用户名: 密码: 验证码:
毛竹镁原卟啉甲酯环化酶基因研究及SSR标记开发应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合作用是生物界获取能量、食物以及氧气的根本途径,而叶绿素是植物光合作用吸收光能的主要载体,其生物合成需要15步反应,涉及15种酶,其中镁原卟啉单酯环化酶(MPEC)在叶绿素生物合成的碳环形成过程中发挥着重要的作用,如果将编码MPEC的基因敲除,植物会出现致死现象。毛竹(Phyllostachys edulis)基因组草图的发布为基因功能的研究,分子标记的开发与应用奠定了基础。本研究以重要经济竹种毛竹为材料,从中分离MPEC同源基因,研究其时空表达模式,通过转基因技术验证其功能。然后根据毛竹基因组数据,搜索与毛竹光合作用途径相关基因中搜索SSR位点,开发SSR分子标记,对刚竹属植物的遗传多样性分析。主要结果如下:
     1基因获得采用同源比对方法从毛竹全长cDNA文库中得到1个MPEC基因同源序列(Genbank:FP092998),命名为PeMPEC。该基因全长1474bp,5′和3′非编码区分别长23bp和206bp,编码区为1248bp,编码415个aa,推断其分子量为49.3kD。PeMPEC编码区对应的基因组序列为1864bp,其中含有5个外显子和4个内含子。蛋白结构分析表明,PeMPEC基因编码的蛋白具有两个拷贝的EXnDEXRH和一个亮氨酸拉链结构,该蛋白序列与拟南芥(Arabidopsis thaliana)中MPEC的同源性为73.6%,与水稻(Oryza sative)等禾本科植物的MPEC同源性均在85.0%以上,进化上具有较高的保守性。
     2基因时空表达特异性半定量PCR检测表明, PeMPEC基因主要在毛竹光合器官叶片中表达,而根中检测不到表达。qRT-PCR结果表明,黑暗条件可诱导PeMPEC基因的表达,随着光照强度的增强(100-1500μmol m-2s-1)基因的表达受到抑制;高温(42℃)抑制基因的表达,而短时间内(0.5h)基因表达受低温(4℃)的诱导,随着低温处理时间增加,基因表达受到抑制;PeMPEC基因在毛竹黄化苗中仅检测到微弱表达,随着光照(200μmol m-2s-1)时间延长,基因表达量逐渐上升,8h的表达量上升为对照的80%。
     3基因在拟南芥中异位表达构建PeMPEC正、反义植物表达载体,分别转化拟南芥。表型分析显示,正义转基因植株与野生型拟南芥表型没有明显的区别;反义转基因植株则生长缓慢,叶片出现叶绿素缺乏症状,呈浅黄色。半定量RT-PCR结果表明,PeMPEC基因在5个转基因株系中均有表达,其中在正义转基因株系S-5中最高,反义转基因株系A-4中最低。色素含量分析表明,正义转基因株系叶绿素含量比野生型增加了20%以上,而反义转基因株系叶绿素含量降低,其中A-2株系的叶绿素含量仅为野生型的58%。叶绿素荧光参数测定结果显示,与野生型相比反义转基因株系A-1和A-2的Fv/Fm、Y(Ⅱ)和ΔI/I值均显著下降(p<0.05),而转正义基因株系虽有所增加,但差异不显著。由此表明,转基因植株叶绿素的含量受到了的影响,PeMPEC基因对叶绿素的生物合成具有调控作用。
     4基因功能互补实验在拟南芥T-DNA插入Crd1突变体(SALK-024716C)中过量表达PeMPEC基因,获得了恢复到野生型表型的转基因植株。半定量结果表明,PeMPEC基因在转基因植株中均有表达,其中转在基因株系M-4中表达量最高,M-1中最低。叶绿素含量测定结果表明,转基因植株的总叶绿素含量比突变体的高22-50%,比野生型的高7-20%左右。叶绿素荧光参数测定结果显示,转基因植株的Fv/Fm、Y(Ⅱ)和ΔI/I值比突变体显著增加(p<0.05),而与野生型植株相近。证明PeMPEC基因的过量表达可以提高叶绿素的含量,对维持PSⅠ和PSⅡ的稳定具有重要的作用。
     5Western Blotting检测构建PeMPEC基因的原核表达载体,转化大肠杆菌表达菌株(Rosetta-gamin B (DE3))感受态细胞,并进行诱导表达。通过条件优化,在28℃条件下用0.4mmol·L-1IPTG诱导4h,获得了表达丰度较高的可溶蛋白。蛋白纯化结果表明,在大肠杆菌中分离出一个60kDa的重组蛋白,并利用该蛋白制备多克隆抗体。分别提取毛竹根、茎、叶鞘和叶片组织的总蛋白,SDS-PAGE电泳后,以PeMPEC的多克隆抗体为探针进行杂交。Western Blotting结果表明,PeMPEC主要于叶片组织中积累。
     6毛竹基因组SSR特点对毛竹全基因组数据进行SSR搜索,共筛选出302615个SSR位点,平均1Mb序列中出现147.5个SSR,其中单核苷酸和二核苷酸重复类型为主,占总SSR的87.33%。在单核苷酸重复单元中,以A/T的单核苷酸重复占主导地位,占单核苷酸重复总数的72.00%,;二核苷酸重复基序中AG/CT重复类型占得比例最高,达到二核苷酸重复的41.16%,其次为AT/AT、CG/CG重复类型;SSR出现的数目随SSR的长度增加逐渐减少,当SSR长度为10-20bp时,所检测到的SSR的数量最多,达到79.76%;两个SSR位点之间碱基数为4-100的SSR位点数量最多,占复合型SSR标记的39.54%。
     7SSR在刚竹属中的多态性分析选择73对引物对刚竹属的种或变异类型进行了遗传多样性的扩增,其中22对引物具有多态性,占总引物的29.79%。在78个样品中共检测到64个等位位点,平均每个引物有2.78个等位位点。对22个位点的遗传参数进行了估算,期望杂合度分布范围为0.09-0.93,平均值为0.44,表现出中度的遗传多样性,观测杂合度分布范围为0.02-0.92,平均值为0.68。Shannon多样性指数的分布范围为0.25-1.30,平均为0.74。与其他物种相比,所检测刚竹属样品的遗传多样性水平较低,这可能与其无性繁殖方式有关。
     8SSR在刚竹属分类中的辅助应用根据遗传距离进行聚类分析,结果表明78个样品共聚为3个大类,第Ⅰ类和第Ⅱ类的竹种主要属于刚竹属刚竹组,第Ⅲ类竹种主要属于刚竹属水竹组。STRUCTURE结果显示78个样品共分为4个类群,结果与根据遗传距离的聚类结果部分相似,但也有部分的出入。STRUCTURE的结果没有将刚竹组和水竹组分离,但是可用于种下等级的分类,而根据遗传距离的聚类结果比较容易的区分刚竹组和水竹组,但是有些种下等级之间的遗传距离较远,因此,结合这两种方法的分类结果,与传统分类学类似,吻合程度较高。
     PeMPEC基因是毛竹叶绿素生物合成过程中的关键酶基因,本研究为通过基因工程调控叶绿素的生物合成提供了新的功能基因资源,为培育出具有高效光合效率的植物新品种提供了理论依据。毛竹光合途径相关基因中SSR位点的开发及应用,不仅为刚竹属的分类提供了佐证,而且对于在分子标记水平挖掘光合作用相关位点提供遗传资源,揭示竹子光合作用的遗传多态性,筛选特有遗传因子具有重要意义。
Photosynthesis is the basic way to obtain the energy, food and oxygen in the biologicalworld. Chlorophyll is the main carrier for absorption of light energy in plant photosynthesis.Chlorophyll biosynthesis takes15-step reaction, involving15kinds of enzymes, among whichMg-protoporphyrin Ⅸ monomethyl ester cyclase (MPEC) plays an important role in theformation of isocyclic ring. Plants will appear the phenomenon of death if the gene encodingMPEC was knocked out. The published draft genome of moso bamboo laid a good foundationfor the study of gene function, development and application of molecular marker.Phyllostachys edulis, an important economical bamboo, was selected for the isolation ofMPEC homologous gene. The spatio-temporal expression patterns of MPEC in Ph. edulis wereanalyzed, and the gene function was verified through transgenic technology. SSR molecularmarkers in the genes of related with photosynthesis pathway were developed according to thegenome of Ph. edulis and used to analyze the genetic diversity of bamboos in Phyllostachysgenus. The results were as follows:
     First, Isolation of PeMPEC gene A homologous gene of MPEC was abtained from thefull length cDNA library of Ph. edulis by alignment method and designed as PeMPEC(Genbank: FP092998). The cDNA of PeMPEC was1474bp including5′untranslated region(UTR)23bp,3′UTR206bp and an open reading frame (ORF) of1248bp which encoded aprotein with415aa. The corresponding genomic sequence of ORF was1854bp including5exons and4introns. The analysis of protein structure showed that PeMPEC had one conservedleucine zipper domain and two copies of the EXnDEXRH motif. The result of sequencealignment demonstrated that PeMPEC shared73.6%homology with that of Arabidopsisthaliana, and more than85.0%homology with those of gramineous plants such as Oryza sative,which indicated that MPEC had a high conservative in evolution.
     Second, Spatio-temporal expression pattern of PeMPEC Semi-quantitative PCRanalysis showed that PeMPEC was transcribed at high level in leaf which is main photosynthesis organ and could not be detected at all in root. The result of real-timequantitative PCR suggested that the expression of PeMPEC was induced by darkness andsupressed with increase of light from100μmol m-2s-1to1500μmol m-2s-1. Hightemperature (42℃) also could suppress the gene expression. However, it was induced by lowtemperature (4℃) in a short time(0.5h) and then was suppressed by the prolonged treatment.Thhough expression of PeMPEC was very weak in etiolated seedlings, it was increasedgradually with the treatment of light (200μmol m-2s-1) and reached to80%of the controlafter8h treatment.
     Third, Ectopic expression of PeMPEC in A. thaliana The sense and antisenseexpression vectors of PeMPEC were constructed and transferred into A. thaliana. The analysisof phenotype showed that there was no obvious difference between sense transgenics and wildtype. However chlorophyll deficient leaf with light yellow was found in the antisensetransgenic lines which grew slowly. The semi-quantitative PCR analysis confirmed thatPeMPEC had been expressed in transgenic plants, among which the most abundant was insense line S-5and the least was in antisense line A-4. The analysis of pigments showed thatchlorophyll content in sense plants was20%higher than that of of wild type, while that ofantisense plants all was reduced, especially for that of line A-2was only58%as that of wildtype. The data of chlorophyll fluorescence parameters showed that Fv/Fm, Y(Ⅱ) and ΔI/Ivalue of the antisense line A-1and A-2decreased significantly (p<0.05) compared with thoseof wild type, however there were no significantly different between parameter values of senselines and those of wild type. These indicated that the chlorophyll content of transgenic plantshas been influenced by PeMPEC which involved in the regulation of chlorophyll biosynthesis.
     Forth, Functional complementation analysis of PeMPEC PeMPEC was transferredinto Crd1(SALK-024716C) which is a T-DNA mutant of A. thaliana, the phenotype oftransgenic plants was similar to that of wild type. The semi-quantitative PCR of transgenicplants confirmed that PeMPEC had been integrated into genome and its expression was mostabundant in line M-4and least in line M-1. The analysis of pigments showed that chlorophyll content in sense plants was22-50%higher than that of mutant and7-20%higher than that ofwild type. The measurement of chlorophyll fluorescence parameters showed that there were noobvious difference between transgenic plants and wild type for the value of Fv/Fm, Y(Ⅱ) andΔI/I, however significant difference (p<0.05) were presented between transgenic plants andmutant. These results indicated that the overexpression of PeMPEC could increased the contentof chlorophyll, which played an important role in keeping stability of PS Ⅰ and PSⅡ.
     Fifth, Western Blotting The prokaryotic expression vector of PeMPEC was constructedand transferred into Escherich coil (Rosetta-gamin B (DE3)). The high expression of solute proteinwas obtained with0.4mmol·L-1IPTG induced4h at28℃. The purification of protein showedthat a60kDa recombinant protein was isolated from E. coli and used to prepare polyclonalantibody. The total protein of root, stem, sheath and leaf were extracted respectively andseparated with SDS-PAGE. The polyclonal antibody of PeMPEC was used as probe forwestern blotting. The result suggested that PeMPEC was mainly detected in leaf tissue.
     Sixth, Characteristic of SSR in Ph. edulis genome Through genome-wide search, a totalof302615SSR loci were identified from the genome sequence of Ph. edulis, in which1Mbsequence appeared an average147.5SSRs. Mononucleotide and dinucleotide repeats SSR weredominant, accounting for87.33%. The most abundant motif in mononucleotide repeats is A/Taccounted for72.00%, and the most one in dinucleotide is AG/CT accounted for41.16%,followed by AT/AT, CG/CG motif repeats. The number of SSR was decreased gradually withthe increased length of SSR. The number of SSR with length of10-20bp was the most one,accounting for79.76%. When the bases were4-100bp between two SSR loci the number ofSSR was the most abundant, accounting for39.54%of that of compound SSR loci. Thenumber of compound SSR with4-100bp between two SSR loci was the most abundant,accounting for39.54%.
     Seventh, Polymorphism analysis of SSR in Phyllostachys A total of73primer pairswere designed and used to precede genetic diversity analysis of78samples from Phyllostachys,in which22pairs of primers were polymorphic, accounting for29.79%. A total64alleles were detected in78samples, there is an average of2.78alleles per primers. Genetic diversityparameters of22loci were calculated, the excepted heterozygosity was ranged from0.09-0.93with average value of0.44, the observed heterozygosity ranged from0.02~0.92with averagevalue of0.68, and the Shannon index ranged from0.25to1.3with average value of0.74. Allthe genetic parameters indicated that the genetic diversity level of Phyllostachys was lowerthan that of other species, it may be related with its asexual reproduction.
     Eighth, Auxiliary application of SSR in Phyllostachys classification The result ofcluster analysis showed78samples were clustered into3classes according to the geneticdistance. The samples clustered into the first and second classes belonged to Sect.Phyllostachys group and those of the third classs belonged to Sect. Heterocladae group.However, the result of STRUCTURE demonstrated that78samples were divided into4classes,which was consistent some but inconsistent portion with cluster analysis. Though the result ofSTRUCTURE method was not distinguished Sect Phyllostachys and Sect Heterocladae, itcould be used to classify the species and its variants. It was easy to distinguish SectPhyllostachys and Sect Heterocladae using cluster analysis, but difficult for the variants for thereason of genetic distance. Therefore, it was similar to the traditional taxonomy with highdegree of agreement by combining the results of two methods.
     PeMPEC was an essential gene in chlorophyll biosynthesis. This study provided a newgenetic resource for the regulate of chlorophyll biosynthesis through genetic engineering, and atheoretical basis for the breeding of new varieties with high photosynthetic efficiency. SSR lociin the genes related to photosynthesis pathway were not only provided the evidence fortaxonomy of Phyllostachys but also genetic resource for development of the loci related withphotosynthesis at molecular marker level, which had important value for revealing geneticpolymorphism of bamboo photosynthesis and screening the unique genetic factors.
引文
Alawady AE, Grimm B. Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activationof Mg porphyrin and protoheme synthesis. Plant Journal,2005,41(2):282-290
    Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsisthaliana. Nature,2000,408(6814):796-815
    Barkley NA, Newman ML, Wang ML, et al. Assessment of the genetic diversity and phylogeneticrelationships of a temperate bamboo collection by using transferred EST-SSR markers. Genome,2005,48(4):731-7.
    Beale SI. Enzymes of chlorophyll biosynthesis. Photosynth. Research,1999,60(1):43-73
    Bilger W. Bj rkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements oflight-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.Photosynthesis Research,1990,25(3):173-185
    Bollivar DW, Suzuki JY, Beatty, JT, et al. Directed mutational analysis of bacteriochlorophyll a biosynthesisin Rhodobacter capsulatus. Journal Molecular Biology,1994,237(5):622-640
    Bollivar DW, Beale SI. Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonasreinhardtii chloroplasts. Photosynthesis Research,1995,43(2):113-124
    Bollivar DW, Beale SI. The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester(oxidative)cyclase. Characterization and partial purification from Chlamydomonas reinhardtii andSynechocystis sp. PCC6803.Plant Physiology,1996,112(1):105-114
    Brinster RL, Allen JM, Behringer RR, et al. Introns increase transcriptional efficiency in transgenic mice.Proceedings of the National Academy of Sciences,1988,85(3):836-840
    Brownlie P, Ceska T, Lamers M, et al. The crystal structure of an intact human Max–DNA complex: newinsights into mechanisms of transcriptional control, Structure,1997,5(4):509-520
    Callis J, Fromm M, Walbot V. Introns increase gene expression in cultured maize cells. Genes andDevelopment,1987,1(10):183-200
    Cato SA, Kent J, Richardson TE, et al. A rapid PCR-based method for genetically mappingESTs.Theoretical and Applied Genetics,2001,102(2/3):296-306
    Cardle L, Ramsay L, Dan M, et al. Computational and experimental characterization of physically clusteredsimple sequence repeats in plants. Genetics,2000,156(2):847-854
    Carleton KL, Streelman JT, Lee BY, et al. Rapid isolation of CA microsatellites from the tilapia genome.Animal Genetics,2002,33(2):140-144
    Chakraborty R, Kimmel M, Stivers DN, et al. Relative mutation rates at di-, tri-, and tetranucleotidemicrosatellite loci. Proceedings of the National Academy of Sciences,1997,94(3):1041-1046
    Chereskin BM, Wong YS, Castelfranco PA. In vitro synthesis of the chlorophyll isocyclic ring.Transformation of magnesium-protoporphyrin IX and magnesium-protoporphyrin IX monomethyl esterinto magnesium-2,4-divinyl pheoporphyrin A5. Plant Physiology,1982,70(4):987-993
    Chereskin BM, Castelfranco PA. Effects of iron and oxygenon chlorophyll biosynthesis II Observations onthe biosynthetic pathway in isolated etiochloroplasts. Plant Physiology,1982,69(1):112-116
    Cho YG, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBanksequences in rice (Oryza sativa L.). Theoretical and Applied Genetics,2000,100(5):713-722
    Cornah JE, Terry MJ, Smith AG. Green or red: What stops the traffic in the Tetrapyr role pathway. TrendPlant Science,2003,8(5):224-230
    Debener T. Molecular markers as a tool for analyses of genetic reltatedness and selcetion in ornamentals.Breeding For Ornamentals: Classical and Molecular Approaches,2002:329-345
    Demmigadams B, Adams WW. Chlorophyll and carotenoid composition in leaves of euonymuskiautschovicus acclimated to different degrees of light stress in the field. Australian Journal of PlantPhysiology,1996,23(5)649-659
    Edwards KJ, Barker JH, Daly A, et al. Microsatellite libraries enriched for several microsatellite sequencesin plants. Biotechiques,1996,20(5):758-760
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the softwareSTRUCTURE: a simulation study. Molecular ecology,2005,14(8):2611-2620
    Fan CJ, Ma JM, Guo QG, et al. Selection of Reference Genes for Quantitative Real-Time PCR in Bamboo(Phyllostachys edulis). PLoS ONE,2013,8(2): e56573.doi:10.1371/journal.pone.0056573
    Friar E, Kochert G. A study of genetic variation and evolution of Phyllostachys (Bambusoideae,Poaceae)using nuclear restriction fragment length polymorphisms. Theoretical and Applied Genetics,1994,89(2-3):265-270
    Fuesler TP, Wong YS, Castelfranco PA. Localization of Mg-chelatase and Mg-protoporphyrin IXmonomethyl ester(oxidative) cyclase activities within isolated, developing cucumber chloroplasts. PlantPhysiology,1984,75(3):662-664
    Fujita Y. Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiology,1996,37(4):411-421
    Fumio TS, Takashige I, Toru T, et al. Mitochondrial genome differentiation in the genus Phyllostachy. JapanAgricultural Research Quarterly,1998,32(1):7-14
    Gao LF, Tang JF, Li HW, et al. Analysis of microsatellites in major crops assessed by computational andexperimental approaches. Molecular breeding,2003,12(3):245-261
    Gao ZM, Li XP, Li LB, et al. An effective method for total RNA isolation from bamboo. Chinese ForestScience Technology,2006,5(3):52-54.
    Goslings D, Meskau SR, Kim C, et al. Concurrent interactions of heme and FLU with Glu-tRNAreductase(HEMA1), the target of metabolic feedback inhibition of tetrapyr role biosynthesis, in dark andlight grown Arabidopsis plants. Plant Journal,2004,40(6):957-967
    Gough SP, Petersen BO, Duus JO. Anaerobic chlorophyll isocyclic ring formation in Rhodobactercapsulatus requires a cobalamin cofactor. Proceedings of the National Academy of Sciences,2000,97(12):6908-6913
    Guo R, Luo M, Weinstein JD. Magnesium-chelatase from developing pea leaves. Plant Physiology,1998,116(2):605-615
    Hatey F, Tosser Klopp G, Clouscard Martinato C, et al. Expressed sequence tags for genes: a review. GeneticSelection Evolution,1998,30(6):521–541
    Heyes DJ, Hunter N. Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. TrendsBiochemistry. Science,2005,30(11):642-649
    HsiaoJ Y, Rieseberg LH. Population genetic structure of Yushania niitakayamensis (Bambusoideae, Poaceae)in Taiwan. Molecular Ecology,2008,3(3):201-208
    Huang YS, Li HM. Arabidopsis CHLI2can substitute for CHLIl. Plant Physiology,2009,150(2):636-645
    Ilag LL, Kumar AM, S ll D. Light regulation of chlorophyll biosynthesis at the level of5-aminolevulinateformation in Arabidopsis. Plant Cell,1994,6(2):265-275
    International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436(7052):793-800
    Judith S, Boris H, Bernhard G. Overexpression of HEMA1encoding glutamyl-tRNA reductase. PlantPhysiology,2011,168(12):1372-1379
    Kaneko S, Donald CF, Yamasaki N, et al. Development of microsatellite markers for Bambusa arnhemica(Poaceae: Bambuseae), a bamboo endemic to northern Australia. Conservation Genetics,2008,9(5):1311-1313
    Karagyozov L, Kalcheva ID, Chapman VM. Construction of random small-insert genomic libraries highlyenriched for simple sequence repeats. Nucleic Acids Research,1993,21(16):3911-3912
    Kawasaki H, Schiltz L, Chiu R, et al. ATF-2has intrinsic histone acetyltransferase activity which ismodulated by phosphorylation. Nature,2000,405(6783):195-200
    Kooten O. van, Snel FH Jan. The use of chlorophyll fluorescence nomenclature in plant stress physiology.Photosynthesis Research,1990,25(3):147-150
    Kuhlmann M, Horvay K, Strathmann A, et al. The alphahelical D1domain of the tobacco bZIP transcriptionfactor BZI-1interacts with the ankyrin-repeat protein ANK1and is important for BZI-1function, bothin auxin signaling and pathogen response, Journal Biology Chemistry,2003,278(10):8786–8794
    Kumar AM, Csamkovszki G, Soll D. A second and differentially expressed glutamyl-tRNA reductase genefrom Arabidopsis thaliana.Plant Molecular Biology,1996,30(3):419-426
    Kumar AM, Soll D. Antisense HEMA1RNA expression inhibits heme and chlorophyll biosynthesis inArabidopsis.Plant Physiology,2000,122(1):49-56
    Lai CC, Hsiao JY. Genetic variation of Phyllostachys pubescens (Bambusoideae, Poaceae) in Taiwan basedon DNA polymorphisms. Botanical Bulletin of Academia Sinica,1997,38(3):145-152
    Li DZ, Wang ZP, Zhu ZD,et al. Poaceae: Tribe Bambuseae. Flora of China(Vol.22):168-180
    Liu N, Yang YT, Liu HH, et al. NTZIP antisense plants show reduced chlorophyll levels. Plant PhysiologyBiochemistry,2004,42(4):321-327
    Loh JP, Kiew R, Set O, et al. A study of genetic variation and relationships with the bamboo subtribebambusinae using amplified fragment length polymorphism. Annals of botany,2000,85(5):607-612
    Marulanda1ML, Márquez P, Londo o X. AFLP analysis of Guadua angustifolia(Poaceae: Bambusoideae)inColombia with emphasis on the Coffee Region. Bamboo Science and Culture,2002,16(1):32-42
    Marulanda ML, Lopez AM, Claroz JL. Analyzing the genetic diversity of Guadua spp. in Colombia usingrice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology,2007,7(1):43-51
    Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls.Photosynthesis Research,2008,96(2):121-143
    Mattheis JR, Rebeiz CA. Chloroplast biogenesis. Net synthesis of protochlorophyllide frommagnesium-protoporphyrin monoester by developing chloroplasts. Journal biology Chemistry,1977,252(12):4022-4024
    Meskauskiene R, Nater M, Goslings D, et al. FLU: a negative regulator of chlorophyllbiosynthesis inArabidopsis thaliana. Proceedings of the National Academy of Sciences,2001,98(22):12826-12831
    Moretzsohn MC, Hopkins M, Mitchell SE, et al. Genetic diversity of peanut (Arachis hypogaea L.) and itswild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biology,2004,4(1):11
    Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA inplant genomes. Nature Genetics,2002,30(2):194-200
    Moseley J, Quinn J, Eriksson M, et al. The Crd1gene encodes a putative di-iron enzyme required forphotosystemI accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBOJournal,2000,19(10):2139-2151
    Moseley JL, Page MD, Alder NP, et al. Reciprocal expression of two candidate di-iron enzymes affectingphotosystem I and light-harvesting complex accumulation. Plant Cell,2002,14(3):673-688
    Nagat AN, Tanaka R, Satoh S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis inArabidopsis thaliana and implications for the evolution of prochlorococcus species.Plant Cell,2005,17(1):233-240
    Nantel A, Quatrano RS. Characterization of three rice basic leucine zipper factors, including two inhibitorsof EmBP-1DNA binding activity. Journal Biology Chemistry,1996,271(49):31296-31305
    Nasrulhaq-Boyce A, Griffiths WT, Jones OT. The use of continuous assays to characterize the oxidativecyclase that synthesizes the chlorophyll isocyclic ring. Biochemistry Journal,1987,243(1):23-29
    Nayak S, Rout GR. Isolation and characterization of microsatellites in Bambusa arundinacea and crossspecies amplification in other Bamboos. Plant Breeding,2005,124(6):599-602
    Ostrander EA, Jong PM, Duyk G. Construction of small-insert genomic DNA libraries highly enriched formicrosatellite repeat sequences. Proceedings of the National Academy of Sciences,1992,89(8):3419-3423
    Ouchane S, Steunou AS, Picaud M, et al. Aerobic and anaerobic Mg-protoporphyrin monomethyl estercyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. Journalbiology Chemistry,2004,279(8):6385-6394
    Paetkau D. Microsatellites obtained using strand extension: an enrichment protocol. Biotechniques,1999,26(4):690-692,694-697
    Papenbrock J, Grimm B. Regulatory network of tetrapyrrole biosynthesis-studies of intracellular signallinginvolved in metabolic and developmental control of plastids. Planta,2001,213(5):667-681
    Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolorgenome and the diversification of grasses.Nature,2009,457(7229):551-556
    Pattanayak GK, Biswal AK, Reddy VS, et al. Light-dependent regulation of chlorophyll b biosynthesis inchlorophyllide a oxygenase overexpressing tobacco plants. Biochemistry biophysical ResearchCommunications,2005,326(2):466-471
    Peng ZH, Lu T, Li L, et al. Genome-wide characterization of the biggest grass, bamboo, based on10608putative full-length cDNA sequences. BMC Plant Biology,2010,10:116
    Peng ZH, Lu Y, Li LB, et al. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla). Nature Genetics,2013,45(4):456-461
    Pinta V, Picaud M, Reiss-Husson F, et al. Rubrivivax gelatinosus acsF (previously orf358) codes for aconserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclizationof Mg-protoporphyrin IX monomethylester. Journal Bacteriology,2002,184(3):746-753
    Porra RJ, Schafer W, Katheder I, et al. The derivation of the oxygen atoms of the13(1)-oxo and3-acetylgroups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratoryto photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E.FEBS Letters,1995,371(1):21-24
    Porra RJ. Recent progress in porphyrin and chlorophyll biosynthesis. Photochemistry and Photobiology,1997,65(3):492-516
    Powell W, Machray CG, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Science,1996,1(7):215-222
    Pysh LD. Characterization of themaize OHP1gene evidence of gene copy variability among inbreds, Gene,1996,177(1-2):203-208
    Reinbothe S, Reinbothe C. Regulation of chlorophyll biosynthesis in angiosperms. Plant Physiology,1996,111(1):1-7
    Rissler HM, Collakova E, DellaPenna D, et al. Chlorophyll biosynthesis. Expression of a Second ChlI Geneof Magnesium Chelatase in Arabidopsis Supports Only Limited Chlorophyll Synthesis. PlantPhysiology,2002,128(2):770-779
    Rudiger W, Bohm S, Helfrich M, et al. Enzymes of the last steps of chlorophyll biosynthesis: modification ofthe substrate structure helps to understand the topology of the active centers. Biochemistry,2005,44(32):10864-10872
    Rzeznicka K, Walker CJ, Westergren T, et al. Xantha-l encodes a membrane subunit of the aerobicMgprotoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proceedings ofthe National Academy of Sciences,2005,102(16):5886-5891
    Schorderet DF, Gartler SM. Analysis of CpG suppression in methylated and nonmethylated species.Proceedings of the National Academy of Sciences,1992,89(3):957-961
    Sharma RK, Gupta P, Sharma V, et al. Evaluation of rice and sugarcane SSR markers for phylogenetic andgenetic diversity analyses in bamboo. Genome,2008,51(2):91-103
    Sofia HJ, Chen G, Hetzler BG, et al. Radical SAM, a novel protein superfamily linking unresolved steps infamiliar biosynthetic pathways with radical mechanisms: functional characterization using new analysisand information visualization methods. Nucleic Acids Research,2001,29(5):1097-1106
    Sonah H, Deshmukh RK, Sharma A, et al. Genome-wide distribution and organization of microsatellites inplants: an insight into marker development in Brachypodium. PLoS One,2011,6(6): e21298
    Stenbaek A, Jensen PE. Redox regulation of chlorophyll biosynthesis. Phytochemistry,2010,71(8-9):853-859
    Subramaniam R, Desveaux D, Spickler C, et al. Direct visualization of protein interactions in plant cells.Nature Biotechnology,2001,19(8):769-772
    Suyama Y, Obayashi K, Hayashi I. Clonal structure in a dwarf bamboo (Sasa senanensis) population inferredfrom amplified fragment length polymorphism (AFLP) fingerprints. Molecular Ecology,2000,9(7):901–906
    Suzuki JY, Bollivar DW, Bauer CE. Genetic analysis of chlorophyll biosynthesis. Annual Review Genetic,1997,31:61-89
    Tang DQ, Lu JJ, Fang W, et al. Development, characterization and utilization of GenBank microsatellitemarkers in Phyllostachys pubescens and related species. Molecular Breeding,2010,25(2):299-311
    Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellates inrice (Oryza sativa L.): Frequency, length variation, transposon association, and genetic marker potential.Genome Research,2001,11(8):1441-1452
    The International Brachypodium Initiative, Vogel JP, Garvin DF, et al. Genome sequencing and analysis ofthe model grass Brachypodium distachyon. Nature,2010,463(7282):763-768
    Thimm O, Blasing O, Gibon Y, et al. MAPMAN: a user-driven tool to display genomics data sets ontodiagrams of metabolic pathways and other biological processes. Plant Journal,2004,37(6):914-939
    Toth G, Gaspari Z, Jurka J. Microsatellites in Different Eukaryotic Genomes: Survey and Analysis. GenomeResearch,2000,10(7):967-981
    Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa(Torr.&Gray). Science,2006,313(5793):1596-1604
    Wang JP, Chen CX, Na JK, et al. Genome-Wide Comparative Analyses of Microsatellites in Papaya.Tropical Plant Biology,2008,1(3-4):278-292
    Vothknecht UC, Kannangara CG, Von Wettstein D. Barley glutamyl tRNA Glu reductase: mutations affectinghaem inhibition and enzyme activity. Phytochemistry,1998,47(4):513-519
    Walker CJ, Castelfranco PA, Whyte BJ. Synthesis of divinyl protochlorophyllide. Enzymological propertiesof the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochemistry Journal,1991,276(3):691-697
    Walker CJ, Willows RD. Mechanism and regulation of Mg-chelatase. Biochemistry Jouanal,1997,327(2):321-333
    Whyte BJ, Castelfranco PA. Further observations on the Mg-protoporphyrin IX monomethyl ester (oxidative)cyclase system. Biochemistry Journal,1993,290(2):355-359
    Wong YS, Castelfranco PA, Goff DA, et al. Intermediates in the formation of the chlorophyll isocyclic ring.Plant Physiology,1985,79(3):725-729
    Wong YS, Castelfranco PA. Properties of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclasesystem. Plant Physiology,1985,79(3):730-733
    Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Molecular ecology,2002,11(1):1-16
    Zheng CC, Porat R, Lu PZ, et al. PNZIP is a novel mesophyll-specific cDNA that is regulated byphytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. PlantPhysiology,1998,116(1):27-35
    陈守良,徐克学,盛国英.中国散生竹类的数量分类和确定分类等级的探讨.植物分类学报,1983,21(2):113-120
    丁雨龙,赵奇僧,陈志银,等.竹叶结构的比较解剖及其对系统分类意义的评价.南京林业大学学报,1994,8(3):1-6
    丁雨龙.刚竹属(Phyllostachys)系统分类的研究.南京林业大学博士论文,1998
    董丽娜.毛毛竹秆茎高生长的发育解剖研究.南京林业大学博士论文,2007
    方伟,邬建荣,盛有春.10种散生竹染色体数目初报.浙江林学院学报,1991,8(1):127-130
    方伟,何祯祥,黄坚钦,等.雷竹不同栽培类型RAPD分子标记的研究.浙江林学院学报,2001,18(1):1-5
    高贵宾,顾小平,张小平,等.设施内外绿竹光合作用日变化及影响因子研究.江西农业大学学报,2008,30(6):494-498
    高素萍,任艳军,陈其兵.刚竹属(Phyllostachys)23个观赏竹种间亲缘关系的RAPD分析.园艺学报,2006,33(3):566-570
    高志民,范少辉,高健,等.基于CTAB法提取毛竹基因组DNA的探讨.林业科学研究,2006,19(6):725-728
    高志民,李雪平,彭镇华,等.竹子捕光叶绿素a/b结合蛋白基因全长的克隆和序列分析.林业科学,2007,43(3):34-38
    高志民,刘成,刘颖丽,等.毛竹捕光叶绿素a/b结合蛋白基因cab-PhE1的克隆与表达分析.林业科学,2009,45(3):145-149
    高志民,于小清,郑波,等.毛竹PsbS基因的克隆及其原核表达研究.热带亚热带植物学报,2011,19(6):513-518
    高志民,杨丽,李彩丽,等.麻竹EST-SSR标记开发及其对慈竹变异类型的分析研究.热带亚热带植物学报,2012,20(5):462-468
    高志民,刘颖丽,彭镇华.毛竹PSⅡ大量捕光天线蛋白基因克隆及其表达分析.植物科学学报,2012,30(1):64-71
    高智慧.利用秆维管束进行中国散生竹类的聚类分析.广西植物,1991,11(2):135-140
    耿伯介,王正平.中国植物志第九卷第一分册.北京:科学出版社,1996:251-313
    龚祝南,赵惠如.竹类地下茎解剖结构的研究.南京师大学报(自然科学版),1988(4):78-85
    龚祝南,赵惠如.国产散生竹地下茎的比较解剖观察及分类学的初步研究.南京师大学报(自然科学版),1990,13(3):62-69
    郭起荣,任立宁,牟少华,等.毛竹种质分子鉴别SRAP、AFLP、ISSR联合分析.江西农业大学学报,2010,32(5):982-986
    郭小勤,李犇,阮晓赛,等.利用ACGM分子标记研究10个毛竹不同栽培变种的遗传多样性.林业科学,2009,45(4):28-32
    郭晓艺,胡尚连,曹颖,等.四川不同地区慈竹和硬头黄遗传多样性的RAPD分析.林业科技,2007,32(5):19-22
    黄承才,汪奎宏.竹亚科植物过氧化物酶和酯酶同工酶研究.绍兴师专学报,1994(5):87-92
    黄启民,杨迪蝶,高爱新.毛竹光合作用的研究.林业科学,1989,25(4):366-369
    蒋维昕.毛竹的遗传结构及群体演化.南京林业大学博士论文,2013
    金凤媚,薛俊,郏艳红,等.半定量RT-PCR技术的研究及应用.天津农业科学,2008,14(1):10-13
    江泽慧.世界竹藤.辽宁科学技术出版社,沈阳,2002:3-7
    江泽慧.竹类植物基因组学研究进展.林业科学,2012,48(1):159-166
    李德珠,薛纪如.中国牧竹属的研究(之一).竹子研究汇刊.1988,7(3):1-19
    李娟,彭镇华,高健,等.干旱胁迫下黄条金刚竹的光合和叶绿素荧光特性.应用生态学报,2011,22(6):1395-1402
    李强,万建民. SSRHunter,一个本地化的SSR位点搜索软件的开发.遗传,2005,27(5):808-810
    李升峰.同工酶在青篱竹族分类中的应用.竹子研究汇刊,1989,8(4):12-21
    李升峰.黄酮化合物在散生竹分类中应用初探.竹子研究汇刊,1990,9(4):17-23
    李淑娴,尹佟明,邹惠渝,等.用水稻微卫星引物进行竹子分子系统学研究初探.林业科学,2002,38(3):42-48
    李秀兰,林汝顺,冯学琳,等.中国部分丛生竹类染色体数目的报道植物分类学报2001,39(5):433-442
    李雪平,彭镇华,高志民,等.绿竹光系统Ⅰ捕光叶绿素a/b结合蛋白基因的cDNA全长克隆及分析.安徽农业大学学报,2010,37(4):643-648
    刘贯水.毛竹SSR位点引物开发及部分竹种系统学分析.中国林业科学研究院,2010
    刘国华,王福升,丁雨龙,等.4种地被竹光合作用日变化及光合光响应曲线.福建林学院学报,2009,29(3):258-263
    刘涵华.水稻OsMPEC基因及拟南芥胁迫诱导microRNA分离及其功能分析.山东农业大学博士学位论文,2008
    娄永峰.雷竹不同变异类型的遗传多样性分析.浙江农林大学硕士论文,2010
    卢江杰,郑蓉,杨萍,等.利用AFLP技术研究不同产地绿竹的遗传多样性.世界竹藤通讯,2008,6(5):9-13
    卢江杰,吉永胜彦,方伟,等.3种竹类植物杂种的分子鉴定.林业科学,2009,45(3):29-34
    卢山,陈晓亚,夏仲豪.方竹属部分种黄酮类成分分析.竹子研究汇刊,1992,11(3):42-48
    吕芳德,徐德聪,侯红波,等.5种红山茶叶绿素荧光特性的比较研究.经济林研究,2003,21(4):4-7
    马乃训,张文燕,袁金玲.国产刚竹属植物初步整理.竹子研究汇刊,2006,25(1):1-5
    胖铁良.利用AFLP分子标记技术探讨部分竹类植物属间亲缘关系.河北农业大学硕士论文,2009
    任艳军.刚竹属(Phyllostachys)部分观赏竹种间亲缘关系的RAPD标记研究.四川农业大学硕士论文,2004
    阮晓赛.毛竹种源及栽培变种遗传变异的AFLP合ISSR分析.浙江林学院硕士论文,2008
    沈晓婷.毛竹小尺度遗传多样性及取样策略的初步分析.南京林业大学硕士论文,2012
    师丽华,杨光耀,林新春,等.毛竹种下等级的RAPD研究.南京林业大学学报,2002,26(3):65-68
    时燕,黄耀华,郭小勤,等.4个紫竹栽培类型叶绿素荧光特性的比较.江西农业大学学报,2009,31(3):397-401
    唐文莉,彭镇华,高健.刚竹属3种重要散生竹光系统Ⅰ基因(LhcaⅠ)的克隆、序列分析和蛋白结构预测.北京林业大学学报,2008,30(4):109-115
    王忠.植物生理学.中国农业出版社,北京2000
    魏瑜.毛竹等36种竹类植物的RAPD分析.福建师范大学硕士论文,2005
    吴海清,龚祝南.刚竹属植物地下茎的比较解剖学研究.江苏农学院学报,1997,18(2):63-67
    吴妙丹,董文娟,汤定钦.4个丛生杂种竹的SSR分子鉴定.分子植物育种2009,7(5):959-965
    邢新婷,傅懋毅,江泽慧,等.麻竹居群遗传分化的RAPD分析.分子植物育种,2010,8(1):75-82
    徐军望,冯德江,宋贵生,等.水稻EPSP合酶第一内含子增强外源基因的表达.中国科学,2003,33(3):224-230
    杨光耀,赵奇僧.苦竹类植物RAPD分析及其系统学意义.江西农业大学学报,2000,22(4):551-553
    杨丽,管雨,张智俊.竹类植物EST-SSRs分布特征及应用.农业生物技术学报,2011,19(1):57-62
    袁文海,梁根桃.刚竹属竹种淀粉酶同工酶分析及其在竹种鉴别上的应用.浙江林学院学报,1993,10(3):263-269
    张光楚.丛生竹染色体数的研究.广东林业科技,1985(4):16-22
    张蕾,金松恒,方伟.4种珍稀观赏竹光合作用特性研究.浙江大学学报,2009,35(2):165-172
    张守锋.毛竹(Phyllostachys edulis)遗传多样性研究.南京林业大学硕士论文,2005
    张智俊,管雨,杨丽,等.毛竹EST资源SSR标记分析与筛选.园艺学报,2011,38(5):989-996
    赵奇僧,汤庚国.中国竹子分类的现状和问题.南京林业大学学报,1993,17(4):1-8
    郑成超,杨国栋,王丹,等.一种拟南芥ZIP蛋白全长cDNA的克隆及表达.生物化学与生物物理学报,2002,34(1):109-112
    郑蓉.福建不同产地麻竹光合性状研究.竹子研究汇刊,2003,22(4):18-24
    郑蓉,黄耀华,连巧霞,等.刚竹属13个竹种叶绿素荧光特性比较.江西农业大学学报,2008a,30(2):263-267
    郑蓉,郑维鹏,郑清芳,等.观赏竹叶绿素荧光特性的比较研究.福建林学院学报,2008b,28(2):146-150
    竹内叔雄.张淳译.竹的研究.建筑工程出版社,1957

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700