用户名: 密码: 验证码:
毛竹林健康评价指标体系构建及实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis)是我国森林资源的重要组成部分,随着社会发展和人们需求的提高,毛竹在建筑、食品、保健等社会经济方面及固碳释氧、保持水土、涵养水源等生态方面均得到了更高程度的开发利用。受经营目标、经营者背景以及利益驱动的影响,当前毛竹林健康状况已受到挑战。本研究以森林健康相关研究理论为基础,结合毛竹生长特性、林分属性、经营现状及存在问题,探讨了毛竹林健康的内涵,选择安徽黄山、福建顺昌和永安等区域毛竹林为研究对象,构建毛竹林健康评价指标模型,并进行实证分析,研究可为毛竹林健康经营和科学管理提供理论依据和实践指导。主要研究结果如下:
     (1)毛竹林健康的内涵是毛竹林在遵循自身发展演替规律基础上,对外界干扰有一定的抵抗力,能维持林分结构稳定,并能为人们提供相应的产品和生态服务功能。
     毛竹林健康问题源于实际经营主体对毛竹林资源属性的过度关注及对其自然属性、社会属性和基础设施属性的忽视,该认识指导下的经营模式可能获得了短期的效益,但对林分长期的结构稳定、活力维持、抗干扰能力、经济产出和生态功能发挥埋下了不安全隐患,最终使毛竹林通过自身恢复或简单干预无法回到最初的平衡。
     (2)以森林生态系统健康研究中经典的VOR模型为基础,结合毛竹林的经营和研究现状,构建了包含目标层、准则层、要素层和指标层4个层次19个指标的毛竹林健康评价指标模型。
     其中准则层包含毛竹林健康评价基础和经济生态功能2个方面;要素层包含林分活力、林分结构、对干扰响应、经济价值和生态功能5个方面,指标层由19个具体指标组成:净光合速率D1、发笋率D2、平均胸径D3、鞭根活力D4、年龄结构D5、密度结构D6、树种组成D7、灌木丰富度D8、人为干扰强度D9、干旱指数D10、低温指数D11、产笋量D12、产材量D13、色彩D14、林冠截留D15、枯落物厚度D16、土壤渗透性D17、土壤N含量D18和毛竹生物量D19。
     (3)通过系统聚类分析将毛竹林健康状况划分为Ⅰ(优秀)、Ⅱ(良好)、Ⅲ(一般)、Ⅳ(较差)和Ⅴ(差)5个等级。
     以安徽省黄山、福建省顺昌和永安地区的85个样点为基础,计算了研究区毛竹林健康的综合指数,为0.503~0.828。第Ⅰ级的样点有3个(健康综合指数为0.777~0.828),第Ⅱ级样点有17个(健康综合指数为0.719~0.762)第Ⅲ级样点有41个(健康综合指数为0.617~0.711),第Ⅳ级样点有18个(健康综合指数为0.541~0.615),第Ⅴ级样点有6个(健康综合指数为0.503~0.528),总体呈正态分布态势,说明目前经营毛竹林中,处于优秀状态和差状态的林分较少,经营状态一般的林地较多,林地整体经营水平不高。
     (4)毛竹林健康综合指数与参评因子相关分析结果表明,不同健康等级毛竹林的影响因子不同。
     密度结构D5与Ⅰ(优秀)级毛竹林健康综合指数极显著性正相关;枯落物厚度D16和产笋量D12与Ⅱ(良好)级毛竹林健康综合指数相关系数较其他指标高;Ⅲ(一般)级毛竹林健康综合指数与6个参评指标的相关性达显著水平,其中与树种结构D6、枯落物厚度D16和乔木生物量D19极显著相关,与鞭根活力D4、低温指数D11和产材量D13显著相关;Ⅳ(较差)毛竹林的健康综合指数仅与净光合速率D1显著相关,相关系数为0.474;Ⅴ(差)毛竹林的健康综合指数与人为干扰强度D9、干旱指数D10和土壤渗透性D17显著或极显著相关。
     (5)研究区各类型毛竹林的健康状况表明,安徽省黄山区毛竹林健康状况明显低于福建省永安和顺昌毛竹林,林分类型与核心经营措施对毛竹林健康水平影响较大。
     黄山区纯林化较严重,健康综合指数为0.503~0.746,40个调查样点中,有5个样点健康等级处于第Ⅱ级,8个处于第Ⅲ级,其余27个样点均处于不健康状态;而福建顺昌和永安毛竹林混交比例较高,调查的45个样点中,有2个样点健康综合指数大于0.8,处于优秀的健康状态,20个样点处于良好级,仅9个样点处于较差的不健康状态,健康等级明显高于安徽黄山区;总体来看,毛竹纯林的健康水平低于混交林。从核心经营措施来看,黄山区施肥林分的健康综合指数最高,钩梢林分健康综合指数最低。顺昌和永安毛竹林中,灌水管理的林分健康水平整体较高,林分生物量和笋产量均较高。
     森林健康是时代发展的必然选择。论文以森林健康理论为基础,探讨了毛竹林健康的内涵,构建了健康评价指标体系,并对研究区毛竹林的健康状况进行了实证研究与分析,针对性提出了健康经营建议。毛竹林健康经营应在因山因地制宜的基础上,结合科学、合理的经营目标,遵循毛竹林自然特性和可持续发展原则,并保证毛竹林能提供相应的产品和服务的背景下进行,仅关注短期效益的掠夺式经营是导致毛竹林健康水平降低的关键所在。
Moso bamboo (Phyllostachys edulis) is an important part of forest resources in China.With the social development and increasing demand of human, Moso bamboo has received ahigher degree of exploitation and utilization in socio-economy, such as, construction, food andhealth care, and in ecology, such as carbon fixation and oxygen release, soil and waterconservation. Currently, the health condition of bamboo forest has been challenged due to theeffect of management target, managers’ background and benefit-driven. Based on the relatedresearch theory on forest health, combining bamboo growth characteristics, stand property,current management situation and existing problems, this study discussed the connotation ofbamboo forest health based on the classical VOR model of forest health research. Mosobamboo forests in Huangshan District, Shunchang County and Yong’an County etc, werechosen, and then a target model including4layers consisting19indictors was constructed toevaluate bamboo health, further empirical analysis was conducted in research areas, whichcould provide theoretical and practical guidance to health management in Moso bamboo forest.The main results were as follows:
     (1) The connotation of Moso bamboo forest health is that Moso bamboo is resistant toexternal disturbance to some degree, capable to maintain stand structure, and supplies healthproducts and ecosystem services based on its own succession and development.
     The origin of health problem in Moso bamboo forest comes from excessive focus onresource property of bamboo, but ignores its natural social and infrastructure property. Themanagement pattern under the health problem could get short-term benefit, but hide dangersfor stand long-term structural stability, maintaining vitality, anti-disturbance capability,economic output and ecological functioning, thus the Moso bamboo forest is unable to recoverits initial balance through self-recover or simple intervention.
     (2) Based on the classical VOR model of health research, combining with themanagement and current research status, a target model for health evaluation including fourlayer, which were target layer, criterion layer, element layer and index layer, consisting19indicators was built in Moso bamboo forest.
     The criterion was consisted of two aspects, which were evaluation base for bamboo health,economic values and ecological functions, and element layer was composed of five aspects,which were stand activity, stand structure, disturbance response, economic benefit andecological function; element layer was consisted of19specifical indicators, which were netphotosynthetic rate (D1), shooting up rate (D2), average diameter (D3), rhizome activity (D4),ages structure (D5), density structure (D6), species composition (D7), shrub richness (D8),degree of human disturbance (D9), drought index (D10), low-temperature index (D11), bambooshoot output (D12), timber production (D13), colors (D14), canopy interception (D15), litterthickness (D16), soil permeability (D17), soil nitrogen content (D18)and bamboo biomass (D19).
     (3) By using cluster analysis bamboo health status were divided into5grades, which wereexcellent (I), good (II), moderate (III), poor (IV), very poor (V).
     The calculated comprehensive health index of Moso bamboo forest was0.503~0.828based on85sampling points in Huangshan District, Shunchang County, Yong’an County. Thepoints of grade I, II, III, IV and VI were3(health composite index was0.777~0.828),17(0.719~0.762),41(0.617~0.711),18(0.541~0.615) and6(0.503~0.528), which were normaldistributed, indicating the number of excellent and very poor grade was low, and the number ofnormal managed stand were higher and the management level was not high overall.
     (4) Following the relsults of correlation analysis between bamboo forest healthcomprehensive index and involved factors, the key factor was not identical in different healthlevel.
     The density structure (D5) was highly significantly positive correlated to healthcomprehensive index of Moso bamboo forest in grade I (excellent); the correlation coefficientof the relationship between litter thickness (D16), bamboo shoot output (D12) and health comprehensive index of Moso bamboo forest in grade II (good) were higher than any otherindicators; health comprehensive index of Moso bamboo forest in grade III (moderate) wassignificantly positive correlated to6indicators, among which, the index was highlysignificantly positive correlated to species composition (D6), litter thickness (D16) and treebiomass (D19), and significantly positive correlated to rhizome activity (D4), low-temperatureindex (D11) and timber production (D13). Health comprehensive index of Moso bamboo forestin grade IV (poor) was only significantly correlated with net photosynthetic rate (D1) withcoefficient value of0.474; Health comprehensive index of Moso bamboo forest in grade IV(poor) was significantly or highly significantly correlated withdegree of human disturbance(D9), drought index (D10), soil permeability (D17).
     (5) The results of moso bamboo forest health level in the study area showed that foresttypes and core management measures were the key factor to it. And it was significantly lowerin Anhui province than that in fujian province。
     In Huangshan District, purified Moso bamboo forest was more serious, andcomprehensive health index was0.503~0.746. Among40sampling points,5and8pointswere in grade II and grand III, and the rest27were in unhealthy situation; in Shunchang andYong’an County, the proportion of mixed Moso bamboo forest was higher. Among45samplingpoints, comprehensive health index of two points was above0.8, staying in health situation;20points were in good level, and only9points were unhealthy. The health grade of Shunchangwas obviously higher than that of Huangshan. Overall, the health level of pure Moso bambooforest was lower than mixed Moso bamboo forest. Core management speaking, comprehensivehealth index of fertilized Moso bamboo in Huangshan was highest, and Moso bamboo forestwith release fertilizer was best, but hook tip was lowest, below0.55. In Shunchang andYong’an, bamboo forest with investigation management was higher, and stand biomass andbamboo shoot output was higher.
     Forest health research is the inevitable choice of the times. Based on the theory of foresthealth, the connotation of forest health of Moso bamboo forest was discussed and an evaluation system was constructed. Furthermore, the case study and analysis of Moso bamboo forest instudy area was studied advice to health management. According to the results that the sitecondition is the base of bamboo forest health management, and should follow the scientific andreasonable management goal.The use of the management pattern should follow bamboo forestnatural characteristics and the rule of sustainable development and providing correspondingproducts and services. The predatory management which focuses on short-term benefit wouldcause many bamboo forest health problems.
引文
Alexander S.A., Palmer C. J.,1999. Forest health montoring in the United States: First four years.Environment Monitoring Assessment,55(2):267-277.
    Brown P. M., Heyerdahl E. K., Kitchen S. G., et al.,2008. Climate effects on historical fires (1630-1900) inUtah. International Journal of Wildland Fire,17(1):28-39.
    Bussotti F, Gellini R, Grossoni P, et al (ed).,1992. Mediterranean Forest Tree Decline in Italy. Rome:Consiglio NaZionale delle Ricerche (CNR).
    Calderon F.J., Jackson L.E., Scow, K.M. et al.,2001. Short-term dynamics of nitrogen, microbial activity,and phospholipid fatty acids after tillage. Soil Science Society of America Journal,65:118-126.
    Cano A., Navia R., Amezaga I., et al.,2002. Local topoclimate effect on short-term cutslope reclamationsuccess. Ecological Engineering,18(4):489-498.
    Christanty L, Mailly D, Kimmins J.P.,1997."Without bamboo, the land dies": A conceptual model of thebiogeochemical role of bamboo in an Indonesian agroforestry system. Forest Ecology and Management,(91):83-91.
    Dale J.,2000. Forest health in west coast forests. Salem: Oregon Department of Forestry.
    DeHayes D H, et al.,1999. Acid rain impacts on calcium nutrition and forest health. BioScience,49(10):789-800.
    Drinkwater, L.E., R.R. Janke, and L. Rossoni-Longnecker.,2000. Effects of tillage intensity on nitrogendynamics and productivity in legume-based grain systems. Plant and Soil,227:99-113.
    Eric A.,2001. Forest health assessment in Canada. Blackwell Science, Inc.28-34
    Fischer R, De Vries W, Seidling W.,1999. Forest condition in Europe. Bonn: Federal Research Centre forForestry and Forest Products (BFH).
    Isagi Y., Kawahara T., Kamo K., Ito, H.,1997. Net production and carbon cycling in a bamboo Phyllostachyspubescens stand. Springer. p.41-52.
    Isagi Y., Torii A.,1998. Range expansion and its mechanisms in anaturalized bamboo species, Phyllostachyspubescens, in Japan. Journal of Sustainable Forestry,6(1-2):127-141.
    Jackson, L.E., F.J. Calderon, K.L. Steenwerth, et al.,2003. Responses of soil microbial processes andcommunity structure to tillage events and implications for soil quality. Geoderma,114:305-317.
    Joseph P., Kieth T., Kline, et al.,1991. Restoring forest health in the Blue Mountains: a10year strategiePlan. Forest Log,61(2):3-12.
    Kolasa J.2005. Complexity, system integration and susceptibility to change: biodiversity connection.Ecological Complexity,2:431-442.
    Kolb T. E, et al.,1994. Concepts of forest health-utilitarian and ecosystem perspectives. Joumal of Forestry,92(6):10-15.
    Kramer P. J.,1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience,31:29-33.
    Mark C. Drever, Kathy M.,2010. Response of woodpeckers to changes in forest health and harvest:Implications for conservation of avian biodiversity Forest Ecology and Management,259:958-966.
    McElhinny C., Gibbons P., Brack C., et al.,2005. Forest and woodland stand structural complexity: itsdefinition and measurement. Forest Ecology and Management,218:1-24.
    Michael G.,Olson.,2012. Remote sensing of Forest health trends in the Northern green mountains ofVermont. In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing inNatural Resources,72-73
    Monnig E., J Byler.,1992. Forest health and ecological in tegrity in the Northern Roekies. FPM Report92-7.Missoula, MT: USDA Forest service Northern Region.
    Norby R. J., Sholtis J. D., Gunderson C. A., et al.,2003. Leaf dynamics of a deciduous forest canopy: noresponse to elevated CO2. Oecologia,136:574-584.
    O`Lauglin J., Livingston T. L.,1993. Their R D. Defining and measuring forest health. In: Samposon R N ed.Assessing forest. Ecosystem health in the inland west. NewYork: Food Produets Press,65-86.
    Olivera C. D., Fergusonb D. E., Harveyc A. E., et al.1994. Managing Ecosystems for Forest Health, AnApproach and the Effects on Uses and Values. Journal of Sustainable Forestry,2(2):113-133.
    Oszlanyi J.,1997. Forest health and environmental Pollution in Slovakia. Environment Pollution,98(3):389-392.
    Papendick, R., Parr J. F.1997. Thew ayo fth efu turefo ra s ustainabled rylanda griculture. Annals of aridzone,36:193-208.
    Piovanelli, C., C. Gamba, G. Brandi, et al.,2006. Tillage choices affect biochemical properties in the soilprofile. Soil and Tillage Research,90:84-92.
    Radloff D., Loomis R., Bamard J., et al.,1991. Forest health monitoring: taking the pulse of America`sforests, Agriculture and the environment. The1991Yearbook of Agriculture. Washington, D. C.:USDA Forest Service.
    Robert C., Michael M.,1999. What is a healthy ecosystem?. Aquatic Ecology,33:105-115
    Singh A.N., Singh J.S. Biomass.1999. net primary production and impact of bamboo plantation on soilredevelopment in a dry tropical region. Forest Ecology and Management,(119):195-207.
    Schaefer D., Henricks E. E., Kerster H. W.1988. Ecosystem health: Measuring ecosystem health.Environmental Management,12:445-455.
    Six, J., E.T. Elliott, and K. Paustian.,1999. Aggregate and soil organic matter dynamics under conventionaland no-tillage systems. Soil Science Society of America Journal,631350-1358.
    Smith W H.1990. The health of North Ameriean forests: Stress and risk assessment. Journal of Forestry,88(1):32-35.
    Solovjova N V.1999. Synthesis of ecosystemic and ecoscreening modeling in solving problem of ecologicalsafety. Ecological Modelling,124(l):1-10.
    Song X Z, Zhou G M, Jiang H, et al.2011. Carbon Sequestration by Chinese Bamboo Forests and TheirEcological Benefits: Assessment of Potential, Problems, and Future Challenges. EnvironmentalReviews,19(1):418-428.
    S ren Wulff, ke Lindel w, Lars Lundin. et al.2012. Adapting forest health assessments to changingperspectives on threats a case example from Sweden, Environ Monit Assess184:2453-2464
    Suzuki S.2008. Nakagoshi N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest underdifferent natural and artificial conditions. Ecological Research,23(4):641-647.
    Turner D.2011. Lewis M, Ostendorf B. Spatial indicators of fire risk in the arid and semi-arid zone ofAustralia. Ecological Indicators,11(1):149-167.
    UNECE and FAO.2000. Forest Resources of Europe, CIS, North America, Australia, Japan and NewZealand (industrialized temPerate/boreal counties). Geneva Timber and Forest Study Papers, No.17.New York and Geneva: United Nations.
    Chrysopolitou V., Apostolakis A., Avtzis D., et al.,2013. Studies on forest health and vegetation changes inGreece under the effects of climate changes. Biodivers Conserv,22:1133-1150
    Waring R H, Schlesinger W H.1985. Forest Ecosystems: Concepts and Management. Orlando, FL, USA:Academic Press Inc,313-335.
    Yanda P Z.2000. Use of soil horizons for assessing soil degradation and reconstructing chronology ofdegradation processes: The case of Mwisanga Catchment, Kondoa, central Tanzania. Geomorphology,34:209-225.
    Yoshinori S, Yuka O, Masaaki C, et al.2010. Spatial variations in throughfall in a Moso bamboo forest:sampling design for the estimates of stand-scale throughfall. Hydrol. Process.24:253-259
    Zhang Q C, Imran H S., Wang J W. et al.2013. Surface runoff and nitrogen (N) loss in a bamboo(Phyllostachys pubescens) forest under different fertilization regimes. Environ Sci Pollut Res,20:4681-4688
    白尚斌,周国模,王懿祥,等.毛竹入侵对常绿阔叶林主要树种的化感作用研究.环境科学,2013a,34(10):4066-4072.
    白尚斌,周国模,王懿祥,等.天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化.生物多样性,2013b,21(3):288-295.
    蔡立群,杜伟,罗珠珠,等.陇中坡地不同退耕模式对土壤团粒结构分形特征的影响.水土保持学报,2012,26(1):200-203.
    曹鹤,薛立,谢腾芳,等.华南地区八种人工林的土壤物理性质.生态学杂志,2009,28(4):620-625.
    陈存及.毛竹林林分密度效应的初步研究.福建林学院学报,1992,12(1):98-104.
    陈高,代力民,范竹华,等.森林生态系统健康及其评估监测.应用生态学报,2002,13(5):605-610.
    陈高,代力民,姬兰柱,等.森林生态系统健康评估Ⅰ模式、计算方法和指标体系.应用生态学报,2004,15(10):1743-1749.
    陈乾富.毛竹林不同经营措施对林地土壤肥力的影响.竹子研究汇刊,1999,(3):19-23.
    陈双林,萧江华.现代竹业栽培的土壤生态管理.林业科学研究,2005,18(3):351-355.
    陈志远.中国酸雨研究.北京:中国环境科学出版社,1997.
    陈裴裴,吴家森,郑小龙,等.不同施肥对雷竹林径流及渗漏水中氮形态流失的影响.生态学报,2013,33(18):5599-5607
    陈忠.火对森林主要生态系统过程的影响.应用生态学报,2006,17(9):1726-1732.
    迟国泰,曹婷婷,张昆.基于相关-主成分分析的人的全面发展评价指标体系构建.系统工程李林与实践,2012,32(1):111-119.
    笪志祥,楼一平,董文渊,等.梁山慈竹在退耕还林中的水土保持效应研究.浙江林业科技,2007,27(3):22-27.
    丁魏发.毛竹垦复技术初步研究.现代农业科技,2006,(11S):23-24.
    董晨玲.毛竹扩鞭成林新竹生长效果研究.竹子研究汇刊,2003,(4):30-33.
    董林根,姜小娟,方茂盛.雷竹覆盖栽培林地土壤微生物的初步研究.浙江林学院学报,1998,15(3):236-239.
    杜满义.闽山区不同施肥毛竹林生态系统碳平衡研究.北京:中国林业科学研究院,2009.
    范少辉,肖复明,汪思龙,等.湖南会同林区毛竹林地土壤呼吸.生态学报,2009a,29(11):5971-5977.
    范少辉,肖复明,汪思龙,等.湖南会同林区毛竹林生态系统碳平衡的估算.竹林生态学和经营学术论坛论文集,2009b,175-181.
    冯宗炜.酸雨对生态系统的影响一西南地区酸雨研究.北京:中国科学技术出版社,1993.
    符树根,黄宝祥,沈彩周,等.毛竹专用肥试验研究.江西林业科技,2006,(1):10-12.
    傅懋毅,杨校生.我国竹类研究展望和竹林生境利用.竹子研究汇刊,2003,22(2):1-8.
    甘敬.北京山区森林健康评价研究.北京林业大学博士论文,2007.
    高均凯,金莹杉.关于森林基础设施属性的探讨.应用生态学报,2007a,18(6):1351-1355.
    高均凯.森林健康的内涵及其属性特征.南京自然大学学报(人文社会科学版),2009,9(1):69-74.
    高均凯.森林健康基本理论及评价方法研究.北京林业大学博士论文,2007,52.
    高均凯.深入研究积极探索中国森林健康之路.北京林业管理干部学院学报,2005,(1):22-25.
    高开通,刘鹏举,唐小明.森林资源小班火险天气等级预报方法研究.北京林业大学学报,2013,35(4):61-66.
    高清贵.浅谈毛竹山的水土保持.亚热带水土保持,2006,(2):39-40.
    谷建才,陆巧贵,白顺江,等.森林健康评价指标及应用研究.河北农业大学学报,2006,29(2):68-71.
    谷建才.华北土石山区典型区域主要类型森林健康分析与评价.北京林业大学博士论文,2006.
    顾小平,吴晓丽,汪阳东.毛竹林氮素营养诊断的研究.浙江林业科技,2004,(2):1-4.
    顾小平.竹林肥培理论与技术研究.中国林业科学研究院博士论文,2000.
    郭成久,孙景刚,苏芳莉,等.土壤容重对草甸土坡面养分流失特征的影响.水土保持学报,2012,26(6):27-30.
    郭子武,俞文仙,陈双林,等.林地覆盖对雷竹林土壤微生物特征及其与土壤养分制约性关系的影响.生态学报,2013,33(18):5623-5630
    郭晓敏.毛竹林平衡施肥及营养管理研究.南京林业大学博士论文,2003.
    郭晓敏,牛德奎,范方礼,等.平衡施肥毛竹林叶片营养与土壤肥力及产量的回归分析.林业科学,2007,(A01):53-57.
    郭晓敏,牛德奎,张斌,等.集约经营毛竹林平衡施肥效应研究.西南林学院学报,2005,25(4):84-89.
    何明.毛竹笋用竹林合理竹领结构及其生长规律.竹子研究汇刊,1993,12(3):52-55.
    黄张婷,张艳,宋照亮,等.雷竹覆盖物分解速率及其硅含量的变化.生态学报,2013,33(23):7373-7381
    洪伟,陈辉,等.毛竹专用复合肥研究.林业科学,2003,(1):81-85.
    洪伟.毛竹丰产林密度效应研究.林业科学,1998a,34(专1):1-4.
    洪伟.应用列联表研究竹林产出变化规律I.竹林产量与立竹量关系的研究.林业科学,1998b,34(专1):35-36.
    侯彦林,刘兆荣.生态平衡施肥模型理论与应用.土壤通报,2000,31(1):33-35.
    胡超宗,潘孝政.毛竹笋用林立竹密度的研究.竹子研究汇刊,1983,2(2):53-56.
    胡建忠.西部地区植被建设的主要途径探讨.水土保持学报,2003,17(3):121-123.
    胡顺荣.顺昌县竹产业发展的现状与对策.安徽林业科技,2011,37(5):54-56.
    黄昌勇.土壤学.北京:中国农业出版社,2000.
    惠刚盈克劳斯冯佳多.德国现代森林经营技术.北京:中国科学技术出版社,2001,119-134.
    贾小容,苏志尧,区余端,等.三种人工林分的冠层结构参数与林下光照条件.广西植物,2011,31(4):473-478.
    江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002.
    姜培坤,徐秋芳.不同施肥雷竹林土壤重金属含量的动态分析.水土保持学报,2005,19(1):168-170,180.
    姜培坤,徐秋芳.雷竹笋硝酸盐含量及其与施肥的关系.浙江林学院学报,2004,21(1):10-14.
    姜培坤,俞益武,金爱武,等.丰产雷竹林地土壤养分分析.竹子研究汇刊,2000,19(4):50-53.
    姜培坤,张瑞华.雷竹林地覆盖增温过程中土壤化学性质的动态变化.江林学院学报,1999,16(2):123-130.
    蒋桂娟.金沟岭林场云冷杉林健康评价研究.北京林业大学博士论文,2012.
    金森.群落结构复杂性的测度方法研究进展.植物生态学报,2006,30(6):1030-1039.
    鞠瑞亭,徐颖,易建平,等.城市绿地有害生物风险分析体系构建及应用.植物保护学报,2005,32(2):179-184.
    李冰.大兴安岭兴安落叶松林健康评价研究.北京林业大学博士论文,2009,41.
    李昌栋.不同垦复时间和深度对毛竹生长发育的影响.安徽林业,2004,(2):17-17.
    李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨.林业资源管理,2004,(1):31-34.
    李晓炜,赵刚,于秀波,等.不同区域森林火灾对生态因子的响应及其概率模型.生态学报,2013,33(4):1219-1229.
    李秀英.森林健康评价指标体系初步研究与应用.中国林业科学研究院博士论文,2006,23.
    李正才,傅懋毅,谢锦忠,等.毛竹竹阔混交林群落地力保持研究.竹子研究汇刊,2003,(1):32-37.
    廖尔华,张世熔,邓良基,等.丘陵区土壤颗粒的分形维数及其应用.四川农业大学学报,2002,20(30):242-245.
    廖俊国,姚逸秋,冷允法.福建武夷山生物圈保护区森林防火系统的研究.中南林学院学报,1995,15(1):43-47.
    林萌,郭太君,代新竹.9种园林树木固碳释氧生态功能评价.东北林业大学学报,2013,41(6):29-32.
    刘国群,庄舜尧,李国栋,等.不同种植年限下雷竹林土壤中铝的形态变化.土壤,2008,40(6):1013-1016.
    刘海龙,李迪华,韩西丽.生态基础设施概念及其研究进展综述.城市规划,2005,(9):69-75.
    刘海荣,宋力,鲜靖苹,等.5种常用灌木固碳释氧能力的比较研究.安徽农业大学学报,2009,36(2):204-207.
    刘蔚漪.闽北不同类型毛竹林水文生态功能研究.中国林业科学研究院博士论文,2011.
    刘芝芹,郎南军,彭明俊,等.云南高原金沙江流域森林枯落物层和土壤层水文效应研究.2013,27(3):165-173.
    刘亚迪,范少辉,蔡春菊,等.地表覆盖栽培对雷竹林凋落物养分及其化学计量特征的影响.生态学报,2012,32(22):6955-6963
    刘志鹏.黄土高原地区土壤养分的空间分布及其影响因素.中国科学院大学博士论文,2013.
    刘自远,刘成福.综合评价中指标权重系数确定方法探讨.中国卫生质量管理,2006,13(2):44-47.
    楼一平,李艳霞,Kathleen B..中国竹林可持续经营认证的必要性和可行性研究.竹子研究汇刊,2008,8(3):1-7.
    楼一平,盛炜彤.我国毛竹林长期立地生产力研究问题的评述.林业科学研究,1999,12(2):172-178.
    楼一平,吴良如.毛竹纯林长期经营对林地土壤肥力的影响.林业科学研究,1997,10(2):125-129.
    鲁绍伟,陈吉虎,余新晓,等.北京八达岭林场森林健康经营研究.水土保持通报,2007,27(3):127-132.
    鲁绍伟,刘凤芹,余新晓,等.北京市八达岭林场森林生态系统健康性评估.水土保持学报,2006,20(3):79-82.
    陆文明.森林认证对森林经营和林产品贸易的影响.林业科技管理,2001,(4):16-20.
    陆新邦.毛竹纸浆竹林均匀度及整齐度研究.湖北林业科技,2009,4:15-17.
    罗国芳.闽东竹业经营发展战略研究.林业经济问题,1997,(3):29-33.
    罗素梅,何东进,谢益林,等.林分密度对尾赤桉人工林群落结构与生态效益的影响研究.热带亚热带植物学报,2010,18(4):357-363.
    罗应婷,杨钰娟.2008.SPSS统计分析从基础到实践.北京:电子工业出版社,258
    马长欣,刘建军,康博文,等.1999-2003年陕西省森林生态系统固碳释氧服务功能价值评估.生态学报,2010,30(6):1412-1422.
    马克平,黄建回,于顺利,等.北京东灵山地区植物群落多样性的研究/Ⅱ丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268-277.
    马连祥,周定国,徐魁梧.酸雨对杨树生长和木材化学性质的影响.林业科学,2000,36(6):95-99.
    毛德华,夏军,黄友波.西北地区生态修复的若干基本问题探讨.水土保持学报,2003,17(1):15-18,28.
    孟宪宇.测树学.北京:中国林业出版社,1996.
    倪丽丽.基于小班水平的县级森林健康评价研究.南京林业大学博士论文,2013.
    宁杨翠.长白山杨桦次生林健康评价与经营模式.北京林业大学博士论文,2010.
    秦华,徐秋芳,曹志洪.长期集约经营条件下雷竹林土壤微生物量的变化.浙江林学院学报,2010,27(1):1-7.
    沈照仁.森林利用火灾与森林健康的关系.世界林业动态,2003,(18):3-6.
    施明辉,赵翠薇,郭志华,等.森林健康评价研究进展.生态学杂志,2010,29(12):2498-2506.
    史晓丽.北京市行道树固碳释氧滞尘效益的初步研究.北京林业大学博士论文,2010.
    水利水电部农村水利水土保持司.水土保持试验规范.北京:水利水电部,1988.
    苏文会,范少辉,彭颖,等.车筒竹、箣竹和越南巨竹竹材的主要物理性质研究西北林学院学报,2012,27(3):205-209.
    苏文会,范少辉,许庆标,等.毛竹冬笋生长与生物量积累规律研究.西北林学院学报,2013,28(2):32-36.
    苏文会,范少辉,张文元,等.冰冻雪灾对黄山区毛竹林的损害及影响因子.林业科学,2008,44(11):42-49.
    苏文会.基于生长和养分积累规律的毛竹林施肥理论与实践研究.中国林业科学研究院博士论文,2012.
    苏杨,朱健,王平,等.土壤持水能力研究进展.中国农学通报,2013,29(14):140-145.
    孙芳芳.土壤结构稳定性与孔隙的定量研究.浙江大学博士论文,2013,7.
    汤华勤,张慧萍,马佩军.集体竹林认证经营机制构建的实践与思考.世界竹藤通讯,2012,10(3):6-9.
    汤孟平,唐守正,李希菲,等.树种组成指数及其应用.林业资源管理,2003,(2):33-36.
    汤孟平,徐文兵,陈永刚,等.毛竹林空间结构优化调控模型.林业科学,2013,49(1):121-125.
    汤佩松.高等植物呼吸代谢途径的调节控制和代谢与生理功能间的相互制约.植物学报,1979,21(2):93-106.
    唐得昊,邹欣庆,刘兴健.海岸带生态系统健康评价中能质和生物多样性的差异—以江苏海岸带为例.生态学报,2013,33(4):1240-1250.
    唐小平,王红春,程小玲.森林健康经营的探讨2008年雨雪冰冻灾害的启示,林业资源管理,2010,5:1-5
    田晓瑞,Douglas J.M,张有慧.森林火险等级预报系统评述.世界林业研究,2006,19(2):39-46.
    童颖国,杨益高,陈建法,等.竹笋两用山的冬笋挖掘和科学施肥技术.上海农业科技,2007,(4):95-96.
    王宝琦,刘志理,戚玉娇,等.利用不同方法测定红松人工林叶面积指数的季节动态.2014,8,网络版.
    王兵,任晓旭,胡文.中国森林生态系统服务功能及其价值评估.林业科学,2011,47(2):145-153
    王改粉,赵玉国,杨金玲,等.流域尺度土壤厚度的模糊聚类与预测制图研究.土壤,2011,43(5):835-841.
    王俭成,杨建英,史常青,等.北川地区典型林分土壤抗蚀性分析.水土保持学报,2013,27(1):72-76.
    王林,冯锦霞,万贤崇.土层厚度对刺槐旱季水分状况和生长的影响.植物生态学报,2013,37(3):248-255.
    王伟.笋材兼用毛竹林施肥技术的研究.生产率系统,2002,(4):29-31.
    王修信,孙涛,朱启,等.林地叶面积指数遥感估算方法的适用分析.生态学报,2014,网络版.
    王彦辉,唐守正.德国等欧洲国家森林受害及监测//江泽慧,张守攻等主编.面向21世纪的林业.北京:中国农业科技出版社,1998.
    王彦辉,肖文发,张星耀.森林健康监测与评价的国内外现状和发展趋势.林业科学,2007,43(7):78-84.
    王燕,宫渊波,尹艳杰,等.不同林龄马尾松人工林土壤水土保持功能.水土保持学报,2013,27(5):23-28.
    吴炳生.竹类资源利用与发展趋势.山地农业生物学报,1999,18(5):351-356.
    吴国强.毛竹栽培与垦复技术要点.安徽林业,2005,(1):31-31.
    吴良如.论我国竹类植物环境的利用.竹子研究汇刊,1997,16(4):10-14.
    吴秀丽,吴涛,刘羿.国内外森林健康经营综述.世界林业研究,2011,24(4):7-12.
    吴正芳,吴正心.我国竹产品出口竞争力分析及对策.沿海企业与科技,2010,7:4-6.
    吴志勇,王云珠.安吉竹业发展现状和思路.竹子研究汇刊,2000,19(4):76-79,83.
    武高洁.县级森林资源质量评价指标体系及评价方法研究.北京林业大学博士论文,2010.
    夏恩龙,江泽慧,李智勇.竹林经营认证与森林经营认证的关系研究.世界竹藤通讯,2011,9(5):16.
    夏恩龙,徐斌,李智勇.中国竹林认证可行性分析.世界林业研究,2009,22(3):72-75.
    夏恩龙.中国竹林经营认证标准及其影响因素研究.中国林业科学研究院博士学位论文,2009.
    萧江华.中国竹林经营学.北京:科学出版社,2010,51.
    肖风劲,欧阳华,孙江华,等.森林生态系统健康评价指标与方法.林业资源管理,2004,(1):27-31.
    徐清乾,陈明皋,艾文胜.丘岗山地毛竹低效林改造技术及效果.2009,29(6):179-183
    徐秋芳,姜培坤,陆贻通.不同施肥对雷竹林土壤微生物功能多样性影响初报.浙江林学院学报,2008,25(5):548-552.
    许大全.光合作用效率.上海:上海科学技术出版社,2002,8.
    许凯扬,叶万辉.生态系统健康与生物多样性.生态科学,2002,21(3):279-283.
    薛萐,刘国彬,张超,等.黄土丘陵区人工灌木林土壤抗蚀性演变特征.中国农业科学,2010,43(15):3143-3150.
    杨芳,徐秋芳.不同栽培历史雷竹林土壤养分与重金属含量的变化.浙江林学院学报,2003,20(2):111-114.
    杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征.科学通报,1993,38(20):1896-1899.
    余锦华,杨维权.多远统计分析与应用.广州:中山大学出版社,2006:176-177.
    余林.皖南毛竹林密度效应研究.中国林业科学研究院博士论文,2011.
    余新晓,甘敬,李金海,等.森林健康评价、监测与预警.北京:科学出版社,2010.
    俞立平,潘云涛,武夷山.学术期刊综合评价数据标准化方法研究.图书情报工作,2009,53(53):136-139.
    张昌顺,范少辉,官凤英,等.闽北毛竹林的土壤渗透性及其影响因子.林业科学,2009,45(1):36-42.
    张昌顺,范少辉,漆良华,等.闽北典型毛竹林土壤微团聚体分形特征研究.水土保持学报,2008,22(6):170-175.
    张昌顺.闽北不同类型毛竹林生态功能研究.北京:中国林业科学研究院,2008.
    张大鹏,范少辉,蔡春菊,等.川南不同退耕还竹林土壤团聚特征比较.林业科学,2013,49(1):27-32.
    张大鹏,范少辉,蔡春菊,等.川南退耕丛生竹林枯落物持水特性研究.水土保持研究,2012,19(5):181-184.
    张峰,彭祚登,安永兴,等.北京西山主要造林树种林下枯落物的持水特性.林业科学,2010,46(10):6-14.
    张刚华.不同类型毛竹林结构特征与植物物种多样性研究.中国林业科学研究院博士论文,2006,26.
    张华,范少辉,刘蔚漪,等.闽北不同类型毛竹林径流特征的研究.中南林业科技大学学报,2013,33(12):42-45.
    张惠良,王丽.中国竹乡城市发展现状、问题及建议.世界竹藤通讯,2013,11(1):30-35.
    张景群,马骐.塔里木河流域胡杨林火灾特点与生态适应性研究.西北林学院学报,1996,11(1):30-34,50.
    张锐,玉林,王占林.西宁周边山地主要人工林群落土壤团粒分形特征与土壤养分及抗蚀性分析.东北林业大学学报,2013,41(4):87-91.
    张锐.重庆市四面山几种人工林的水土保持功能研究.北京北京林业大学,2008.
    张文元.毛竹根际土壤肥力质量变化及苗期营养管理研究.中国林业科学研究院博士论文,2009.
    张艳丽,费世民,李智勇,等.成都市沙河主要绿化树种固碳释氧和降温增湿效益.生态学报,2013,33(12):3878-3887.
    张真.森林生态系统管理与森林有害生物生态管理.世界林业研究,2000,13(5):13-17.
    章伶俐.北京地区蒙古栎林生态系统健康评价与影响因素分析.北京林业大学博士论文,2009.
    赵杰.浅析区域循环经济发展水平综合评价指标权重确定的方法.商场现代化,2007,230-231.
    赵良平.森林生态系统健康理论的形成与实践.南京林业大学学报自然科学版,2007,31(3):1-7.
    赵雨森,韩春华,张宏光.阿什河上游小流域主要林分类型土壤水文功能研究.水土保持学报,2012,26(2):203-208.
    郑仁红.覆盖栽培对雷竹林衰退的化感效应研究.中国林业科学研究院硕士学位论文,2006
    郑郁善,洪伟,郑功雕.材用毛竹丰产林密度效应模型研究.福建林学院学报,1996,16(4):343-345.
    周芳纯,易世基,毛高喜,等.毛竹林结构理论研究总结报告.竹类研究,1987(1):1-13.
    周芳纯.竹林培育学.北京:中国林业出版社,1998.
    周国模,徐建明,吴家森,等.毛竹林集约经营过程中土壤活性有机碳库的演变.林业科学,2006,42(6):124-128.
    周文伟.垦复对毛竹林鞭系生长影响的研究.竹子研究汇刊,1995,14(3):30-35.
    周紫球,翁关成,商继东.毛竹冬笋销售存在问题与对策.世界竹藤通讯,2014,12(1):41-43.
    朱锦懋,黄茂提,陈由强,等.笋材两用毛竹林林分结构数量关系研究.植物生态学报,2000,24(4):483-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700