fujita K., et al. Modification of low virulent Newcastle disease virusinfection in chickens infected with reticuloendotheliosis virus. Natl Inst Anim Health Q1981,21:1-6.
    228. Yuasa N., Yoshida I., Taniguchi T. Isolation of a reticuloendotheliosis virus from chickensinoculated with Marek’s disease vaccine. Natl Inst Anim Health Q1976,16:141-151.
    229. Zanchin N.I.T., McCarthy J.E.G. Characterisation of the in vivo phosphorylation sites of theMRUA-cap-binding complex proteins eukaryotic initiation factor-4E and P20inSaccharomyces cerevisiae. J Biol Chem1995,270:26505-26510.
    230. Zavala G., Cheng S., Barbosa T. Enzootic Reticuloendotheliosis in the EndangeredAttwater’s and Greater Prairie Chickens Guillermo. Avian Dis2006,50:520-525.
    231. Zhang Z.,Cui Z.Z. Isolation of reeombinant field strains of Marek’s disease virus integratedwith retieuloendotheliosis virus genome fragments. China Sci2005,48:81-88.
    232. Zhao W., Ding J., Cui Z. Different assay analysis for the inspection of reticuloendotheliosisvirus. Chin J Vet Sci2003,23:133-135.
    233. Zufferey R., Donello J.E., Trono D., et al. Woodchuck hepatitis virus posttranscriptionalregulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol1999,73:2886-2892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700