用户名: 密码: 验证码:
气候变化对内蒙古荒漠草原生态系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化是当今国际社会普遍关注的全球性重大问题,严重威胁自然生态系统和社会经济系统,特别是对环境脆弱地区的影响更加显著。内蒙古中温型荒漠草原植被低矮、稀疏,群落生产力低,气候干旱,自然环境复杂,成为气候变化的异常敏感区域。因此,在全球气候变化的背景下,探讨内蒙古荒漠草原生态系统对气候变化的响应具有重要的理论和实践意义。
     本项研究以内蒙古中温型荒漠草原为对象,利用1961~2010年荒漠草原区11个气象站资料,分析了气温、降水和干燥度的时空分布格局以及变化趋势;利用2004~2012年荒漠草原区6个生态观测站的植物返青期和黄枯期资料,分析了植物物候变化特征,探讨了气候因子对植物物候的影响;利用2008年和2009年野外考察点146个样方数据,分析了气候因子对物种多样性分布格局的影响;利用1982~2009年NOAA/AVHRR NDVI资料及气候数据驱动EC-LUE模型,对内蒙古荒漠草原GPP进行模拟,分析其时空变化特征,并探讨了气候因子对GPP的影响;采用Thornthwaite Memorial模型模拟荒漠草原气候生产力,探讨未来气候变化情景下,内蒙古荒漠草原气候生产力的变化趋势。得出的主要结论如下:
     (1)内蒙古荒漠草原气温呈现出非对称变化特征。年平均、年平均最高和年平均最低气温均呈增温趋势,分别为0.47、0.33、0.60℃/10a。气温的增加以最低气温的升温为主导。季节上,四季均为增温趋势,以冬季增温最为明显。
     (2)内蒙古荒漠草原年降水量自东南向西北呈条带状逐渐减少。近50a来年降水量表现为波动变化、略下降的趋势,近10a来的下降尤为突出。在空间上,与典型草原毗邻地区和中部偏西地区的年降水量明显增加,东北部地区明显减少。在季节上,春季降水量增加,夏季降水量减少。
     (3)年平均干燥度呈条带状自东南向西北逐渐递增。内蒙古荒漠草原干旱化趋势加重,大部分地区的干燥度指数呈增加趋势,干燥度指数越高的地方,干燥度增加趋势越明显。近10a来,研究区域的干旱化趋势最为剧烈。
     (4)内蒙古荒漠草原植物返青期和黄枯期均提前,生长季天数缩短。植物返青期与2月平均温度存在显著的负相关关系,4月的降水量对返青起主要作用,可见内蒙古荒漠草原春季升温、降水量增加导致了植物返青期提前。
     (5)内蒙古荒漠草原群落物种丰富度主要随经度的增加而增加,与该区降水的空间分布格局一致。物种丰富度与潜在蒸散量呈现负线性相关。降水量对一二年生草本、多年生杂类草和多年生根茎禾草功能群物种丰富度分布格局起主导作用,一二年生草本功能群物种丰富度随降水增多而下降,多年生杂类草和多年生根茎禾草功能群物种丰富度均随降水增多而升高。
     (6)内蒙古荒漠草原GPP呈现南高北低、东多西少的分布格局,与干燥度的空间分布格局具有较高的一致性。从区域上看,东南部减少,西北部增加;从时间上看,1982年以来,内蒙古荒漠草原GPP表现减少的变化趋势,近10a来下降明显,与气候的变化特征一致。年降水量、生长季降水量、夏季降水量均与GPP呈显著正相关,表明降水因素是制约内蒙古荒漠草原植被生产力的关键因子。
     (7)气候变化对气候生产潜力影响显著。“暖湿型”和“冷湿型”气候可使荒漠草原气候生产力提高,而“暖干型”气候使气候生产力降低,表明内蒙古荒漠草原植被生长受温度的影响较小,降水的作用较大,进一步证实降水是制约内蒙古荒漠草原植被生长的关键因子。
     (8)根据相关研究与预测,内蒙古荒漠草原未来气候向暖干化趋势发展,因此,内蒙古荒漠草原的植被生产力将呈现出降低的变化趋势。
     伴随着内蒙古荒漠草原的气候变化,地处干旱、半干旱区的内蒙古荒漠草原植物物候期提前,生长季缩短,植被生产力减少,给当地的农牧民生产生活带来重大社会经济影响,应引起各级政府的高度重视,尽快提出应对气候变化的政策和措施。
Today, climate change is of widespread concern in the international community as a major global issue, and seriously threatens natural ecosystems and socioeconomic systems. The impact on environmentally fragile areas is especially significant. In the Inner Mongolia medium temperate desert steppe, vegetation is low and sparse, community productivity low, the climate arid, and the natural environment complex. This makes the area extremely sensitive to climate change. Therefore under global climate change, the study of the response to climate change of the Inner Mongolia desert steppe ecosystem has important theoretical and practical significance.
     Given this steppe as the study area, we used data from11meteorological stations from1961to2010to investigate spatiotemporal distribution patterns and trends of temperature, precipitation and aridity index. We also used turning-green and withering period data from6ecological stations over2004-2012on the steppe, to analyze variations of plant phenology and the impact of climatic factors on that phenology. Using146-quadrat field data from2008and2009, we studied climate factor influences on the distribution of species diversity. NOAA/AVHRR NDVI data from1982to2009and a climate data-driven Eddy Covariance-Light Use Efficiency (EC-LUE) model were used to simulate Gross Primary Production (GPP) on the desert steppe, to analyze spatiotemporal variations and investigate the influence of climatic factors on GPP. Using Thornthwaite Memorial model simulations of climate productivity on the desert steppe, we examined future climate-change scenario productivity trends.
     Temperature on the Inner Mongolia desert steppe showed asymmetric variations. Annual average temperature and annual mean maximum and minimum temperatures all showed warming trends, of0.47,0.33and0.60℃/10a, respectively. The minimum temperature increased most significantly. Temperature in the four seasons had warming trends, with the greatest warming in winter.
     Annual precipitation showed a banded pattern, gradually declining from southeast to northwest on the steppe. In the last50years, precipitation fluctuated but with a slight downward trend, especially in the last decade. Spatially, annual precipitation significantly increased in an adjoining area of typical steppe and the west-central region, and significantly decreased in the northeast. Temporally, precipitation increased in spring and decreased in summer.
     The annual average aridity index showed a banded progressive increase from southeast to northwest. There was a tendency toward increased aridity on the desert steppe, with a higher aridity index and a clear increasing trend. The drought trend in the study area was most severe in the last decade. Warming was main factor causing the aridity index increase.
     Turning-green and withering periods of the steppe grassland vegetation were early, and the number of growing-season days were shortened. There was significant negative correlation between the turning-green period and average temperature in February, and April rainfall was important for turning green. Temperature rise and rainfall increase in spring resulted in an early turning green of vegetation.
     Species richness increased with longitude, consistent with the spatial distribution of precipitation. There was negative correlation between species richness and potential evapotranspiration. Precipitation had a strong influence on species richness distributions for biennial herbaceous, perennial forb, and perennial rhizomatous grass functional groups. With precipitation increase, biennial herbaceous species richness decreased, but that of perennial forbs and rhizomatous grasses increased.
     The GPP distribution was high in the south and low in the north, plus high in the east and low in the west. The distribution of aridity index had greater consistency than GPP. From a regional point of view, the GPP of the southeast decreased and increased in the northwest. From the time point of view, Since1982, GPP on the steppe has had a declining trend, especially in the last decade, consistent with the characteristics of climate change. GPP decreased in the southeast part of the region, and increased in the northwest. Annual, growing-season and summer precipitation all had significant positive correlations with GPP, indicating that precipitation was a key constraint on GPP.
     Climate change significantly affected climate potential production."Warm-wet" and "cold-wet" climates increased climate potential production, but this production was reduced by a "warm-dry" climate. This indicates that vegetation growth was less affected by temperature than by precipitation. Precipitation was a key limitation of vegetation growth.
     According to correlation analyses and forecasts, climate of the Inner Mongolia desert steppe will be warmer and drier in the future. Therefore, GPP will decrease.
     With climate change, plant phenology became earlier, the growing season shortened, and vegetation productivity declined. This significantly impacted the local economy and the production and living conditions of farmers and herdsmen. This should be urgently addressed by the government, which should formulate policies and measures to combat climate change as quickly as possible.
引文
[1]Solomon S. Climate change 2007:contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge University Press, 2007.
    [2]戴晓苏IPCC第二工作组第四次评估报告的基本结论[J].气象软科学,2008,(1):155-163.
    [3]戴晓苏IPCC第一工作组第四次评估报告的基本结论[J].气象软科学,2008,(1):150-154.
    [4]王长科,刘洪滨,罗勇.气候变化及其对农业和生态系统的影响[J].科学中国人,2005,(11):24-26.
    [5]李镇清,刘振国,陈佐忠,等.中国典型草原区气候变化及其对生产力的影响[J].草业学报,2003,12(1):4-10.
    [6]张新时,周广胜.中国全球变化与陆地生态系统关系研究[J].地学前缘,1997,4(2):137-144.
    [7]刘合满,曹丽花.退化草地碳动态及固碳潜力[J].中国农学通报,2011,27(22):11-15.
    [8]莫志鸿.北方草原生态系统NPP、R_h和SOC对气候变化的响应[D].中国农业科学院,2012.
    [9]郭中小,贾利民,张金平.牧区草地资源利用的三元化结构及其水问题[J].水土保持研究,2006,13(1):38-39.
    [10]姚玉璧,邓振镛,尹东,等.黄河首曲流域草地生态与自然环境退化成因及对策研究[J].草业科学,2007,24(12):87-93.
    [11]周广胜.全球碳循环[M].北京:气象出版社,2003.
    [12]姚玉璧,张秀云,段永良.气候变化对亚高山草甸类草地牧草生长发育的影响[J].资源科学,2008,30(12):1839-1845.
    [13]丁明军,张镱锂,刘林山,等.青藏高原植物返青期变化及其对气候变化的响应[J].气候变化研究进展,2011,(05):317-323.
    [14]牛建明.气候变化对内蒙古草原分布和生产力影响的预测研究[J].草地学报,2001,(04):277-282.
    [15]肖向明,王义凤.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候的反应[J].植物学报(英文版),1996,38(1):45-52.
    [16]赛胜宝,李德新.荒漠草原生态系统研究[C].呼和浩特:内蒙古人民出版社,1995.
    [17]中华人民共和国农业部畜牧兽医司.中国草地资源[M].北京:中国科学技术出版社,1996.
    [18]中国科学院内蒙宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [19]赛胜宝.内蒙古北部荒漠草原带的严重荒漠化及其治理[J].干旱区资源与环境,2001,(04):34-39.
    [20]马治华,刘桂香,李景平,等.内蒙古荒漠草原生态环境质量评价[J].中国草地学报,2007,(06):17-21.
    [21]孙红雨,李兵.中国地表植被覆盖变化及其与气候因子关系[J].遥感学报,1998,2(3):204-210.
    [22]竺可桢,宛敏渭.物候学[M].北京:科学出版社,1973.
    [23]顾润源,周伟灿,白美兰,等.气候变化对内蒙古草原典型植物物候的影响[J].生态学 报,2012, (03):767-776.
    [24]韩芳,李兴华,苗百岭,等.气候变化对内蒙古小叶杨叶芽开放期的影响[J].气象,2010,(01):91-96.
    [25]祁如英,严进瑞,王启兰.青海小叶杨物候变化及其对气候变化的响应[J].中国农业气象,2006,(01):41-45.
    [26]陈莉,石雷,崔洪霞,等.荚蓬属植物花期物候及生长对引种地年际气候波动的响应[J].植物学报,2012,(06):645-653.
    [27]白洁,葛全胜,戴君虎,等.西安木本植物物候与气候要素的关系[J].植物生态学报,2010,(11):1274-1282.
    [28]方修琦,萧凌波,葛全胜,等.湖南长沙、衡阳地区1888-1916年的春季植物物候与气候变化[J].第四纪研究,2005,(01):74-79.
    [29]高祺,陈静,阎访,等.河北省草本植物物候特征及其对气候变暖的响应[J].生态学杂志,2012,(03):600-605.
    [30]李荣平,刘晓梅,周广胜.盘锦湿地芦苇物候特征及其对气候变化的响应[J].气象与环境学报,2006,(04):30-34.
    [31]陆佩玲,于强,贺庆棠.植物物候对气候变化的响应[J].生态学报,2006,(03):923-929.
    [32]祁如英,赵隆香.青海车前草物候对气候变化的响应研究[J].安徽农业科学,2013,(07):3025-3026+3028.
    [33]郑景云,葛全胜,郝志新.气候增暖对我国近40年植物物候变化的影响[J].科学通报,2002,(20):1582-1587.
    [34]郑景云,葛全胜,赵会霞.近40年中国植物物候对气候变化的响应研究[J].中国农业气象,2003,(01):29-33.
    [35]郑有飞,陈彬彬,赵国强,等.气候变化对植物春季物候影响分析及模拟——以河南郑州为例[J].安徽农业科学,2007,(16):4711-4713+4722.
    [36]陈效逑,李惊.内蒙古草原羊草物候与气象因子的关系[J].生态学报,2009,29(10):5280-5290.
    [37]陈效逑,张福春.近50年北京春季物候的变化及其对气候变化的响应[J].中国农业气象,2001,(01):2-6.
    [38]陆佩玲.中国木本植物物候对气候变化的响应研究[D].北京林业大学,2006.
    [39]徐雨晴.近50年来气候变化对我国树木物候的影响[D].北京林业大学,2004.
    [40]赵文龙.中国北方草原物候、生产力和土壤碳储量对气候变化的响应[D].兰州大学,2012.
    [41]Bai Y, Wu J, Pan Q, et al.Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe[J]. Journal of Applied Ecology,2007,44(5): 1023-1034.
    [42]吴建国,吕佳佳,艾丽.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报,2009,18(2):693-703.
    [43]牛书丽,万师强,马克平.陆地生态系统及生物多样性对气候变化的适应与减缓[J].中国科学院院刊,2009,24(4):421-427.
    [44]Brooker R, Young JC,Watt AD. Climate change and biodiversity:impacts and policy development challenges-a European case study[J]. The International Journal of Biodiversity Science and Management,2007,3(1):12-30.
    [45]朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报, 2007,31(3):413-424.
    [46]谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响[J].自然资源学报,2007,(02):251-259+324.
    [47]张学霞,葛全胜,郑景云.遥感技术在植物物候研究中的应用综述[J].地球科学进展,2003,18(4):534-544.
    [48]戴小华,余世孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学杂志,2004,23(4):92-98.
    [49]郑凌云,张佳华.草地净第一性生产力估算的研究进展[J].农业工程学报,2007,23(1):279-285.
    [50]苏宏新,马克平.生物多样性和生态系统功能对全球变化的响应与适应:进展与展望[J].自然杂志,2010,(06):344-347+352.
    [51]郭春生,许豆艳,郭爱生,等.气候变化对草地畜牧业及生产力的影响[J].科技情报开发与经济,2010,(19):149-152.
    [52]周广胜,张新时.中国气候-植被关系初探[J].植物生态学报,1996,20(2):113-119.
    [53]方精云.也论我国东部植被带的划分[J].植物学报,2001,43(5):522-533.
    [54]邓慧平,刘厚风.全球气候变化对松嫩草原水热生态因子的影响[J].生态学报,2000,20(6):958-963.
    [55]丁一汇.IPCC第二次气候变化科学评估报告的主要科学成果和问题[J].地球科学进展,1997,12(2):158-163.
    [56]张庆阳,胡英,田静.IPCC关于气候变化影响的最新评估综述[J].环境保护,2001,5:39-41.
    [57]孙成权,高峰,曲建升.全球气候变化的新认识——IPCC第三次气候变化评价报告概览[J].自然杂志,2002,24(2):114-122.
    [58]沈永平IPCC WGI第四次评估报告关于全球气候变化的科学要点[J].冰川冻土,2007,29(01):156.
    [59]张忠华,刘云.中国气候变化研究的文献计量分析[J].现代情报,2013,(07):125-129.
    [60]丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,(01):3-8+50.
    [61]施能,陈家其.中国近100年来4个年代际的气候变化特征[J].气象学报,1995,53(4):431-439.
    [62]王遵娅,丁一汇,何金海,等.近50年来中国气候变化特征的再分析[J].气象学报,2004,62(2):228-236.
    [63]《第二次气候变化国家评估报告》编写委员会.第二次气候变化国家评估报告.北京:科学出版社,2011.
    [64]江志红,张霞,王冀IPCC-AR4模式对中国21世纪气候变化的情景预估[J].地理研究,2008,27(4)
    [65]刘学华,季致建,吴洪宝.中国近40年极端气温和降水的分布特征及年代际差异[J].热带气象学报,2006,22(6):618-624.
    [66]尤莉,沈建国,裴浩.内蒙古近50年气候变化及未来10-20年趋势展望[J].内蒙古气象,2002,4:14-18.
    [67]丁晓华,陈廷芝.内蒙古地区近50年气温降水变化特征[J].内蒙古气象,2008,3(2):17-19.
    [68]吴学宏,曹艳芳,陈素华.内蒙古草原生态环境的变化及其对气候因子的动态响应[J].华北农学报,2005,20(12):65-68.
    [69]尤莉,曹艳芳,阎军,等.内蒙古近40年最高最低温度变化特征[J].内蒙古气象,2006,3:11-13.
    [70]陈素华,宫春宁.内蒙古气候变化特征与草原生态环境效应[J].中国农业气象,2005,26(4):246-249.
    [71]高涛,肖苏君,乌兰.近47年(1961—-2007年)内蒙古地区降水和气温的时空变化特征[J].内蒙古气象,2009,1:3-7.
    [72]路云阁,李双成,蔡运龙.近40年气候变化及其空间分异的多尺度研究——以内蒙古自治区为例[J].地理科学,2004,(04):432-438.
    [73]A.Menzel, N.Estrella, C.Schleip, et al气候变率和北大西洋涛动对20世纪欧洲植物物候的影响[J].沙漠与绿洲气象,2009,(02):59-61.
    [74]Sparks T, Carey P. The responses of species to climate over two centuries:an analysis of the Marsham phenological record,1736-1947[J]. Journal of Ecology,1995:321-329.
    [75]Menzel A. Trends in phenological phases in Europe between 1951 and 1996[J]. International Journal of Biometeorology,2000,44 (02):76-81.
    [76]Cleland EE, Chiariello NR, Loarie SR, et al.Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences, 2006,103 (37):13740-13744.
    [77]White M, Running S, Thornton P. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest[J]. International Journal of Biometeorology,1999,42 (3):139-145.
    [78]Nemani RR, Keeling CD, Hashimoto H, et al.Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300 (5625):1560-1563.
    [79]Myneni RB, Keeling C, Tucker C, et al.Increased plant growth in the northern high latitudes from 1981 to 1991 [J]. Nature,1997,386 (6626):698-702.
    [80]张福春.气候变化对中国木本植物物候的可能影响[J].地理学报,1995,(05):402-410.
    [81]徐雨晴,陆佩玲,于强.近50年北京树木物候对气候变化的响应[J].地理研究,2005,(03):412-420.
    [82]祁如英.青海草本植物物候对气候变化的响应及其应用[J].青海气象,2006,(03):22-25.
    [83]袁婧薇,倪健.中国气候变化的植物信号和生态证据[J].干旱区地理,2007,(04):465-473.
    [84]李荣平,周广胜,王玉辉,等.羊草物候特征对气候因子的响应[J].生态学杂志,2006,(03):277-280.
    [85]张峰,周广胜,王玉辉.内蒙古克氏针茅草原植物物候及其与气候因子关系[J].植物生态学报,2008,(06):1312-1322.
    [86]吴瑞芬,沈建国,闫伟兄,等.气候变暖对内蒙古地区小白杨物候的影响[J].应用生态学报,2009,(04):785-790.
    [87]李夏子,郭春燕,韩国栋.气候变化对内蒙古荒漠化草原优势植物物候的影响[J].生态环境学报,2013,(01):50-57.
    [88]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [89]吴晋峰,陶丽华,朱晓东.生物多样性:价值及其与全球变暖的关系[J].自然杂志,2000,22(2):109-112.
    [90]张庆.内蒙古短花针茅草原生物多样性格局及环境解释[D].内蒙古大学,2011.
    [91]张庆,牛建明,王秀梅.生物多样性与生态系统功能关系研究进展[J].生物学通报, 2009,44(1):15-17.
    [92]金红喜.生态恢复建植林(FPER)中植物物种多样性和生产力研究[D].兰州大学,2012.
    [93]Di Castri F, VernhesJR, Younes T. Inventorying and monitoring biodiversity:a proposal for an international network[J]. Vegetatio,1992,103 (2):1-28.
    [94]Elton CS. The ecology of invasions by animals and plants[M]. University of Chicago Press, 2000.
    [95]黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,2001,9(1):1-7.
    [96]Bai Y, Han X, Wu J, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004,431 (7005):181-184.
    [97]王长庭,龙瑞军,丁路明,等.草地生态系统中物种多样性、群落稳定性和生态系统功能的关系[J].草业科学,2005,(06):1-7.
    [98]Tilman D. The ecological connsequences of changes in biodiverity:a search for general principles [J]. Ecology,1999,80 (5):1455-1474.
    [99]杨持,叶波.草原区区域气候变化对物种多样性的影响[J].植物生态学报,1996,20(1):35-40.
    [100]郑晓翾,王瑞东,靳甜甜,等.呼伦贝尔草原不同草地利用方式下生物多样性与生物量的关系[J].生态学报,2008,28(11):5392-5400.
    [101]朱志辉.自然植被净第一性生产力估计模型[J].科学通报,1993,38(15):1422-1426.
    [102]周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    [103]周广胜,郑元润,陈四清,等.自然植被净第一性生产力模型及其应用[J].林业科学,1998,34(5):2-11.
    [104]王胜兰.基于5种气候生产力模型的乌鲁木齐地区NPP计算分析[J].沙漠与绿洲气象,2008,(04):40-44.
    [105]苏清荷,安沙舟,赵玲.基于5种气候生产力模型的天山北坡主要草地类型NPP计算分析[J].新疆农业科学,2010,(09):1786-1791.
    [106]姚玉璧,李耀辉,王毅荣,等.黄土高原气候与气候生产力对全球气候变化的响应[J].干旱地区农业研究,2005,23(2):202-208.
    [107]杨泽龙,杜文旭,侯琼,等.内蒙古东部气候变化及其草地生产潜力的区域性分析[J].中国草地学报,2008,30(6):62-66.
    [108]杜军,胡军,周保琴,等.西藏一江两河流域作物气候生产力对气候变化的响应[J].干旱地区农业研究,2008,(01):141-145.
    [109]陈涛,陈洪武,杨辽.博州地区气候生产力对区域气候变化的响应[J].沙漠与绿洲气象,2013,(03):57-61.
    [110]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报,2000,55(1):36-45.
    [111]郝永萍,陈育峰,张兴有.植被净初级生产力模型估算及其对气候变化的响应研究进展[J].地球科学进展,1998,13(6):564-571.
    [112]Go ward SN, Tucker CJ, Dye DG. North American vegetation patterns observed with the NO AA-7 advanced very high resolution radiometer [J]. Vegetatio,1985,64(1):3-14.
    [113]高中灵.基于时间序列NDVI相似性分析的棉花估产[J].农业工程学报,2012,28(2).
    [114]贺振,贺俊平.基于NOAA-NDVI的河南省冬小麦遥感估产[J].干旱区资源与环境, 2013,(05):46-52.
    [115]王新欣,朱进忠,范燕敏,等.利用EOS/MODIS植被指数建立草地估产模型的研究[J].新疆农业科学,2008,45(5):843-846.
    [116]Potter CS, Randerson JT,Field CB, et al.Terrestrial ecosystem production:a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841.
    [117]朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志,2005,(03):296-300.
    [118]Field CB, Randerson JT, Malmstrom CM. Global net primary production:combining ecology and remote sensing[J]. Remote Sensing of Environment,1995,51 (1):74-88.
    [119]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5):603-608.
    [120]张峰,周广胜,王玉辉.基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟[J].植物生态学报,2008,32(4):786-797.
    [121]陈福军,沈彦俊,李倩,等.中国陆地生态系统近30年NPP时空变化研究[J].地理科学,2011,31(11):1409-1414.
    [122]高清竹,万运帆,李玉娥.基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局[J].应用生态学报,2007,18(11):2526-2532.
    [123]董丹,倪健.利用CASA模型模拟西南喀斯特植被净第一性生产力[J].生态学报,2011,31(7):1855-1866.
    [124]李刚,辛晓平,王道龙,等.改进CASA模型在内蒙古草地生产力估算中的应用[J].生态学杂志,2007,26(12):2100-2106.
    [125]陈正华,麻清源,王建,等.利用CASA模型估算黑河流域净第一性生产力[J].自然资源学报,2008,23(2):263-273.
    [126]罗玲,王宗明,毛德华,等.松嫩平原西部草地净初级生产力遥感估算与验证[J].中国草地学报,2011,33(6):21-29.
    [127]杨东辉,赵军,张智慧,等.近10年甘南牧区草地净初级生产力变化研究[J].干旱地区农业研究,2011,29(01):257-263.
    [128]张锋.基于遥感信息估测森林生物量的研究[D].东北林业大学,2003.
    [129]董明伟,喻梅.沿水分梯度草原群落NPP动态及对气候变化响应的模拟分析[J].植物生态学报,2008,32(3):531-543.
    [130]崔林丽,史军,唐娉,等.中国陆地净初级生产力的季节变化研究[J].地理科学进展,2005,24(3):8-16.
    [131]王磊,丁晶晶,季永华,等.1981~2000年中国陆地生态系统NPP时空变化特征分析[J].江苏林业科技,2009,36(6):1-5.
    [132]杨亚梅,胡蕾,武伟,等.贵州省陆地净初级生产力的季节变化研究[J].西南大学学报(自然科学版),2008,30(9):123-128
    [133]李佳.内蒙古地区地表光合有效辐射和植被净初级生产力估算[D].西北农林科技大学,2010.
    [134]姜群鸥,邓祥征,战金艳,等.黄淮海平原耕地转移对植被碳储量的影响[J].地理研究,2008,27(4).
    [135]朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J].遥感学报.2005,(03):300-307.
    [136]刘敏.基于RS和GIS的陆地生态系统生产力估算及不确定性研究[D].南京师范大学,2008.
    [137]伍卫星,王绍强,肖向明,等.利用MODIS影像和气候数据模拟中国内蒙古温带草原生态系统总初级生产力[J].中国科学(D辑:地球科学),2008,(08):993-1004.
    [138]Yuan W, Liu S, Yu G, et al.Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote sensing of environment,2010,114 (7):1416-1431.
    [139]Yuan W, Liu S, Zhou G, et al.Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology,2007,143 (3):189-207.
    [140]Piao S, Luyssaert S, Ciais P, et al.Forest annual carbon cost:a global-scale analysis of autotrophic respiration[J]. Ecology,2010,91 (3):652-661.
    [141]冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,(03):369-378.
    [142]董文娟,齐哗,李惠民,等.植被生产力的空间分布研究——以黄河小花间卢氏以上流域为例[J].地理与地理信息科学,2005,21(3):105-108.
    [143]高鲁鹏,梁文举,姜勇,等.利用CENTURY模型研究东北黑土有机碳的动态变化Ⅰ自然状态下土壤有机碳的积累[J].应用生态学报,2004,15(5)
    [144]张永强,唐艳鸿,姜杰.青藏高原草地生态系统土壤有机碳动态特征[J].中国科学:D辑,2006,36(12):1140-1147.
    [145]李东.基于CENTURY模型的高寒草甸土壤有机碳动态模拟研究[D].南京农业大学,2011.
    [146]吕新苗,郑度.气候变化对长江源地区高寒草甸生态系统的影响[J].长江流域资源与环境,2006,15(5):603-607.
    [147]盛文萍.气候变化对内蒙古草地生态系统影响的模拟研究[D].中国农业科学院,2007.
    [148]袁飞,韩兴国,葛剑平,等.内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应[J].应用生态学报,2008,(10):2168-2176.
    [149]陈辰,王靖,潘学标,等CENTURY模型在内蒙古草地生态系统的适用性评价[J].草地学报,2012,6:1011-1019.
    [150]黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响[J].植物生态学报,2000,24(2):175-179.
    [151]蒋延玲.全球变化的中国北方林生态系统生产力及其生态系统公益[D].北京:中国科学院,2001.
    [152]范敏锐,余新晓,张振明,等.北京山区油松林净初级生产力对气候变化情景的响应[J].东北林业大学学报,2010,38(011):46-48.
    [153]张远东,张笑鹤,刘世荣.西南地区不同植被类型归一化植被指数与气候因子的相关分析[J].应用生态学报,2011,(02):323-330.
    [154]方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念,估算及其相互关系[J].植物生态学报,2001,25(4):414-419.
    [155]孙睿,朱启疆.气候变化对中国陆地植被净第一性生产力影响的初步研究[J].遥感学报,2001,5(1):58-61.
    [156]丁勇,侯向阳,Leonid Ubugunov,等.温带草原区气候变化及其对植被影响的研究进展[J].中国农学通报,2012,(17):310-316.
    [157]李霞.我国北方气候变化对植被NDVI的影响[A].中国地理学会2004年学术年会暨海峡两岸地理学术研讨会[C].中国广州:2004,1.
    [158]张存厚,王明玖,张立,等.呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟[J].草业学报,2013,(03):41-50.
    [159]张戈丽,徐兴良,周才平,等.近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J].地理学报,2011,(01):47-58.
    [160]刘成林,樊任华,武建军,等.锡林郭勒草原植被生长对降水响应的滞后性研究[J].干旱区地理,2009,(04):512-518.
    [161]马文红,方精云,杨元合,等.中国北方草地生物量动态及其与气候因子的关系[J].中国科学:生命科学,2010,(07):632-641.
    [162]Zhang Y,Zhou G. Exploring the effects of water on vegetation change and net primary productivity along the IGBP Northeast China Transect[J]. Environmental Earth Sciences, 2011,62 (7):1481-1490.
    [163]辛连仲,赛胜宝.内蒙古荒漠草原初级生产力动态的研究[J].中国草地,1990,(01):40-46.
    [164]李晓兵,陈云浩,张云霞,等.气候变化对中国北方荒漠草原植被的影响[J].地球科学进展,2002,(02):254-261.
    [165]李浩.内蒙古荒漠草原土壤微生物季节动态变化的研究[D].内蒙古师范大学,2008.
    [166]马治华.内蒙古荒漠草原生态环境质量评价研究[D].中国农业科学院,2008.
    [167]珊丹.控制性增温和施氮对荒漠草原植物群落和土壤的影响[D].内蒙古农业大学,2008.
    [168]吴征镒.中国植被[M].北京:科学出版社,1980.
    [169]李博文集编辑委员会.李博文集[M].北京:科学出版社,1999.
    [170]孟猛,倪健,张治国.地理生态学的干燥度指数及其应用评述[J].植物生态学报,2004,(06):853-861.
    [171]陈建伟,张煜星.湿润指数与干操度关系的探讨[J].中国沙漠,1996,(01):79-82.
    [172]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
    [173]Karl TR, Jones PD, Knight RW, et al.Asy mmetric trends of daily maximum and minimum temperature[J]. Papers in Natural Resources,1993:185.
    [174]谢庄,曹鸿兴.北京最高和最低气温的非对称变化[J].气象学报,1996,54(4)501-507.
    [175]林纾,吴红.兰州最高最低气温的非对称变化[J].气象科技,2004,32(6):444-449.
    [176]杜军.西藏高原近40年的气温变化[J].地理学报,2001,56(6):682-690.
    [177]郑艳,张永领,吴胜安.海口市气温变化及最高最低气温的非对称变化[J].气象,2005,31(7):28-31.
    [178]冯晓晶.呼和浩特市气温变化及最高最低气温的非对称变化[J].内蒙古气象,2006,(1):7-9.
    [179]朱雅娟,吴波,卢琦.干旱区对降水变化响应的研究进展[J].林业科学研究,2012,(01):100-106.
    [180]周朝彬,陈刘生,牛攀新,等.干旱区降水格局改变的生态效应及其复杂性[J].西北林学院学报,2012,(03):48-54.
    [181]迎春,郝艳霞,任素芳,等.锡林郭勒盟冬季降水分布特征及成因分析[J].内蒙古气象,2011,(03):15-17.
    [182]刘冰,常学向,李守波.黑河流域荒漠区降水格局及其脉动特征[J].生态学报,2010, (19):5194-5199.
    [183]张立杰,赵文智.黑河流域日降水格局及其时间变化[J].中国沙漠,2008, (04)741-747+802.
    [184]钟军,苏布达,翟建青,等.中国日降水的分布特征和未来变化[J].气候变化研究进展,2013,(02):89-95.
    [185]吴清林,陆琛莉,陈优平.近50年浙江梅汛期降水分布的时空及环流特征[J].科技通报,2009,(05):562-569.
    [186]岳虎,陈和平.祁连山区的降水分布特征[J].甘肃气象,1988,(02):16-17.
    [187]赵焕宸.东北地区降水分布特性的主成分分析[J].地理科学,1984,(03):225-234.
    [188]杨建平,丁永建,陈仁升,等.近50年来中国干湿气候界线的10年际波动[J].地理学报,2002,(06):655-661.
    [189]刘波,马柱国.过去45年中国干湿气候区域变化特征[J].干旱区地理,2007,(01):7-15.
    [190]郑广芬,陈晓光,赵光平,等.宁夏地表湿润状况及极端干湿事件演变规律[J].中国沙漠,2007,(02):326-330.
    [191]普宗朝,张山清,王胜兰,等.近48a新疆干湿气候时空变化特征[J].中国沙漠,2011,(06):1563-1572.
    [192]张存厚,王明玖,李兴华,等.近30年来内蒙古地区气候干湿状况时空分布特征[J].干旱区资源与环境,2011,(08):70-75.
    [193]王海梅,李政海,韩国栋,等.锡林郭勒盟气候干燥度的时空变化规律[J].生态学报,2010,(23):6538-6545.
    [194]包云,李晓兵,李超et al,1961-2007年内蒙古气温时空变化特征分析[J].干旱区资源与环境,2010,(12):80-84.
    [195]白美兰,郝润全,邸瑞琦,等.内蒙古东部近54年气候变化对生态环境演变的影响[J].气象,2006,(06):31-36.
    [196]马全,张鑫,廖清飞,等.青海省1961-2006年气温时空变化特征研究[J].西北农林科技大学学报(自然科学版),2012,(11):59-65.
    [197]白美兰,郝润全,沈建国.近46a气候变化对呼伦湖区域生态环境的影响[J].中国沙漠,2008,(01):101-107.
    [198]史建国,张燕卿,何文清,等.黄河流域干燥度时空格局变化研究[J].干旱地区农业研究,2009,(01):242-247.
    [199]孙凤华,袁健.近40年来辽宁地区气候干湿界线年代际波动及其成因[J].应用生态学报,2006,(07):1274-1279.
    [200]任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征[J].气象学报,2005,(06):942-956.
    [201]张存厚.内蒙古草原地上净初级生产力对气候变化响应的模拟[D].内蒙古农业大学,2013.
    [202]气候变化国家评估报告编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.
    [203]侯琼.内蒙古典型草原区近40年气候变化及其对土壤水分的影响[J].气象科技,2006,34(1):102-106.
    [204]马瑞芳.内蒙古草原区近50年气候变化及其对草地生产力的影响[D].中国农业科学院,2007.
    [205]普宗朝,张山清,宾建华,等.基于GIS的乌-昌地区冬季热量资源时空变化[J].干旱 区研究,2012,(02):303-311.
    [206]普宗朝,张山清,王胜兰,等.近48a新疆干湿气候时空变化特征[A].第27届中国气象学会年会应对气候变化分会场[C].中国北京:2010,12.
    [207]王海梅,白殿奎,闫军,等.锡林郭勒草原不同生态地理区气候干燥度周期变化的小波分析[J].内蒙古气象,2011,(03):20-22+47.
    [208]宋春桥,游松财,柯灵红,等.藏北高原典型植被样区物候变化及其对气候变化的响应[J].生态学报,2012,(04):41-51.
    [209]邹亚荣,张增祥,周全斌,等.我国不同干燥度区域草地资源动态变化研究[J].中国生态农业学报,2003,(03):164-166.
    [210]徐雨晴,陆佩玲,于强.气候变化对植物物候影响的研究进展[J].资源科学,2004,(01):129-136.
    [211]毕伯钧.利用植物物候资料诊断预测温度异常[J].气象,2000,26(3):56-57.
    [212]竺可桢,宛敏谓.物候学(增订本)[M].北京:科学出版社,1980.
    [213]van Ruijven J, Berendse F. Diversity enhances co mmunity recovery, but not resistance, after drought[J]. Journal of Ecology,2010,98 (1):81-86.
    [214]Bai YF, Han XG, Wu JG, et al.Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004,431 (7005):181-184.
    [215]Isbell FI, Polley HW, Wilsey BJ. Biodiversity, productivity and the temporal stability of productivity:patterns and processes[J]. Ecology Letters,2009,12 (5):443-451.
    [216]Cadotte MW, Dinnage R, Tilman D. Phylogenetic diversity promotes ecosystem stability[J]. Ecology,2012,93 (8):S223-S233.
    [217]Colwell RK, Rahbek C, Gotelli NJ. The mid-domain effect and species richness patterns: what have we learned so far[J]. The American Naturalist,2004,163 (3):E1-E23.
    [218]Brown JH, Gillooly JF, Allen AP, et al.Toward a metabolic theory of ecology [J]. Ecology, 2004,85 (7):1771-1789.
    [219]Gaston KJ. Global patterns in biodiversity [J]. Nature,2000,405 (6783):220-227.
    [220]Harley CDG. Climate Change, Keystone Predation, and Biodiversity Loss[J]. Science, 2011,334 (6059):1124-1127.
    [221]Greve M, Lykke AM, Fagg CW, et al.Continental-scale variability in browser diversity is a major driver of diversity patterns in acacias across Africa[J]. Journal of Ecology,2012, 100 (5):1093-1104.
    [222]Field R, Hawkins BA, Cornell HV, et al.Spatial species-richness gradients across scales: a meta-analysis[J]. Journal of Biogeography,2009,36 (1):132-147.
    [223]Currie DJ. Energy and large-scale patterns of animal-and plant-species richness [J]. The American Naturalist,1991,137 (1):27-49.
    [224]Wright DH. Species-energy theory:an extension of species-area theory [J]. Oikos,1983, 41 (3):496-506.
    [225]O'Brien EM. Biological relativity to water energy dynamics[J]. Journal of Biogeography, 2006,33 (11):1868-1888.
    [226]O'Brien EM. Water-energy dynamics, climate, and prediction of woody plant species richness:an interim general model[J]. Journal of Biogeography,1998,25(2):379-398.
    [2273]Hawkins BA, Porter EE, Felizola Diniz-Filho JA. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds [J]. Ecology,2003,84 (6): 1608-1623.
    [228]Rahbek C. The role of spatial scale and the perception of large-scale species-richness patterns[J]. Ecology Letters,2004,8 (2):224-239.
    [229]马文静,张庆,牛建明,等.物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例[J].植物生态学报,2013,(07):620-630.
    [230]Zhang Q, Niu J, Buyantuyev A, et al.Productivity-species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe[J]. Ecological Research,2011,26 (3):649-658.
    [231]Arnone JA, Jasoni RL, Lucchesi AJ, et al.A climatically extreme year has large impacts on C-4 species in tallgrass prairie ecosystems but only minor effects on species richness and other plant functional groups[J]. Journal of Ecology,2011,99 (3):678-688.
    [232]Zhang F, Zhou GS, Wang Y, et al.Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China[J]. Hydrological Processes,2012,26 (3):379-386.
    [233]Yang F, Zhou G. Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China[J]. Journal of Hydrology,2011,396(1):139-147.
    [234]Yang FL, Zhou GS, Hunt JE,等.Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China[J]. Agriculture Ecosystems & Environment,2011,142 (3-4):318-328.
    [235]牛建明.内蒙古主要植被类型与气候因子关系的研究[J].应用生态学报,2000,11(01):47-52.
    [236]Mitchell-Olds T, Shaw RG. Regression analysis of natural selection:statistical inference and biological interpretation[J]. Evolution,1987:1149-1161.
    [237]Bai YF, Wu JG, Pan QM, et al.Positive linear relationship between productivity and diversity:evidence from the Eurasian Steppe[J]. Journal of Applied Ecology,2007,44 (5):1023-1034.
    [238]Zhao SP, Fang JY, Peng CH, et al.Patterns of fish species richness in China's lakes[J]. Global Ecology And Biogeography,2006,15:386-394.
    [239]Hillebrand H. On the generality of the latitudinal diversity gradient[J]. American Naturalist,2004,163 (2):192-211.
    [240]Wang Z, Brown JH, Tang Z, et al.Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America[J]. Proceedings of the National Academy of Sciences,2009,106 (32):13388.
    [241]Ding Y, Wang Z, Sun Y. Inter-decadal variation of the su mmer precipitation in East China and its association with decreasing Asian su mmer monsoon. Part I:Observed evidences[J]. International Journal of Climatology,2008,28 (9):1139-1162.
    [242]Allen AP, Brown JH, Gillooly JF. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule[J]. Science,2002,297 (5586):1545.
    [243]Davies RG, Irlich UM, Chown SL, et al.Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds[J]. Global Ecology and Biogeography,2010,19 (1):98-110.
    [244]Guo QF, Berry WL. Species richness and biomass:Dissection of the hump-shaped relationships[J]. Ecology,1998,79 (7):2555-2559.
    [245]韩芳,吴瑞芬,郭瑞清.近47a内蒙古荒漠草原气候变化特征[A].中国气象学会气候变化委员会、国家气候中心.第26届中国气象学会年会气候变化分会场论文集[C], 2009.
    [246]Gonzalez-Espinosa M, Maria Rey-Benayas J, Ramirez-Marcial N, et al.Tree diversity in the northern Neotropics:regional patterns in highly diverse Chiapas, Mexico[J]. Ecography,2004,27 (6):741-756.
    [247]Phillips LB, Hansen AJ, Flather CH, et al.Applying species-energy theory to conservation: A case study for North American birds[J]. Ecological Applications,2010,20 (7): 2007-2023.
    [248]Clarke A, Gaston KJ. Climate, energy and diversity[J]. Proceedings of the Royal Society B:Biological Sciences,2006,273 (1599):2257.
    [249]Ricklefs RE. Historical and ecological dimensions of global patterns in plant diversity[J]. Biologiske Skrifter (Royal Danish Academy of Sciences and Letters),2005,55: 583-603.
    [250]Svenning JC, Normand S, Skov F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe[J]. Ecography,2008,31 (3):316-326.
    [251]Hawkins BA, Rodriguez MA, Weller SG. Global angiosperm family richness revisited: linking ecology and evolution to climate[J]. Journal of Biogeography,2011,38 (7) 1253-1266.
    [252]Whittaker RJ, Nogues-Bravo D, Araujo MB. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins, et al. (2003) using European data for five taxa[J]. Global Ecology and Biogeography,2007,16 (1):76-89.
    [253]Chapin Ⅲ FS, Zavaleta ES, Eviner VT, et al.Consequences of changing biodiversity [J]. Nature,2000,405 (6783):234-242.
    [254]La Sorte FA, McKinney ML, Pysek P, et al.Distance decay of similarity among European urban floras:the impact of anthropogenic activities on (3 diversity [J]. Global Ecology And Biogeography,2008,17 (3):363-371.
    [255]Beck J, khen C. Beta-diversity of geometrid moths from northern Borneo:effects of habitat, time and space[J]. Journal of Animal Ecology,2007,76 (2):230-237.
    [256]张庆,牛建明,丁勇,等.内蒙古短花针茅群落数量分类及环境解释[J].草业学报,2012,21(1):83-92.
    [257]Abramsky Z, Rosenzweig ML. Tilman Predicted Productivity Diversity Relationship Shown By Desert Rodents[J]. Nature,1984,309 (5964):150-151.
    [258]Bai YF, Wu JG, Xing Q, et al.Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J]. Ecology,2008,89 (8):2140-2153.
    [259]Ma WH, He JS, Yang YH, et al.Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites [J]. Global Ecology And Biogeography,2010,19 (2):233-243.
    [260]Tilman D. Competition and biodiversity in spatially structured habitats[J]. Ecology,1994, 75 (1):2-16.
    [261]Dzwonko Z, Loster S. Impact of weather on dynamics of plant functional groups in an abandoned limestone grassland[J]. Acta Societatis Botanicorum Poloniae,2011,80(4): 259-268.
    [262]王炜,刘钟龄.内蒙古草原退化群落恢复演替的研究:Ⅱ.恢复演替时间进程的分析[J].植物生态学报,1996,20(5):460-471.
    [263]李博.内蒙古地带性植被的基本类型及其生态地理规律[J].内蒙古大学学报(自然科 学版),1962,2:103-128.
    [264]陈世鐄.内蒙古草原植物根系类型[M].呼和浩特:内蒙古人民出版社,1987.
    [265]Schenk HJ, Jackson RB. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems [J]. Journal of Ecology,2002,90 (3):480-494.
    [266]Brown JR, Archer S. Shrub invasion of grassland:Recruitment is continuous and not regulated by herbaceous biomass or density[J]. Ecology,1999,80 (7):2385-2396.
    [267]Shiponeni N, Allsopp N, Carrick PJ, et al.Competitive interactions between grass and succulent shrubs at the ecotone between an arid grassland and succulent shrubland in the Karoo[J]. Plant Ecology,2011,212 (5):795-808.
    [268]Van Auken OW. Shrub invasions of North American semiarid grasslands[J]. Annual Review of Ecology and Systematics,2000,31:197-215.
    [269]Wu J, Loucks O. From balance of nature to hierarchical patch dynamics:a paradigm shift in ecology[J]. Quarterly Review Of Biology,1995,70 (4):439.
    [270]张笑鹤,张远东,顾峰雪,等.西南地区灌丛归一化植被指数动态及其与气候因子的相关性[J].生态学杂志,2011,(11):11:2577-2583.
    [271]朱文泉,潘耀忠,刘鑫,等.中国东北样带植被净初级生产力时空动态及其对气候变化的响应(英文)[J]. Journal of Forestry Research,2006, (02):93-98+171.
    [272]云文丽,侯琼,乌兰巴特尔.近50年气候变化对内蒙古典型草原净第一性生产力的影响[J].中国农业气象,2008,(03):294-297.
    [273]赵鲁青.雅鲁藏布江中下游区域植被绿期和净初级生产力时空格局及其对气候变化的响应[D].华东师范大学,2011.
    [274]张山清,普宗朝,伏晓慧,等.气候变化对新疆自然植被净第一性生产力的影响[J].干旱区研究,2010,(06):905-914.
    [275]叶建圣.青藏高原植被净初级生产力对气候变化的响应[D].兰州大学,2010.
    [276]王芳,高永刚,白鸣祺.近50年气候变化对七星河湿地生态系统自然植被第一性净生产力的影响[J].中国农学通报,2011, (01):257-262.
    [277]刘正佳.气象数据的不确定性对CEVSA模型模拟结果的影响研究[D].山东师范大学,2012.
    [278]孙特生,李波,张新时.皇甫川流域生态系统生产力时空特征分析[J].安徽农业科学,2011,(31):19347-19350+19368.
    [279]王磊.基于IBIS模型模拟的中国东部南北样带植被NPP动态变化研究[D].中国林业科学研究院,2010.
    [280]闫伟兄,陈素华,乌兰巴特尔,等.内蒙古典型草原区植被NPP对气候变化的响应[J].自然资源学报,2009,(09):1625-1634.
    [281]McVicar T, Bierwirth P. Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery [J]. International Journal of Remote Sensing,2001,22 (11): 2109-2128.
    [282]Tucker CJ, Pinzon JE, Brown ME,等.An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing,2005,26 (20):4485-4498.
    [283]毛德华,王宗明,宋开山,等.东北多年冻土区植被NDVI变化及其对气候变化和土地覆被变化的响应[J].中国环境科学,2011,(02):283-292.
    [284]李刚,周磊,王道龙,等.内蒙古草地NPP变化及其对气候的响应[J].生态环境,2008, 17(5):1948-1955.
    [285]Townshend J, Justice C, Li W, et al.Global land cover classification by remote sensing: present capabilities and future possibilities^]. Remote Sensing of Environment,1991, 35 (2):243-255.
    [286]周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79.
    [287]Li X, Liang S, Yu G, et al.Estimation of gross primary production over the terrestrial ecosystems in China[J]. Ecological Modelling,2013,261:80-92.
    [288]陈燕丽,龙步菊,潘学标,等MODIS NDVI和AVHRRNDVI对草原植被变化监测差异[J].遥感学报,2011,(04):831-845.
    [289]杨英莲.青海省天然草地NDVI的时空化与气温和降水的关系分析[D].南京信息工程大学,2008.
    [290]张笑鹤.西南地区NDVI和NPP时空动态及其与气候因子相关性分析[D].中国林业科学研究院,2011.
    [291]韩国栋.降水量和气温对小针茅(Stipa klemenzii Roshev.)草原植物群落初级生产力的影响[J].内蒙古大学学报(自然科学版),2002,(01):83-88.
    [292]李霞,李晓兵,陈云浩,等.中国北方草原植被对气象因子的时滞响应[J].植物生态学报,2007,(06):1054-1062.
    [293]高素华,潘亚茹,郭建平.气候变化对植物气候生产力的影响[J].气象,1994,(01):30-33.
    [294]姚玉璧,王毅荣,张存杰,等.黄土高原作物气候生产力对气候变化的响应[J].南京气象学院学报,2006,(01):101-106.
    [295]郭连云,吴让,汪青春,等.气候变化对三江源兴海县草地气候生产潜力的影响[J].中国草地学报,2008,30(2):5-10.
    [296]程霞,李帅,师庆东.阿勒泰地区气候生产力变化分析[J].干旱地区农业研究,2007,(03):86-88.
    [297]Lieth H. Modeling the primary productivity of the world[J].The Indian Forester,1972, 98(6):327-331.
    [298]李霞,李晓兵,王宏,等.气候变化对中国北方温带草原植被的影响[J].北京师范大学学报(自然科学版),2006,(06):618-623.
    [299]秦大河.中国西部环境演变评估综合报告[M].北京:科学出版社,2002.
    [300]丁一汇.中国西部环境变化的预测[M].北京:科学出版社,2002.
    [301]赵慧颖.气候变化对典型草原区牧草气候生产潜力的影响[J].中国农业气象,2007,28(3):281-284.
    [302]马治国,陈惠,陈家金.气候变化对福州植物气候生产力的影响分析[J].中国农学通报,2009,(22):320-323.
    [303]毛裕定,苏高利,李发东,等.气候变化对浙江省植物气候生产力的影响[J].中国生态农业学报,2008,(02):273-278.
    [304]尤莉,许吟隆,荀学义PRECIS模式对内蒙古气候变化情景的模拟与分析[J].内蒙古气象,2009,(04):3-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700