用户名: 密码: 验证码:
NSP复合酶优化及在肉鸡日粮中高剂量添加效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了在选取的最佳饲用NSP单酶制剂基础上,通过体外模拟消化的方式来确定不同NSP单酶制剂与不同饲料原料之间的最佳酶解量关系,以建立起一套能针对不同饲料配方而得到相应变化的复合酶配方预测模型,并应用肉鸡养殖试验研究了高剂量添加复合酶对肉鸡生产性能、养分利用率、器官指数、血液指标、肠道黏膜形态、食糜黏度和微生物菌群等重要指标的影响。本论文试验共分三部分。
     试验一:选取了不同菌株来源的木聚糖酶、纤维素酶、β-甘露聚糖酶、-半乳糖苷酶、果胶酶样品各3种,通过研究不同单酶制剂在不同温度(30、37、40、45、50、55、60、65℃)和pH值(3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0)条件下酶活变化情况,以及各单酶制剂对酸碱性和胃蛋白酶、胰蛋白酶的耐受性,以期获得本研究所需的最佳饲用单酶制剂。试验结果表明:选用各单酶制剂的3种样品中,木聚糖酶-Ⅰ、纤维素酶-Ⅱ、β-甘露聚糖酶-Ⅰ、-半乳糖苷酶-Ⅰ和果胶酶-Ⅲ最适合在动物生产上应用,所选得的各单酶最适温度和pH分别为45、50、55、40、45℃和6.0、4.5、4.5、4.5、6.0,且在不同酸碱缓冲液和胃蛋白酶、胰蛋白酶处理后仍能保存很高的相对酶活。
     试验二:根据不同饲料原料中非营养物质或抗营养物质的含量,选取相应的NSP酶制剂,采用肉鸡体外消化模型,进行梯度酶解试验,以酶解产物为指标,确定不同饲料原料与不同酶制剂添加关系曲线,并推导其最佳添加量;同时,确定不同饲料配方中NSP复合酶制剂的添加关系。试验结果得到了木聚糖酶、纤维素酶、β-甘露聚糖酶、-半乳糖苷酶、果胶酶分别酶解玉米、豆粕、小麦、麸皮、棉粕、菜粕、米糠粕、DDGS的关系曲线,并得到了各酶解关系的产物生成量及其占底物比例,确定了各单酶酶解各饲料原料所需最佳酶活量,其中木聚糖酶为0.336、0、6.0、1.22(3.66)、2.24、0、0.44、5.0(20.0) U/g,β-甘露聚糖酶为1.68、3.90、0.276、6.28、4.08、1.72、7.04、0.84U/g,纤维素酶为4.98、28.62、8.88、19.44、44.48、27.78、22.8、9.72U/g,-半乳糖苷酶为1.11、27.78、1.94、1.48、13.34、5.37、4.45U/g,果胶酶为0.234、37.3、0.474、4.26、7.56、10.68、0.64U/g)。通过肉鸡养殖试验表明,体外模拟消化试验得到的不同单酶酶解不同饲料原料添加量结果与肉鸡养殖试验存在正比关系,在酶制剂添加量达到一定量之后,酶解效果不再呈显著性增加,这为饲料配方中添加复合酶配方的制作提供了理论数据。
     试验三:研究了在降低饲粮能量时,添加常规和高剂量复合酶对肉鸡生产性能、养分利用率、器官指数、血液指标、肠道黏膜形态、食糜黏度和微生物菌群的影响。试验将320只1日龄爱拔益加肉鸡分为4组,每组8个重复,每个重复10只。第Ⅰ组为正对照组,饲喂常规饲粮;第Ⅱ组为负对照组,配方中增加了杂粕和麦类原料的用量,同时降低210KJ ME/kg;第Ⅲ组和第Ⅳ组为常规剂量加酶组和高剂量加酶组,分别在负对照组饲粮的基础上添加0.02%和0.2%复合酶,试验期为42d。结果表明,肉鸡全期负对照组料重比显著高于高剂量加酶组(P<0.01),常规剂量加酶组和正对照组料重比显著低于负对照组(P<0.05);高剂量加酶组的蛋白质、脂肪和能量表观代谢率极显著高于负对照组(P<0.01),高剂量加酶组的干物质表观代谢率和表观代谢能显著高于负对照组(P<0.05);各试验组之间小肠和脾脏器官指数无显著性差异(P>0.05),高剂量加酶组的胃和法氏囊器官指数和负对照组有极显著性差异(P<0.01);负对照组甲状腺素显著低于其它三组(P<0.05);高剂量加酶组胰岛素含量显著高于其它三组(P<0.05);正对照组和高剂量加酶组绒毛高度极显著高于其它两组(P<0.01),负对照组绒毛高度显著短于常规剂量加酶组(P<0.05);负对照组隐窝深度极显著高于其它三组(P<0.01),高剂量加酶组隐窝深度显著低于正对照组和常规剂量加酶组(P<0.05);高剂量加酶组V/C值极显著高于其它三组(P<0.01),负对照组V/C值显著低于正对照组和常规剂量加酶组(P<0.05);各组之间黏膜厚度无显著差异(P>0.05);高剂量加酶组相对黏度显著低于负对照组(P<0.05);两个加酶组乳酸杆菌数显著高于两个对照组(P<0.05)。试验说明在降低210KJ/kg代谢能的饲粮中添加0.02%和0.2%复合酶对肉鸡生产性能、养分利用率、器官指数、血液指标、肠道黏膜形态、食糜黏度和微生物菌群,均具有很好的改善作用;相对于0.02%的添加量,0.20%复合酶添加量可进一步提高酶的应用效果。
The study was conducted to determine the enzymolysis relationship between different NSPenzymes and different feedstuffs by in vitro digestion method after the optimum NSP enzymes wereselected, and establish a prediction model of complex enzyme formula correspond to different feedformulations. An experiment was also conducted to study the effects of super dose complex enzyme onthe growth performance, nutrient availability, organ indexes, serum hormones concentration, smallintestinal mucosa, digesta viscosity and microbial community of broilers. The study had threeexperiments.
     The experiment1was to determine optimum enzymes among three different sources of xylanase,cellulose, β-mannanase,-galactosidase and pectase by studying the properties of temperature (30,37,40,45,50,55,60,65℃), pH (3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0) and tolerance toacid-base, pepsin and trypsin. The results showed that the optimum enzymes are xylanase-I, cellulose-Ⅱ, β-mannanase-I,-galactosidase-I and pectase-Ⅲ which optimum temperature and pH are45,50,55,40,45℃and6.0,4.5,4.5,4.5,6.0, and have high relative activity treated by acid-base, pepsin andtrypsin.
     The experiment2was to determine the optimal enzymatic hydrolysis dose of different NSPenzymes to different feedstuffs by gradient in vitro digestion method simulating broiler, and therelationship between added complex enzyme and different feed formulation. The enzymatic hydrolysiscurves of different NSP enzymes to different feedstuffs were also deduced by testing the enzymatichydrolysis products based on the content of non-starch polysaccharides in different feedstuffs. Theresults showed that the enzymatic hydrolysis curves of different enzymes to different feedstuffs havenormal linear relationship. The amount of product, which degraded from different feedstuffs by differentenzymes, and its percentage of substrate are calculated. The optimal enzymatic hydrolysis dose ofxylanase, β-mannanase, cellulose,-galactosidase and pectase to maize, soybean meal, wheat, wheatbran, cottonseed meal, rapeseed meal, rice bran meal and DDGS are0.336,0,6.0,1.22(3.66),2.24,0,0.44and5.0(20.0) U/g,1.68,3.90,0.276,6.28,4.08,1.72,7.04and0.84U/g,4.98,28.62,8.88,19.44,44.48,27.78,22.8and9.72U/g,1.11,27.78,1.94,1.48,13.34,5.37and4.45U/g,0.234,37.3,0.474,4.26,7.56,10.68and0.64U/g. The broiler trials showed that enzymolysis effect was no longersignificant increase after added enough enzyme and there is proportional relationship between in vitroand breeding broiler test. The results provided theoretical data for complex enzyme added to differentfeed formulae.
     The experiment3was conducted to investigate the effects of low energy diets supplemented withdifferent dosage of compound enzyme on the growth performance, nutrients utilization, organ index,serum hormones concentration, intestinal mucosa morphology, digesta viscosity and microbialcommunity of broilers. Three hundred and twenty broilers (1day-old) were randomly assigned to fourtreatments with eight replicates with ten broilers each. The positive control (PC) treatment was fed a corn-soybean meal diet. The diet of negative control (NC) treatment was reduced by210KJ ME/kg, andthe content of miscellaneous meal and wheat was increased in this treatment. The conventional dose ofenzyme (CDE) and super dose of enzyme (SDE) treatment was respectively fed the NC diet withdifferent dosages of compound enzyme0.02%and0.2%. The trial lasted for42d. The results showedthat the FCR of broilers fed the SDE treatment was significantly lower than those fed the NC (P<0.01);the FCR of broilers fed the CDE and PC treatment was significantly lower than the NC (P<0.05). TheCP, EE and energy apparent metabolizability of the SDE treatment diet were higher than the NC diet(P<0.01); the DM apparent metabolizability and AME of the SDE treatment diet were higher than theNC diet (P<0.05). There were no significant differences in the organ index of small intestine and spleenof broilers fed different diets (P>0.05); the organ index of stomach and bursa of fabricius of broilers fedthe SDE diet had difference significantly with those fed the NC diet (P<0.01). The thyroxine of broilersfed the NC treatment was significantly lower than other three treatments (P<0.05); the insulin ofbroilers fed the SDE diet was significantly higher than other three treatments (P<0.05). As for villiheight, the PC and SDE treatment were significantly higher than other two treatments (P<0.01); the NCtreatment was significantly lower than the CDE treatment (P<0.05). As for crypt depth, the NCtreatment were significantly lower than other three treatments (P<0.01); the SDE treatment wassignificantly lower than the PC and CDE treatment (P<0.05). As for V/C ratio, the SDE treatment weresignificantly higher than other three treatments (P<0.05); the NC treatment was significantly lower thanthe PC and CDE treatment (P<0.05). As for mucosa thickness, there was no significantly difference(P>0.05). As for digesta viscosity, the SDE treatment was significantly lower than the NC treatment(P<0.05). As for Lactobacillus of microbial community, two added enzyme treatments weresignificantly higher than the NC and PC treatment (P<0.05). The experiment prove that the growthperformance, nutrients utilization, organ index, serum hormones concentration, intestinal mucosamorphology, digesta viscosity and microbial community of broilers were improved significantly as thebroilers fed the diet (reduce210KJ ME/kg) containing complex enzyme at the level of0.02%and0.2%.The effect of complex enzyme was increased significantly while the dosage of enzyme was enhancedfrom0.02%to0.2%.
引文
[1]鲍恩东,等.肉鸡热应激病理损伤与应激蛋白相关性研究[J].中国农业科学,2004,37(2):301-305.
    [2]邹思湘.动物生物化学(第四版)[M].北京:中国农业出版社,2005:109.
    [3]丁雪梅,张克英.小麦-豆粕型日粮添加木聚糖酶对艾维茵肉鸡免疫指标、肠道形态和微生物菌群的影响[J].动物营养学报,2009,21(6):931-937.
    [4]高峰,等.小麦米糠日粮添加粗酶制剂和寡果糖对雏鸡生产性能、免疫和内分泌的影响[J].畜牧兽医学报,2002,33(1):14-17.
    [5]黄辉. β-甘露聚糖酶体外消化评定技术研究[硕士学位论文].北京:中国农业科学院,2009.
    [6]黄瑞林,等.透析管体外消化法测定饲料蛋白质消化率的适宜酶促反应条件研究[J].动物营养报,1999,4:51-58.
    [7]罗贵民.酶工程[M].北京:化学工业出版社,2003.
    [8]李德雪,等.动物组织学与胚胎学[M].长春:吉林人民出版社,2003:135.
    [9]马玉龙,许梓荣.金霉素对肉鸡生长、肠道菌群和细菌酶、肠组织形态的影响[J].浙江大学学报(农业与生命科学版),2005,31(4):507-512.
    [10]全国饲料工业标准化技术委员会. GB6435-86饲料水分的测定方法[S].北京:中国标准出版社,2002a.
    [11]全国饲料工业标准化技术委员会.GB6433-94饲料粗脂肪测定方法[S].北京:中国标准出版社,2002b.
    [12]谭权.木聚糖酶与不同能量饲料定量关系的研究[硕士学位论文].雅安:四川农业大学,2007.
    [13]樊世明.添加木聚糖酶的肉仔鸡日粮中木聚糖含量与养分代谢的关系研究[硕士学位论文].杨凌:西北农林科技大学,2008.
    [14]石学刚.木聚糖酶添加量与DDGS配比对肉鸡生产性能和养分利用的影响[硕士学位论文].兰州:甘肃农业大学,2009.
    [15]宋凯,等.小麦日粮添加不同配伍酶制剂对肉仔鸡养分利用率、食糜黏度和血液激素的影响[J].中国粮油学报,2005,20(3):73-76.
    [16]王海英.外源酶在肉仔鸡不同类型日粮中的使用效果及其机理的研究[博士学位论文].北京:中国农业大学,2007:63.
    [17]王静. Aspergillus ficuum菊粉酶及其酶解菊芋制备低聚果糖的研[博士学位论文].无锡:江南大学,2003.
    [18]王金全.小麦非淀粉多糖的抗营养机理及木聚糖酶在肉仔鸡小麦日粮中的应用研究[博士学位论文].北京:中国农业科学院,2004:31.
    [19]王镜岩,等.生物化学(第三版)[M].北京:高等教育出版社,2002:319.
    [20]王宁娟.饲用酶制剂生物学价值评价技术研究[博士学位论文].北京:中国农业科学院,2009.
    [21]王前光.体外与体内法评定不同酶制剂在生长猪小麦型日粮中应用效果的研究[硕士学位论文].长沙:湖南农业大学,2006.
    [22]王章存,等.复合酶和植酸酶对商品肉鸡生产性能及环境的影响[J].中国农学通报,2006,22(10):41-43.
    [23]杨小军,等.木聚糖酶对肉仔鸡养分利用和消化器官发育的影响[J].动物营养学报,2010,22(1):157-162.
    [24]杨秀平.动物生理学[M].北京:高等教育出版社,2002:331-338.
    [25]于旭华,等.细菌来源和真菌来源阿拉伯木聚糖酶的酶学性质[M]//冯定远.酶制剂在饲料工业中的应用.北京:中国农业科学技术出版社,2005:214-219.
    [26]张变英,等.小麦替代玉米对肉仔鸡生产性能、免疫器官、血液指标和全肠食糜黏度的影响[J].中国畜牧兽医,2011,38(3):28-33.
    [27]张冲.饲用复合酶高产菌株的筛选、产酶及酶学性质研究[硕士学位论文].保定:河北农业大学,2007.
    [28]张铁鹰.植酸酶体外消化评定技术的研究[博士学位论文].北京:中国农业科学院,2002.
    [29]张晓晖,等.饲用木聚糖酶存在的问题及菌种选育研究进展[J].饲料研究,2006,8:56-59.
    [30]张慎忠.木聚糖酶与不同蛋白质饲料定量关系的研究[硕士学位论文].雅安:四川农业大学,2007.
    [31]张子仪.中国饲料学[M].北京:中国农业出版社,2000:523.
    [32]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T18634-2009.饲用植酸酶活性的测定(分光光度法)[S].北京:中国标准出版社,2009a.
    [33]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T23874-2009.饲用添加剂木聚糖酶活力的测定(分光光度法)[S].北京:中国标准出版社,2009b.
    [34]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T23881-2009.饲用纤维素酶酶活的测定(滤纸法)[S].北京:中国标准出版社,2009c.
    [35]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T23527-2009.蛋白酶制剂[S].北京:中国标准出版社,2009d.
    [36] Adeola O., et al. Energy and nutrient utilization responses of ducks to enzyme supplementationof soybean meal and wheat [J]. Canadian Journal of Animal Science,2007,87:199-205.
    [37] Adeola O., et al. Nutrient and energy utilization in enzyme-supplemented starter and grower dietsfor White Pekin ducks [J]. Poultry Science,2008,87:255-263.
    [38] Adeola O., Cowieson A. J. BOARD-INVITED REVIEW: Opportunities and challenges in usingexogenous enzymes to improve nonruminant animal production. Journal of Animal Science,2011,89:3189-3218.
    [39] Aftab U. Exogenous carbohydrase in corn-soy diets for broilers [J]. World's Poultry ScienceJournal,2012,68(3):447-463.
    [40] Almirall M., et al. In vitro stabillity of a beta-glucanase preparation from Trichodermalongibrachiatum and its effect in a barley based diet fed to broiler chicks [J]. Animal FeedScience and Technology,1995,54:149-158.
    [41] Angel C. R., et al. Effects of a monocomponent protease on performance and protein utilizationin7-to22-day-old broiler chickens [J]. Poultry Science,2011,90:2281-2286.
    [42] Annison G. Relationship between the levels of soluble non-starch polysaccharides and theapparent metabolizable energy of wheats assayed in broiler chickens [J]. Journal of Agriculturaland Food Chemistry,1991,39:1252-1256.
    [43] Ao T., et al. In vitro evaluation of feed-grade enzyme activity at pH levels simulating variousparts of the avian digestive tract [J]. Animal Feed Science and Technology,2008,140:462-468.
    [44] Ao T., et al. Effects of citric acid, alpha-galactosidase and protease inclusion on in vitro nutrientrelease from soybean meal and trypsin inhibitor content in raw whole soybeans [J]. Animal FeedScience and Technology,2010,162:58-65.
    [45] Ao T. Y. Using exogenous enzymes to increase the nutritional value of soybean meal in poultrydiet [M/OL]//Shemy H. A. Soybean and nutrition. New York: Tech Open Access Company,2011:201-214.12Sep.,2011, fromhttp://www.intechopen.com/books/soybean-and-nutrition/sing-exogenous-enzymes-to-increase-the-nutritional-value-of-soybean-meal-in-poultry-diet.
    [46] Augspurger N. R., Baker D. H. High dietary phytase levels maximize phytate-phosphorusutilization but do not affect protein utilization in chicks fed phosphorus-or amino acid-deficientdiets [J]. Journal of Animal Science,2004,82:1100-1107.
    [47] Bass T. C., Thacker P. A. Impact of gastric pH on dietary enzyme activity and survivability inswine fed β-glucanase supplemented diets [J]. Canadian Journal of Animal Science,1996,76:245-256.
    [48] Basmacioglu M. H., et al. Effects of oregano essential oil with or without feed enzymes ongrowth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immuneresponse of broilers fed on wheat-soybean meal diets [J]. British Poultry Science,2010,51(1):67-80.
    [49] Beauchemin K. A., et al. Fibrolytic enzymes increase fibre digestility and growth rate of steersfed dry forages [J]. Canadian Journal of Animal Science,1995,75(4):641-644.
    [50] Bedford M. R., Classen H. L. An in vitro assay for predication of broiler intestinal viscosity andgrowth when fed rey-based diets in the presence of exogenous enzymes [J]. Poultry Science,1993,72:137-143.
    [51] Bedford M. R., et al. Relevance of in feed analysis of enzyme activity for prediction of birdperformance in Wheatbased diets [J]. Poultry Science,1997,76(Suppl.1):39(Abstr.).
    [52] Bedford M. R., et al. Exogenous enzymes for pigs and poultry [J]. Nutrition Research Reviews,1998,11:91-114.
    [53] Bedford M. R., Partriage G. G. Enzymes in farm animal nutrition (1st edition)[M]//Sheppy C.The current feed enzyme market and likely trends. UK: CAB International,2001:1-11.
    [54] Bedford M. R., Partriage G. G. Enzymes in farm animal nutrition (2st edition)[M]//Barletta A.Introduction: Current market and expected developments. UK: CAB International,2011:1-11.
    [55] Benabdeljelil K., Arbaoui M. I. Effects of enzyme supplementation of barley based diets on henperformance and egg quality [J]. Animal Feed Science and Technology,1994,48:325-334.
    [56] Bhat M. K. Cellulases and related enzymes in biotechnology [J]. Biotechnology Advances,2000,18(5),355-383.
    [57] Brenes A., et al. Effect of Enzyme Addition on the Nutritive Value of High Oleic Acid SunflowerSeeds in Chicken Diets [J]. Poultry Science,2008,87:2300-2310.
    [58] Campbell G. L., et al. Genotypic and environmental differences in extract viscosity of barley andtheir relationship to its nutritive value for broiler chickens [J]. Animal Feed Science andTechnology,1989,226:221-230.
    [59] Campbell G. L., Bedford M. R. Enzyme applications for monogastric feeds: A review [J].Canadian Journal of Animal Science,1992,72(3):449-466.
    [60] Campbell G. L., et al. Enzyme applications for monogastic feeds: A review [J]. Canadian Journalof Animal Science,1992,72:449-466.
    [61] Chesson A. Feed enzymes [J]. Animal Feed Science and Technology,1993,45:65-79.
    [62] Chesson A. Non-starch polysaccharide degrading enzymes in poultry diets: influence ofingredients on the selection of activities [J]. World’s Poultry Science Journal,2001,57:251-263.
    [63] Choct M., et al. Effects of a xylanase on individual bird variation, starch digestion throughout theintestine, and ileal and caecal volatile fatty acid production in chickens fed wheat [J]. BritishPoultry Science,1999,40:419-422.
    [64] Choct M. Enzymes for the feed industry: past, present and future [J]. World’s Poultry ScienceJournal,2006,62(1):5-15.
    [65] Classen H. L., et al. Studies on the use of hulless barley in chick diets: deleterious effects andmethods of alleviation [J]. Canadian Journal of Animal Science,1985,65:725-733.
    [66] Clicker F. H., et al. H. Application of “protozyme” by Aspergillus Orizae to poultry feeding [J].Poultry Science,1925,5:241-247.
    [67] Colombatto D., et al. Use of fibrolytic enzymes to improve the nutritive value of ruminant diets:a biochemical and in vitro rumen degradation assessment [J]. Animal Feed Science andTechnology,2003,107:201-209.
    [68] Colombatto D., et al. In vitro evaluation of fibrolytic enzymes as additives for maize (Zea maysL.) silage: I. Effects of ensiling temperature, enzyme source and addition level [J]. Animal FeedScience and Technology,2004,111:111-128.
    [69] Coughlan M. P., Hazlewood G. P.1,4-D-xylan-deglading enzyme system: Biochemistrymoleecular biology and plications [J]. Biotechnology and Applied Biochemistry,1993,17:259-289.
    [70] Cowieson A. J., et al. Supplementation of diets containing pea meal with exogenous enzymes:Effects on weight gain, feed conversion, nutrient digestibility and gross morphology of thegastrointestinal tract of growing broiler chicks [J]. British Poultry Science,2003,44:427-437.
    [71] Cowieson A. J. Factors that affect the nutritional value of maize for broilers [J]. Animal FeedScience and Technology,2005,119(3):293-305.
    [72] Cowieson A. J., et al. Prediction of ingredient quality and the effect of a combination of xylanase,amylase, protease and phytase in the diets of broiler chicks.1. Growth performance anddigestible nutrient intake [J]. British Poultry Science,2006a,47(4):477-489.
    [73] Cowieson A. J., et al. Evolving enzyme technology: impact on commercial poultry nutrition [J].Nutrition Research Reviews,2006b,19:90-103.
    [74] Cowieson A. J., et al. Prediction of ingredient quality and the effect of a combination of xylanase,amylase, protease and phytase in the diets of broiler chicks.2. Energy and nutrient utilization [J].British Poultry Science,2006c,47(4):490-500.
    [75] Cowieson A. J., Ravindran V. Effect of exogenous enzymes in maize-based diets varying innutrient density for young broilers: growth performance and digestibility of energy, minerals andamino acids [J]. British Poultry Science,2008,49(1):37-44.
    [76] Cowieson A. J., Ravindran V. Sensitivity of broiler starters to three doses of an enzyme cocktailin maize-based diets [J]. British Poultry Science,2008,49(3):340-346.
    [77] Danicke S., et al. Effects of dietary fat type and xylanase supplementation to rye-based broilerdiets on selected bacterial groups adhering to the intestinal epithelium, on transit time of feed,and on nutrient digestibility [J]. Poultry Science,1999,78:1292-1299.
    [78] Dean D. Fibrolytic Enzymes: An Alternative for Improving the Nutritive Value of Forages andAnimal Performance [M]. Lambert: Lambert Academic Publishing,2010.
    [79] Dusel G., et al. Xylanse supplementation of wheat-based rations for broilers: influence of wheatcharacteristies [J]. Journal of Applied Poultry Research,1998,7:119-231.
    [80] Elwakeel E. A., et al. Fibrolytic enzymes to increase the nutritive value of dairy feedstuffs [J].Journal of Dairy Science,2007,90(11):5226-5236.
    [81] Englyst H. N., et al. Dietary fiber and resistant starch [J]. The American Journal of ClinicalNutrition,1987,46(6):873-874.
    [82] Englyst K. N., et al. Nutritional characterization and measurement of dietary carbohydrates [J].European Journal of Clinical Nutrition,2007,61(Suppl1): S19-S39.
    [83] Esteve G. E., et al. Bioefficacy of enzyme preparation containing β-glucanase and xylanaseactivities in broiler diets based on barley or wheat in combination with Flavomycin [J]. PoultryScience,1997,76:1728-1737.
    [84] Farrand E. A. Flour properties in relation to the modern bread process in the United Kingdom,with special reference to-amylase and starch damage [J]. Cereal Chemistry,1964,41:98-111.
    [85] Figueiredo A. A., et al. The effects of restricting enzyme supplementation in wheat-based diets tobroilers [J]. Animal Feed Science and Technology,2012,172:194-200.
    [86] Fry R. E., et al. Influence of cereal grain components of the diet on the response of chicks andpoults to dietary enzyme supplements [J]. Poultry Science,1957,36:1120.
    [87] Francesch M., Geraert P. A. Enzyme complex containing carbohydrases and phytase improvesgrowth performance and bone mineralization of broilers fed reduced nutrient corn-soybean-baseddiets [J]. Poultry Science,2009,88:1915-1924.
    [88] Gao F., et al. The effects of xylanase supplementation on growth, digestion, circulating hormoneand metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets [J].British Poultry Science,2007,48:480-488.
    [89] Gdala J., et al. The influence of-galactosidase supplementation on the ileal digestibility of lupinseed carbohydrates and dietary protein in young pigs [J]. Animal Feed Science and Technology,1997,67:115-125.
    [90] Gracia M. I., et al.-Amylase supplementation of broiler diets based on corn [J]. Poultry Science,2003,82:436-442.
    [91] Graham K. K., et al. The effect of enzyme treatment of soybean meal on oligosaccharidedisappearance and chick growth performance [J]. Poultry Science,2002,81:1014-1019.
    [92] Godfrey T., Reichelt J. Industrial enzymology: the application of enzymes in industry [M]. UK:Nature Press,1983.
    [93] Hastings W. H. Enzyme supplements for poultry feeds [J]. Poultry Science,1946,25:584-586.
    [94] Hamidreza Z. M. T. The effect of a β-mannanase-based enzyme on growth performance andhumoral immune response of broiler chickens fed diets containing graded levels of whole dates[J]. Tropical Animal Health and Production,2010,42:1209-1217.
    [95] Hock E., et al. Investigations on the composition of the ileal and caecal microflora of broilerchicks in consideration to dietary enzyme prepanon and zinc bacitracin in wheat-based diets [J].Agribiology Research Zeitschrift fur Agrarbiologie Agrikulturchemie Okologie,1997,50:85-95.
    [96] Hooge D. M., et al. Meta-analysis of broiler chicken trials using diets with or without AllzymeSSF enzyme complex [J]. International Journal of Poultry Science,2010,9(9):819-823.
    [97] Igbasan F. A., et al. The effect of pectinase and-galactosidase supplementation on the nutritivevalue of peas for broiler chickens [J]. Canadian Journal of Animal Science,1997,77(3):537-539.
    [98] Ikegami S. F., et al. Effect of viscous indigestible polysaccharides on pancreatic biliary secretionand digestive organs in rats [J]. Journal of Nutrition,1990,120:353-360.
    [99] Inagaki K, et al. Gene cloning and characterization of an acidic xylanase from acidobacteriumcapsulatum [J]. Bioscience, Biotechnology, and Biochemistry,1998,62:1061-1067.
    [100] Jia W., Slominski B. A. Means to improve the nutritive value of flaxseed for broiler chickens: theeffect of particle size, enzyme addition, and feed pelleting [J]. Poultry Science,2010,89(2):261-269.
    [101] Jozefiak D., et al. Effects of dietary inclusion of triticale, rye and wheat and xylanasesupplementation on growth performance of broiler chickens and fermentation in thegastrointestinal tract [J]. Animal Feed Science and Technology,2007,132:79-93.
    [102] Jozefiak D., et al. Multi-carbohydrase and phytase supplementation improves growthperformance and liver insulin receptor sensitivity in broiler chickens fed diets containing full-fatrapeseed [J]. Poultry Science,2010,89:1939-1946.
    [103] Juanpere J., et al. Assessment of potential interactions between phytase and glycosidase enzymesupplementation on nutrient digestibility in broilers [J]. Poultry Science,2005,84:571-580.
    [104] Khattak F. M., et al. Enzymes in poultry nutrition [J]. Journal of Animal and Plant Sciences,2006,16:1-7.
    [105] Kiarie E. G., et al. Growth performance, gastrointestinal microbial activity, and nutrientdigestibility in early-weaned pigs fed diets containing flaxseed and carbohydrase enzyme [J].Journal of Animal Science,2007,85:2982-2993.
    [106] Kocher A., et al. Effects of feed enzymes on nutritive value of soybean meal fed to broilers [J].British Poultry Science,2002,43:54-63.
    [107] Kong C., et al. Supplementation of β-mannanase to starter and grower diets for broilers [J].Canadian Journal of Animal Science,2011,91(3):389-397.
    [108] Lee T. H., et al. Cloning, characterization, and expression of xylanase a gene from Paenibacillussp. DG-22in Escherichia coli [J]. Journal of Microbiology and Biotechnology,2007,17(1):29-36.
    [109] Leek A. B. G., et al. Apparent component digestibility and manure ammonia emission in finishingpigs fed diets based on barley, maize or wheat prepared without or with exogenous non-starchpolysaccharide enzymes [J]. Animal Feed Science and Technology,2007,135:86-99.
    [110] Leslie M. A., et al. The effect of phytase and glucanase on the ileal digestible energy of corn andsoybean meal fed to broilers [J]. Poultry Science,2007,86:2350-2357.
    [111] Li W. F., et al. Effects of non-starch polysaccharides enzymes on pancreatic and small intestinaldigestive enzyme activities in piglet fed diets containing high amounts of barley [J]. WorldJournal of Gastroenterology,2004,10(6):856-859.
    [112] Li Y. Effect of a new multi-enzyme preparation on performance and nutrient digestibility ofearly-weaned pigs [M. D. Thesis]. Canada: University of Manitoba,2000.
    [113] Li Y., et al. Corn extrusion and enzyme addition improves digestibility of corn/soy based diets bypigs: In vitro and in vivo studies [J]. Animal Feed Science and Technology,2010,158(3):146-154.
    [114] Li Y. H., et al. Effects of β-mannanase expressed by Pichia pastoris in corn-soybean meal diets onbroiler performance, nutrient digestibility, energy utilization and immunoglobulin levels [J].Animal Feed Science and Technology,2010,159:59-67.
    [115] MacLeod M. G., et al. Naked oats: Metabolisable energy yield from a range of varieties inbroilers, cockerels and turkeys [J]. British Poultry Science,2008,49:368-377.
    [116] Mahagna M., et al. Effect of age and exogenous amylase and protease on development ofdigestive tract pancreatic enzyme activities and metabolisability of nutrients in young meat-typechicks [J]. Reproduction Nutrition Development,1995,35(2):201-212.
    [117] Malathi V., Devegowda G. In vitro evaluation of nonstarch polysaccharides metabolisability offeed ingredients by enzymes [J]. Poultry Science,2001,80:302-305.
    [118] Manwar S. J., Mandal A. B. Effect of reconstitution of sorghum with or without enzymes onproduction performance and immune-competence in broiler chicken [J]. Journal of the Science ofFood and Agriculture,2009,89(6):998-1005.
    [119] Marquardt R. R., et al. Use of enzymes to improve nutrient availability in poultry feedstuffs.Animal Feed Science and Technology,1996,60:321-330.
    [120] Mathlouthi N., et al. Xylanase and β-glucanase supplementation improve conjugated bile acidfraction in intestinal contents and increase villus size of small intestine wall in broiler chickensfed a rye-based diet [J]. Journal of Animal Science,2002,80:2773-2779.
    [121] Mathlouthi N., et al. Effect of xylanase and β-glucanase supplementation of wheat-or wheat-andbarley-based diets on the performance of male turkeys [J]. British Poultry Science,2003,44:291-298.
    [122] Mcdougall G. J., et al. Plant cell walls as dietary fibre: range, structure, processing and function[J]. Journal of the Science of Food and Agriculture,1996,70:133-150.
    [123] Mcnab J., Boorman N. Poultry feedstuffs: supply, composition and nutritive value [M]//BedfordM. R. The role of carbohydrases in feedstuff digestion. UK: CAB International,2002:319-336.
    [124] Meng X., et al. Degradation of cell wall polysaccharides by combinations of carbohydraseenzymes and their effect on nutrient utilization and broiler chicken performance [J]. PoultryScience,2005,84:37-47.
    [125] Mi S. J., et al. Molecular cloning and characterization of a novel-galactosidase gene fromPenicillium sp. F63CGMCC1669and expression in Pichia pastoris [J]. Enzyme and MicrobialTechnology,2007,40(5):1373-1380.
    [126] Moharrery A., et al. Effect of forage type, harvesting time and exogenous enzyme application ondegradation characteristics measured using in vitro technique [J]. Animal Feed Science andTechnology,2009,153(3):178-192.
    [127] Mullaney E. J., et al. Advances in phytase research [J]. Advances in Applied Microbiology,2000,47:157-199.
    [128] Murray J. M. D., et al. In vitro assessment of three fibrolytic enzyme preparations as potentialfeed additives in equine diets [J]. Animal Feed Science and Technology,2012,171(2):192-204.
    [129] Mushtaq T., et al. The influence of exogenous multienzyme preparation and graded levels ofdigestible lysine in sunflower meal-based diets on the performance of young broiler chicks twoweeks posthatching [J]. Poultry Science,2006,85:2180-2185.
    [130] Nakamura T., et al. Production, purification and properties of an endo-inulinase of Penicilliumsp.TN-88that liberates inulinase [J]. Journal of Fermentation Bioengineering,1997,84(4):313-318.
    [131] Newman R. K., et al. Beta-glucanase effect on the performance of broiler chicks fed covered andhulless barley isotypes having normal and waxy starch [J]. Nutrition Reports International,1987,36:693-699.
    [132] Odetallah N. H., et al. Versazyme supplementation of broiler diets improves market growthperformance [J]. Poultry Science,2005,84:858-864.
    [133] Olukosi O. A., et al. Age-related influence of a cocktail of xylanase, amylase, and protease orphytase individually or in combination in broilers [J]. Poultry Science,2007,86:77-86.
    [134] Omogbenigun F. O., et al. Dietary supplementation with multi-enzyme preparations improvesnutrient utilization and growth performance in weaned pigs [J]. Journal of Animal Science,2004,82:1053-1061.
    [135] Onderci M., et al. β-Glucanase-producing bacterial culture improves performance and nutrientutilization and alters gut morphology of broilers fed a barley-based diet [J]. Animal Feed Scienceand Technology,2008,146:87-97.
    [136] Onderci M., et al. Efficacy of supplementation of-amylase-producing bacterial culture on theperformance, nutrient use, and gut morphology of broiler chickens fed a corn-based diet [J].Poultry Science,2006,85:505-510.
    [137] Ouhida I., et al. Enzymes-glucanase and arabinoxylanase and/or Sepiolite supplementation andnutritive value of maize-barley-wheat based diets for broiler chickens [J]. British Poultry Science,2000,41:617-624.
    [138] Palander S., et al. Effect of age of growing turkeys on digesta viscosity and nutrient digestibilityof maize, wheat, barley and oats fed as such or with enzyme supplementation [J]. Archives ofAnimal Nutrition,2005,59:191-203.
    [139] Paes G., et al. GH11xylanases: Structure/function/properties relationships and applications [J].Biotechnology Advances,2012,30:564-592.
    [140] Parsale S., et al. Influence of wheat-based diets supplemented with xylanase, bile acid andantibiotics on performance, digestive tract measurements and gut morphology of broilerscompared with a maize-based diet [J]. British Poultry Science,2007,48:594-600.
    [141] Perez-Vendrell A. M., et al. Spraying enzyme before or after fat coating: in vitro recoveries andin vivo efficiencies [J]. Proceedings of Australian Poultry Science Symposium,1999,11:105-107.
    [142] Peter H., Selle V. R. Microbial phytase in poultry nutrition [J]. Animal Feed Science andTechnology,2007,135:1-41.
    [143] Qu W., et al. Cloning, expression and characterization of glycoside hydrolase family11endoxylanase from Bacillus pumilus ARA [J]. Biotechnology Letters,2011,33:1407-1416.
    [144] Ravindran V., Son J. H. Feed enzyme technology: present status and future developments [J].Recent Patents on Food Nutrition&Agriculture,2011,3(2):102-109.
    [145] Ribeiro T., et al. Levels of endogenous β-glucanase activity in barley affect the efficacy ofexogenous enzymes used to supplement barley-based diets for poultry [J]. Poultry Science,2011,90:1245-1256.
    [146] Rutherfurd S. M., et al. The effect of a commercial enzyme preparation on apparentmetabolizable energy, the true ileal amino acid digestibility, and endogenous ileal lysine losses inbroiler chickens [J]. Poultry Science,2007,86:665-672.
    [147] Sabini E., et al. Digestion of Single Crystals of Mannan by an endo-mannanase fromTrichioderma reesei [J]. European Journal of Biochemistry,2000,267:2340-2344.
    [148] Saleh F., et al. Effect of enzymes of microbial origin on in vitro metabolisabilities of dry matterand crude protein in soybean meal [J]. Animal Science Journal,2003,74:23-29.
    [149] Saleh F., et al. Carbohydrases are digested by proteases present in enzyme preparations during invitro digestion [J]. Journal of Poultry Science,2004,41:229-235.
    [150] Saleh F., et al. A mixture of pure cellulase, hemicellulase and pectinase improves broilerperformance [J]. British Poultry Science,2005,46(5):602-606.
    [151] Saricicek B. Z., et al. Replacing soybean meal (SBM) by canola meal (CM): The effects ofmulti-enzyme and phytase supplementation on the performance of growing and laying quails [J].Asian-Australasian Journal of Animal Science,2005,18:1457-1463.
    [152] Scanes C. G., et al. Effect of thyroid hormones on growth hormone secretion in broiler chickens[J]. Poultry Science,1986,65:384-390.
    [153] Scott T. A. Impact of wet feeding wheat-based diets with or without enzyme on broiler chickperformance [J]. Canadian Journal of Animal Science,2002,82(3):409-417.
    [154] Sebastian S., et al. The effects of supplemental microbial phytase on the performance andutilization of dietary calcium, phosphorus, copper and zinc in broiler chickens fed corn-soybeandiets [J]. Poultry Science,1996,75:729-736.
    [155] Selvendran R. R.,et al. Dietary fiber: chemistry, analysis and properties [J]. Advances in FoodResearch,1987,31:117-209.
    [156] Selle P. H., et al. Impact of exogenous enzyme in sorghum-or wheat-based broiler diets onnutrient utilization and growth performance [J]. International Journal of Poultry Science,2010,9(1):53-58.
    [157] Shakouri M. D., Kermanshahi H. Effect of NSP degrading enzyme supplement on the nutrientdigestibility of young chickens fed wheat with different viscosities and triticale [J]. Journal ofAgricultural and Scientific Technology,2005,5:105-112.
    [158] Shakouri M. D., et al. Intestinal function and gut microflora of broiler chickens as influenced bycereal grains and microbial enzyme supplementation [J]. Journal of Animal Physiology andAnimal Nutrition,2008,93:647-658.
    [159] Shelton J. L., et al. Evaluation of nutrient matrix values for phytase in broilers [J]. Journal ofApplied Poultry Research,2004,13:213-221.
    [160] Shirley R. B., et al. Graded levels of phytase past industry standards improves broilerperformance [J]. Poultry Science,2003,82:671-680.
    [161] Sieo C. C., et al. Influence of glucanase-producing Lactobacillus strains on intestinalcharacteristics and feed passage rate of broiler chickens [J]. Poultry Science,2005,84:734-741.
    [162] Silversides F. G., Bedford M. R. Effect of pelleting temperature on the recovery and efficacy of axylanase enzyme in wheat-based diets [J].1999, Poultry Science,78:1184-1190.
    [163] Simbaya J., et al. The effects of protease and carbohydrase supplementation on the nutritive valueof canola meal for poultry: In vitro and in vivo studies [J]. Animal Feed Science and Technology,1996,61:219-234.
    [164] Simon O. The mode of action of NSP hydrolysing enzymes in the gastrointestinal tract [J].Journal of Animal Feed Science, l998,7:115-123.
    [165] Simons P. C. M., et al.. Improvement of phosphorus availability by microbial phytase in broilersand pigs [J]. British of Journal Nutrition,1990,64:525-540.
    [166] Sinlae, M., Choct M. Xylanase supplementation affects the gut microflora of broilers [J].Australian Poultry Science Symposium,2000,12:209.
    [167] Silva S. D., et al. Effects of water and β-glucanase treatment on non-starch polysaccharides inendosperm of low and high viscous barley [J]. Swedish Journal of Agricultural Research,1983,13:211-219.
    [168] Slominski B. A., Campbell L. D. Non-starch polysaccharides of canola meal: Quantification,digestibility in poultry and potential benefit of dietary enzyme supplementation [J]. Journal of theScience of Food and Agriculture,1990,53(2):175-184.
    [169] Slominski B. A., et al. The use of enzyme technology for improved energy utilization fromfull-fat oilseeds, Part II: Flaxseed [J]. Poultry Science,2006,85:1031-1037.
    [170] Song Y., et al. Heterologous expression of endo-1,4-β-xylanase A from Schizophyllum communein Pichia pastoris and functional characterization of the recombinant enzyme [J]. Enzyme andMicrobial Technology,2013,52:170-176.
    [171] Spag A., et al. The engdoxylanses from family11: computer analysis of protein sequences revealsimportant structural and phylogenetic relationships [J]. Journal of Biotechnology,2002,95:109-131.
    [172] Thacker P. A., Baas T. C. Effects of gastric pH on the activity of exogenous pentosanase and theeffect of pentosanase supplementation of the diet on the performance of growing-finishing pigs[J]. Animal Feed Science Technology,1996,63:187-200.
    [173] Tsai L. C., et al. Crystal Structure of Truncated Fibrobacter succinogenes1,3-1,4-β-d-Glucanasein Complex with β-1,3-1,4-Cellotriose [J]. Journal of Molecular Biology,2005,354:642-651.
    [174] Twombly-Snook J., Meyer J. H. Effect of diet and digestive processes on proteolytic enzymes [J].Journal of Nutrition,1964,83:94-102.
    [175] Vahjen W., et al. Influence of xylanase supplemented feed on the development of selectedbacterial groups in the intestinal tract of broiler chicks [J]. Journal Agricultural Sciences,1998,130:489-500.
    [176] Vahjen W., et al. Study on the use of soya bean polysaccharide degrading enzymes in broilernutrition [J]. Animal Feed Science and Technology,2005,120:259-276.
    [177] Veldman A., Vahl H. A. Xylanase in broiler diets with differences in characteristies and content ofwheat [J]. British Poultry Science,1994,35:537-550.
    [178] Visser J., et al. Progress in biotechnology (7): Xylans and Xylanases [M]//Joseleau J. P., ComtatJ., Ruel K. Chemieal structure of xylans and their interaction in the plant cell walls. Amsterdam:Elsevier Science Publishers,1992:1-16.
    [179] Viveros A., et al. Effect of enzyme supplementation of a diet based on barley, and autoclavetreatment, on apparent digestibility, growth performance and gut morphology of broilers [J].Animal Feed Science and Technology,1994,48:237-251.
    [180] Vries S., et al. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry byprocessing and enzyme technologies: A review [J]. Animal Feed Science and Technology,2012,178:123-138.
    [181] Vukic V. M., et al. Influence of processing treatment and type of cereal on the effect of dietaryenzymes in broiler diets [J]. Animal Feed Science and Technology,1994,46:261-270.
    [182] Waldroup P. et al. The effect of alpha-galactosidase enzyme with and without Avizyme1502onperformance of broilers fed diets based on corn and soybean meal [J]. International Journal ofPoultry Science,2005,4(12):920-937,.
    [183] Wang C. L., et al. Effects of alpha-galactosidase supplementation to corn-soybean meal diets onnutrient utilization, performance, serum indices and organ weight in broilers [J].Asian-Australation Journal of Animal Science,2005,18:1761-1768.
    [184] Wang J. M., et al. The changes of β-glucan content and β-glucanase activity in barley before andafter malting and their relationships to malt qualities [J]. Food Chemistry,2004,86:223-228.
    [185] Wang Z. R., et al. Effects of enzyme supplementation on performance, nutrient digestibility,gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fedwheat-based diets [J]. Poultry Science,2005,84(6):875-881.
    [186] Wiseman J., McNab J. M. Numtins value of wheat arieties fed to non-raminants [M]//HomeGrown Cereals Authority (Report No.3). UK: Nottingham University,1998.
    [187] Woyengo T. A. and Nyachoti C. M. Review: Supplementation of phytase and carbohydrases todiets for poultry [J]. Canadian Journal of Animal Science,2011,91:177-192.
    [188] Wu Y. B., et al. Influence of method of whole wheat inclusion and xylanase supplementation onthe performance, apparent metabolisable energy, digestive tract measurements and gutmorphology of broilers [J]. British Poultry Science,2004,45:385-394.
    [189] Yang Z. B., et al. Effects of a thermotolerant multi-enzyme product on nutrient and energyutilization of broilers fed mash or crumbled corn-soybean meal diets [J]. Journal of AppliedPoultry Research,2010,19:38-45.
    [190] Yasar S., Forbes J. M. Enzyme supplementation of dry and wet wheat-based feeds for broilerchickens: performance and gut responses [J]. British Journal of Nutrition,2000,84:297-307.
    [191] Yin L. J., et al. Characterization of mannanase from a novel mannanase-producing bacterium.Jourmal of Agricultural and Food Chemistry,2012,60(25):6425-6431.
    [192] Yu B., et al. Effects of glucanase inclusion in a de-hulled barley diet on the growth performanceand nutrient digestion of broiler chickens [J]. Animal Feed Science and Technology,2002,102:35-52.
    [193] Yu B. et al. Effects of multiple-enzyme mixtures on growth performance of broilers fedcorn-soybean meal diets [J]. Journal of Applied Poultry Research,2004,13:178-182.
    [194] Yu B., et al. Effects of enzyme inclusion in a maize–soybean diet on broiler performance [J].Animal Feed Science and Technology,2007,134:283-294.
    [195] Zhou Y., et al. Improved energyutilizing efficiency by enzyme preparation supplement in broilerdiets with different metabolizable energy levels [J]. Poultry Science,2009,88:316-322.
    [196] Zijlstra R. T., et al. Future of NSP-degrading enzymes to improve nutrient utilization ofco-products and gut health inpigs [J]. Livestock Science,2010,134:255-257.
    [197] Zou X. T., et al. Effect of β-mannanase (Hemicell) on growth performance and immunity ofbroilers [J]. Poultry Science,2006,85(12):2176-2179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700