用户名: 密码: 验证码:
不同生产力水平毛竹林碳氮磷生态化学计量特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态化学计量学,以研究多重化学元素平衡关系为目标,通过研究主要化学元素(C、N、P等)的计量关系来揭示有机体的特性及行为与生态系统间的相互关系,可以把个体、群落、景观等不同层次联系起来,揭示植物生长特征及其限制性因子相互关系。这种方法可能为毛竹林生产力与主要化学元素定量关系的研究开辟新途径。为此,本文以我国主要毛竹分布区(福建、江西、浙江、湖南等)毛竹林植被-土壤-凋落物系统为研究对象,试图通过对不同年龄(1~6年)、不同生产力水平(I:30000±1000kg·hm-2·a-1、II:34000±1000kg·hm-2·a-1、III:37000±1000kg·hm-2·a-1、IV:42000±1000kg·hm-2·a-1、V:47000±1000kg·hm-2·a-1)和不同分布区域毛竹林的C、N、P含量及其化学计量特征的系统研究,阐明毛竹个体、毛竹林分和区域尺度上毛竹林植被的生态化学计量特征,揭示生态化学计量学对毛竹林生产力的影响,为毛竹林科学经营提供理论依据。研究的主要结果是:
     1、在个体尺度上,毛竹同一器官C、N、P含量和C:N、C:P、N:P比值,随着毛竹年龄的增大而呈现显著差异。不同年龄的毛竹生产力不同,养分分配数量和比例也不同,符合“生长速率”假说。N和P含量随着年龄的增加呈先降低后升高的趋势。不同年龄毛竹C:N和C:P均以3年生毛竹林最高;N:P比值3年生毛竹林最低,5年生毛竹林中最高,反映了3年生毛竹代谢旺盛,扩鞭能力强,鞭芽活力高,具有较大的潜在生产力,N元素的供给可能对3年生毛竹林有较大影响;5年生毛竹N:P最高,反映了五年生毛竹单位P元素对N的固持效率最高,此时采伐P元素的利用效率已达到最大。
     2、在林分水平上,不同生产力水平下的毛竹林植被及土壤C、N、P含量有显著差异,但是植被层和土壤层C:N、C:P、N:P的差异程度不一致,植被层的差异未达到显著水平,土壤层的差异达到显著水平,毛竹林植被和土壤未表现出显著的相关性。
     (1)不同生产力水平毛竹林植被层C、N、P贮量存在显著差异,但是C:N、C:P、N:P的差异未达到显著水平;不同生产力水平下毛竹叶片N:P为12.60-13.69,变异系数为12.31%,反映了毛竹林主要养分元素的计量比随着生产力水平的不同在一个小的范围内波动,具有内在的稳定性,符合“内稳性”假说,同时N:P<14也反映了研究区毛竹林生长主要受到N元素的限制。
     (2)不同生产力水平毛竹林土壤有机碳、N、P、H-N、A-P分布格局发生明显变化,其计量比值的差异也达到了显著水平。其中,N:P为4.50-13.89,随着生产力的降低呈升高的趋势。土壤N:P比值变化同生产力变化过程有较好的同步性,其对毛竹林生产力的变化与叶片相比具有更强的敏感性,有可能成为未来竹林退化诊断的生态指示指标。毛竹林土壤主要养分计量值与植被养分计量值的相关性未达到显著水平,但是竹叶养分计量比与林地主要养分的计量比有较大的相关系数,反映了林地养分含量及化学计量比值的变化,在一定程度上影响了植株的养分含量及其计量比。
     3、在区域尺度上,毛竹林主要养分计量特征存在明显分异。
     (1)沿纬度方向的变化规律:毛竹叶片N、P含量以及N:P比值随纬度升高而升高,C:N和C:P随纬度升高而降低;凋落物中N含量以及C:P和N:P随纬度升高而增大,P含量和C:N随纬度升高而降低;土壤层C、N含量以及C:P、N:P随纬度升高而增大,P含量、C:N随着纬度升高而降低。
     (2)沿经度方向的变化规律:毛竹林叶片N、P含量随经度升高而降低,C:N、C:P以及N:P比值随经度升高而增大;凋落物中N、P含量随经度升高而增大,C:N、C:P和N:P比值均随经度升高而减小;土壤层C、N、P含量以及C:P、N:P比值随经度升高而减小,C:N比值随经度升高而增加。
     (3)区域毛竹林生态化学计量特征:叶片C:N比为25.32,C:P比为143.36,N:P为5.66;凋落物C:N比为30.89,C:P比为593.16,N:P为19.20;土壤中C:N比为12.71,C:P比为54.24,N:P为4.27。当N:P<14时,受N元素限制,1416时,受P元素限制。本研究所得数据表明,我国毛竹林生长主要受N元素的限制,P元素限制较少。
     综上所述,毛竹主要生态化学计量值在个体水平上符合“生长速率假说”,在林分水平上符合“内稳性假说”,在区域水平上表现出明显的分异性。叶片N:P说明本研究区毛竹林生长主要受到N元素的限制,受P元素的限制较小,且土壤N:P比值对毛竹林生产力变化有较强的指示性。在现有经营水平上,林地基本能够满足毛竹林对P元素的需求,应加强N元素的输入与管理,但在具体缺P林地或区域亦可适当增加P元素的输入,以缓解本区域N元素限制,提高毛竹林生产力。
New emerging ecological stoichiometry aims to study the balance of multiple chemicalelements by studying stoichiometry of the main chemical elements (C, N, P, etc.) to reveal therelationship between the characteristics and behaviours of organisms and ecosystems, whichcould link different levels of individuals, community and landscape together to reveal thegrowth characteristics of plants and the important role of limited factors. This method mayopen a new approach to quantitatively describe the relationship between productivity and mainchemical elements in Phyllostachys pubescens forest. Thus, in this study, in mainPhyllostachys pubescens distribution areas (Fujian, Jiangxi, Zhejiang, Hunan, etc),bamboo-soil-litter was considered as research objects to study C, N and P content and theirstoichiometry in Phyllostachys pubescens forest of different ages (1-6years), differentproductivity levels (I:30000±1000kg·hm-2·a-1, II:34000±1000kg·hm-2·a-1, III:37000±1000kg·hm-2·a-1, IV:42000±1000kg·hm-2·a-1, V:47000±1000kg·hm-2·a-1) and differentdistribution areas, further to reveal the stoichiometry characteristics of individual, communityand regional distribution of bamboo forest, and to illustrate the relationship betweenstoichiometry and productivity levels in Phyllostachys pubescens forest, which could providebasic theory for scientifical management. The main results are:
     1. Individually, C, N, P content and C:N, C:P, N:P of same organ showed significantdifference with the increase of age. Productivity, the nutrient quantity and ratios differed fromdifferent ages, which was consistent to “growth rate” hypothesis. N and P content increasedfirst and then decreased with the increasing age. C:N and C:P were both highest at age5, N:Pwas lowest at age3, and was highest at age5, indicating3-year old Phyllostachys pubescenshad strong metabolism, rizhome expansion, high potential productivity, and N supply mighthad significant effect on3-year Phyllostachys pubescens forest; N:P was highest at age5, indicating bamboo at age5had highest holding efficiency of N, harvesting bamboo at this time,P utilization efficiency was highest.
     2. The difference of plant and soil C, N and P content was significant in Phyllostachyspubescens forest of difference productivity levels at stand level, but the difference was notconsistent between plant and soil C:N, C:P, N:P. Plant C:N, C:P, N:P of was not statisticallysignificant difference, while soil C:N, C:P, N:P was statistically significant difference. Thecorrelation between plant and soil was not significant.
     (1) Plant C, N and P content was statistically significant different in Phyllostachyspubescens forest of different productivity levels, but the difference of C: N, C: P, N: P did notreach a significant level. N:P of leaves was12.60-13.69in Phyllostachys pubescens forest ofdifferent productivity levels, and coefficient variation was12.31%, indicating stoichiometry ofmain elements fluctuated in a small range along with different productivity levels inPhyllostachys pubescens forest, which was in line with “internal stability” hypothesis.Meanwhile, N: P <14suggested N was the limited element in Phyllostachys pubescens forestin study areas.
     (2) Distribution of soil organic matter, N, P, H-N and A-P showed significant changes, andthe difference of ratios of stoichiometry reached a significant level. N:P was4.50-13.89, whichdecreased with the increase of productivity. Changes of soil N:P was consistent with thechanges of productivity synchronously, which was more sensitive compared to leaves, andcould be the potential indication index to the degradation of Phyllostachys pubescens forest.The relationship between soil stoichiometry and plant stoichiometry was not significant, butthe coefficient leaf stoichiometry was higher that of soil stoichiometry, indicating the changesof soil nutrient content and stoichiometry affected bamboo nutrient content and theirstoichiometry to some extent.
     (3) The number of the significant correlation between nutrient cycling characteristic andplant, soil was9for N:P,8for C:P, and2for C:N, respectively, in Phyllostachys pubescensforest of different productivity levels, showing nutrient cycling characteristic wassignificantly affected by C and P.
     3. Regionally, the stoichiometry characteristic of main nutrients showed obviousdifferentiation.
     (1) Change law along with latitude: leaf N and P content and N:P increased with theincrease of latitude, and C:N and C:P decreased with the increased of latitude; litter N content,C:P and N:P increased with the increase of latitude, and P content, C:N decreased with theincrease of latitude. Soil C, N content, C:P and N:P increased with the increase of latitude, andP content and C:N decreased with the increase of latitude.
     (2) Change law along with longitude: leaf N and P content deceased with the increasinglongitude, and C:N, C:P and N:P increased with increasing longitude; litter in N, P contentincreased with increasing latitude, and C: N, C: P and N: P decreased with increasing longitude;soil layer C, N, P content and C: P, N: P decreased with increasing longitude, and C: N ratioincreased with increasing longitude.
     (3) Regional distribution of ecological stoichiometry characteristics in Phyllostachyspubescens forest: leaf C: N, C: P and N: P were25.32,143.36and5.66, respectively; litter C:N, C: P and N: P were30.89,593.16, and19.20, respectively; soil C: N, C: P and N: P were12.71,54.24and4.27, respectively. When N:P<16, Phyllostachys pubescens forest was limitedby N; while1416, Phyllostachys pubescens forest was limited by P. Data in our study indicatedPhyllostachys pubescens in China was mainly limited by N, seldom by P.
     In summary, in the individual level values of the major ecological stoichiometry inPhyllostachys pubescens was in line “growth rate hypothesis”; in the community level thevalues were in line with “internal stability” hypothesis, showing obvious differentiation onregional scale. Leaf N: P illustrated the growth of Phyllostachys pubescens forest was mainlylimited by N, rather than P, and soil N:P had strong indication to productivity changes inbamboo forest. Based on current management level, bamboo forest could meet the basic Pdemand, thus N input and management should be enhanced. However, increase P input in Plimited areas could alleviate N limitation and increase stand productivity.
引文
[1] Elser, J., R. Sterner, E. Gorokhova, et al.Biological stoichiometry from genes to ecosystems. EcologyLetters,2000,3(6):540-550
    [2]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论.植物生态学报,2010,34(1):2-6
    [3] Sterner, R.W., J.J. Elser.Ecological stoichiometry: the biology of elements from molecules to thebiosphere.Princeton University Press,2002
    [4]楼一平,吴良如,邵大方,等.毛竹纯林长期经营对林地土壤肥力的影响.林业科学研究,1997,10(2):125-129
    [5]刘广路,范少辉,苏文会,等.施肥时间对毛竹林生产力分配格局及土壤性质的影响.东北林业大学学报,2011,39(4):62-66
    [6] Michaels, A.F.The ratios of life.Science,2003,300(5621):906
    [7]张仁懿.亚高寒草甸不同功能群植物N: P化学计量特征差异研究.兰州大学,2010
    [8] Sherman, F.I. Kuselman.Stoichiometry and chemical metrology: Karl Fischer reaction.Accreditatio-n andquality assurance,1999,4(6):230-234
    [9]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索.植物生态学报,2005,29(6):1007-1019
    [10] Redfield, A.C.The biological control of chemical factors in the environment.Am. Sci,1958,46(3):205-221
    [11] Sterner, R.W., J.J. ElserD.O. Hessen.Stoichiometric relationships among producers, consumers andnutrient cycling in pelagic ecosystems.Biogeochemistry,1992,17(1):49-67
    [12] Elser, J.J., W.F. Fagan, R.F. Denno, et al.Nutritional constraints in terrestrial and freshwater foodwebs.Nature,2000,408(6812):578-580
    [13] Koerselman, W.A.F. Meuleman.The vegetation N: P ratio: a new tool to detect the nature of nutrientlimitation.Journal of Applied Ecology,1996,33(6):1441-1450
    [14] Matzek, V.P.M. Vitousek.N: P stoichiometry and protein: RNA ratios in vascular plants: anevaluation of the growth‐rate hypothesis.Ecology Letters,2009,12(8):765-771
    [15]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征.生态学报,2008,28(8):3937-3947
    [16]程滨,赵永军,张文广,等.生态化学计量学研究进展.生态学报,2010,30(6):1628-1637
    [17]邬畏,何兴东,周启星.生态系统氮磷比化学计量特征研究进展.中国沙漠,2010,30(2):295-302
    [18]杨惠敏,王冬梅.草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展.草业学报,2011,20(2):244
    [19]邵梅香,覃林,谭玲.我国生态化学计量学研究综述.安徽农业科学,2012,40(11):6918-6920
    [20]姚红艳,陈琴,肖冰雪.植物生态化学计量学综述.草业与畜牧,2013(2):48-50
    [21]曾冬萍,蒋利玲,曾从盛,等.生态化学计量学特征及其应用研究进展.生态学报,2013,33(18):5484-5492
    [22]赵君.甘南亚高寒草甸金露梅氮磷化学计量特征及其机制的研究.兰州大学,2011
    [23]刘洋,张健,陈亚梅,等.氮磷添加对巨桉幼苗生物量分配和C: N: P化学计量特征的影响.植物生态学报,2013,37(10):933-941
    [24] Belovsky, G.E.Diet optimization in a generalist herbivore: the moose.Theoretical PopulationBiology,1978,14(1):105-134
    [25] Tilman, D.Resource competition and community structure.Princeton University Press,1982
    [26] Vitousek, P.Nutrient cycling and nutrient use efficiency.American Naturalist,1982:553-572
    [27] Reiners, W.A.Complementary models for ecosystems.American Naturalist,1986:59-73
    [28] Koojiman, S.The stoichiometry of animal energetics.Journal of Theoretical Biology,1995,177(2):139-149
    [29] Zhang, L.X.,Y.F. BaiX.G. Han.Application of N: P stoichiometry to ecology studies.ActaBotanica Sinica,2003,45(9):1009-1018
    [30] Demars, B.O.A. Edwards.Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter‐taxon differences and low phenotypic response to nutrient supply.Freshwater Biology,2007,52(11):2073-2086
    [31]李娜,李建,刘海丰,等.东灵山3种落叶阔叶林的碳氮元素含量及比率.林业科学,2009,45(8):82-87
    [32] Jeyasingh, P.D.,L.J. WeiderR.W. Sterner.Genetically‐based trade‐offs in response to stoichiometricfood quality influence competition in a keystone aquatic herbivore.Ecology letters,2009,12(11):1229-1237
    [33] Williams, R.J.P.J.J.R.F. Da Silva.The Natural Selection of the Chemical Elements: the Environment andLifes Chemistry.Oxford:Clarendon Press,1996
    [34] Turrión, M.-B., B. Glaser, D. Solomon, et al.Effects of deforestation on phosphorus pools in mountainsoils of the Alay Range, Khyrgyzia.Biology and Fertility of Soils,2000,31(2):134-142
    [35] Karimi, R.C.L. Folt.Beyond macronutrients: element variability and multielement stoichiometry infreshwater invertebrates.Ecology letters,2006,9(12):1273-1283
    [36] Han, W., J. Fang, P.B. Reich, et al.Biogeography and variability of eleven mineral elements in plantleaves across gradients of climate, soil and plant functional type in China.Ecology Letters,2011,14(8):788-796
    [37] Vanni, M.J., A.S. Flecker, J.M. Hood, et al.Stoichiometry of nutrient recycling by vertebrates in atropical stream: linking species identity and ecosystem processes.Ecology Letters,2002,5(2):285-293
    [38] Elser, J., K. Acharya, M. Kyle, et al.Growth rate–stoichiometry couplings in diverse biota. EcologyLetters,2003,6(10):936-943
    [39] gren, G.I.The C: N: P stoichiometry of autotrophs–theory and observations.Ecology Letters,2004,7(3):185-191
    [40]徐劲草,许新宜.羊草生长率的研究和生长率假说的验证.草业科学,2013,30(1):74-79
    [41] Makino, W.J.B. Cotner.Elemental stoichiometry of a heterotrophic bacterial community in a freshwaterlake: implications for growth-and resource-dependent variations.Aquatic Microbial Ecology,2004,34(1):33-41
    [42] Novotny, A.M., J.D. Schade, S.E. Hobbie, et al.Stoichiometric response of nitrogen-fixing andnon-fixing dicots to manipulations of CO2, nitrogen, and diversity.Oecologia,2007,151(4):687-696
    [43] Polley, H.W., P.A. Fay, V.L. Jin, et al.CO2enrichment increases element concentrations in grassmixtures by changing species abundances.Plant ecology,2011,212(6):945-957
    [44] Cleveland, C.C.D. Liptzin.C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbialbiomass?Biogeochemistry,2007,85(3):235-252
    [45]丁小慧,罗淑政,刘金巍,等.呼伦贝尔草地植物群落与土壤化学计量学征沿经度梯度变化.生态学报,2012,32(11):3467-3476
    [46] Güsewell, S.N: P ratios in terrestrial plants: variation and functional significance.New Phytologi-st,2004,164(2):243-266
    [47] McGroddy, M.E.,T. DaufresneL.O. Hedin.Scaling of C: N: P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios.Ecology,2004,85(9):2390-2401
    [48] Reich, P.B.J. Oleksyn.Global patterns of plant leaf N and P in relation to temperature andlatitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001-11006
    [49] Han, W., J. Fang, D. Guo, et al.Leaf nitrogen and phosphorus stoichiometry across753terrestrial plant species in China.New Phytologist,2005,168(2):377-385
    [50] He, J.-S., J. Fang, Z. Wang, et al.Stoichiometry and large-scale patterns of leaf carbon and nitrogenin the grassland biomes of China.Oecologia,2006,149(1):115-122
    [51] He, J.-S., L. Wang, D.F. Flynn, et al.Leaf nitrogen: phosphorus stoichiometry across Chinesegrassland biomes.Oecologia,2008,155(2):301-310
    [52] Zheng, S.Z. Shangguan.Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau ofChina.Trees,2007,21(3):357-370
    [53]杨阔,黄建辉,董丹,等.青藏高原草地植物群落冠层叶片氮磷化学计量学分析.植物生态学报,2010,34(1):17-22
    [54]张文彦,樊江文,钟华平,等.中国典型草原优势植物功能群氮磷化学计量学特征研究.草地学报,2010,18(4):503-509
    [55]闫帮国,何光熊,李纪潮,等.金沙江干热河谷地区植物叶片中各生源要素的化学计量特征以及异速增长关系.植物生态学报,2012,36(11):1136-1144
    [56]任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征.应用生态学报,2012,23(003):581-586
    [57] Tian, H., G. Chen, C. Zhang, et al.Pattern and variation of C: N: P ratios in China’s soils: a synthesis ofobservational data.Biogeochemistry,2010,98(1-3):139-151
    [58]张向茹,马露莎,陈亚南,等.黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究.土壤学报,2013,50(004):818-825
    [59]甘露,陈伏生,胡小飞,等.南昌市不同植物类群叶片氮磷浓度及其化学计量比.生态学杂志,2008,27(3):344-348
    [60]韩文轩,吴漪,汤璐瑛,等.北京及周边地区植物叶的碳氮磷元素计量特征.北京大学学报(自然科学版),2009,45(5):855-860
    [61]周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联.植物生态学报,2010,34(1):7-16
    [62]吴统贵,陈步峰,肖以华,等.珠江三角洲3种典型森林类型乔木叶片生态化学计量学.植物生态学报,2010,34(1):58-63
    [63]王晶苑,王绍强,李纫兰,等.中国四种森林类型主要优势植物的C: N: P化学计量学特征.植物生态学报,2011,35(6):587-595
    [64]宋彦涛,周道玮,李强,等.松嫩草地80种草本植物叶片氮磷化学计量特征.植物生态学报,2012,36(3):222-230
    [65]朱秋莲,邢肖毅,张宏,等.黄土丘陵沟壑区不同植被区土壤生态化学计量特征.生态学报,2013,33(15):4674-4682
    [66]李从娟,雷加强,徐新文,等.塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征.生态学报,2013,33(18):5760-5767
    [67]陈军强,张蕊,侯尧宸,等.亚高山草甸植物群落物种多样性与群落C, N, P生态化学计量的关系.植物生态学报,2013,37(11):979-987
    [68]王凯,吴祥云,卢慧,等.阜新市主要园林树种叶片生态化学计量特征.干旱区研究,2013,30(002):236-241
    [69] Tessier, J.T.D.J. Raynal.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrientlimitation and nitrogen saturation.Journal of Applied Ecology,2003,40(3):523-534
    [70] Vitousek, P., Stoichiometry and flexibility in the Hawaiian model system.In: Melillo JM, Field CB,Moldan B eds. Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts.Island Press, Washington, D. C.2003. p.117-133
    [71]高三平,李俊祥,徐明策,等.天童常绿阔叶林不同演替阶段常见种叶片N, P化学计量学特征.生态学报,2007,27(3)
    [72]刘万德,苏建荣,李帅锋,等.云南普洱季风常绿阔叶林演替系列植物和土壤C, N, P化学计量特征.生态学报,2010,30(23):6581-6590
    [73]银晓瑞,梁存柱,王立新,等.内蒙古典型草原不同恢复演替阶段植物养分化学计量学.植物生态学报,2010,34(1):39-47
    [74]潘复静,张伟,王克林,等.典型喀斯特峰丛洼地植被群落凋落物CNP生态化学计量特征.生态学报,2011,31(2):335-343
    [75]罗亚勇,张宇,张静辉,等.不同退化阶段高寒草甸土壤化学计量特征.生态学杂志,2012,31(2):254-260
    [76]林丽,李以康,张法伟, et al.高寒矮嵩草群落退化演替系列氮,磷生态化学计量学特征.生态学报,2013,33(17):5245-5251
    [77] Ladanai, S.,G.I. grenB.A. Olsson.Relationships between tree and soil properties in Picea abies andPinus sylvestris forests in Sweden.Ecosystems,2010,13(2):302-316
    [78] Jackson, R.B.,H. MooneyE.-D. Schulze.A global budget for fine root biomass, surface area, and nutrientcontents.Proceedings of the National Academy of Sciences,1997,94(14):7362-7366
    [79]阎恩荣,王希华,郭明,等.浙江天童常绿阔叶林,常绿针叶林与落叶阔叶林的C: N: P化学计量特征.植物生态学报,2010,34(1):48-57
    [80]王维奇,徐玲琳,曾从盛,等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征.地理学核心问题与主线——中国地理学会2011年学术年会暨中国科学院新疆生态与地理研究所建所五十年庆典论文摘要集,2011
    [81]阎凯,付登高,何峰,等.滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征.植物生态学报,2011,35(4):353-361
    [82]丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N, P化学计量特征及其与土壤N, P浓度的关系.生态学杂志,2011,30(1):77-81
    [83]印婧婧,郭大立,何思源,等.内蒙古半干旱区树木非结构性碳,氮,磷的分配格局.北京大学学报(自然科学版),2009,45(3):519-527
    [84]刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N, P的化学计量特征.植物生态学报,2010,34(1):64-71
    [85]徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联.植物生态学报,2010,34(1):29-38
    [86]羊留冬,杨燕,王根绪,等.短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量学特征的影响.生态学报,2011,31(13):3668-3676
    [87] Yuan, Z.,H.Y. ChenP.B. Reich.Global-scale latitudinal patterns of plant fine-root nitrogen andphosphorus.Nature communications,2011,2:344
    [88] Kerkhoff, A.J., B.J. Enquist, J.J. Elser, et al.Plant allometry, stoichiometry and the temperature‐dependence of primary productivity.Global Ecology and Biogeography,2005,14(6):585-598
    [89] Usuda, H.Phosphate deficiency in maize. V. Mobilization of nitrogen and phosphorus within shoots ofyoung plants and its relationship to senescence.Plant and cell physiology,1995,36(6):1041-1049
    [90]牛得草,李茜,江世高,等.阿拉善荒漠区6种主要灌木植物叶片C: N: P化学计量比的季节变化.植物生态学报,2013,37(4):317-325
    [91]李玉霖,毛伟,赵学勇,等.北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究.环境科学,2010,31(8):1716-1725
    [92]牛得草,董晓,玉傅华.长芒草不同季节碳氮磷生态化学计量特征.草业科学,2011,28(6):915-920
    [93]吴统贵,吴明,刘丽,等.杭州湾滨海湿地3种草本植物叶片N, P化学计量学的季节变化.植物生态学报,2010,34(1):23-28
    [94] gren, G.I.Stoichiometry and nutrition of plant growth in natural communities.Annual Review ofEcology, Evolution, and Systematics,2008,39:153-170
    [95]李征,韩琳,刘玉虹,等.滨海盐地碱蓬不同生长阶段叶片C, N, P化学计量特征.植物生态学报,2012,36(10):1054-1061
    [96]荣戗戗,刘京涛,夏江宝,等.莱州湾湿地柽柳叶片N, P生态化学计量学特征.生态学杂志,2012,31(12):3032-3037
    [97] He, J.-S., X. Wang, B. Schmid, et al.Taxonomic identity, phylogeny, climate and soil fertility as driversof leaf traits across Chinese grassland biomes.Journal of plant research,2010,123(4):551-561
    [98]张业,任一星,姚婧,等.华北地区油松林主要乔木物种叶片氮磷化学计量特征.安徽农业大学学报,2012,39(002):247-251
    [99]栗忠飞,刘文胜,张彬,等.西双版纳热带雨林幼树C, N, P的生态化学计量比对海拔变化的响应.中南林业科技大学学报,2012,32(5):80-85
    [100]王维奇,王纯,曾从盛,等.闽江河口不同河段芦苇湿地土壤碳氮磷生态化学计量学特征.生态学报,2012,32(13):4087-4093
    [101]刘佳庆,孟莹莹,包也,等.长白山林线植物岳桦和牛皮杜鹃养分化学计量特征及其影响因子.生态学杂志,2013,32(12):3117-3124
    [102]欧阳林梅,王纯,王维奇,等.互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征.生态学报,2013,33(2):389-394
    [103]刘旻霞.高寒草甸坡向梯度上植物群落组成及其氮磷化学计量学特征的研究.兰州大学,2013.
    [104] Throop, H.L.Nitrogen deposition and herbivory affect biomass production and allocation in an annualplant.Oikos,2005,111(1):91-100
    [105] Elser, J.J., T. Andersen, J.S. Baron, et al.Shifts in lake N: P stoichiometry and nutrient limitationdriven by atmospheric nitrogen deposition.Science,2009,326(5954):835-837
    [106]胡小飞,陈伏生,胡岸峰,等.氮磷添加对麦冬根部养分浓度及其化学计量比的影响.热带亚热带植物学报,2007,15(5):377-382
    [107]羊留冬,王根绪,杨阳,等.峨眉冷杉幼苗叶片功能特征及其N, P化学计量比对模拟大气氮沉降的响应.生态学杂志,2012,31(001):44-50
    [108]黄菊莹,赖荣生,余海龙,等.N添加对宁夏荒漠草原植物和土壤C∶ N∶ P生态化学计量特征的影响.生态学杂志,2013,32(11):2850-2856
    [109]黄菊莹,余海龙,陈卫民.四翅滨藜叶片C, N, P生态化学计量特征对N添加的响应.西北植物学报,2013,33(7):1421-1426
    [110] McClaugherty, C.A., J. Pastor, J.D. Aber, et al.Forest litter decomposition in relation to soil nitrogendynamics and litter quality.Ecology,1985:266-275
    [111]宋新章,江洪,张慧玲,等.全球环境变化对森林凋落物分解的影响.生态学报,2008,28(9):4414-4423
    [112] Wardle, D.A.,L.R. WalkerR.D. Bardgett.Ecosystem properties and forest decline in contrastinglong-term chronosequences.Science,2004,305(5683):509-513
    [113]赵天宏,史奕,黄国宏.CO2和O3浓度倍增及其交互作用对大豆叶绿体超微结构的影响.应用生态学报,2004,14(12):2229-2232
    [114] Taub, D.R.X. Wang.Why are nitrogen concentrations in plant tissues lower under elevated CO2? Acritical examination of the hypotheses.Journal of Integrative Plant Biology,2008,50(11):1365-1374
    [115]王建林,温学发.气孔导度对CO2浓度变化的模拟及其生理机制.生态学报,2010,30(17):4815-4820
    [116]周玉梅,韩士杰,郑俊强,等.CO2浓度升高对森林土壤微生物呼吸与根(际)呼吸的影响.植物生态学报,2007,31(3):386-393
    [117]庞静,朱建国,谢祖彬,等.开放式空气二氧化碳浓度增高(FACE)条件下水稻的根系活力和氮同化能力.应用生态学报,2005,16(8):1482-1486
    [118]李伏生,康绍忠.不同氮和水分条件下CO2浓度升高对小麦碳氮比和碳磷比的影响.植物生态学报,2002,26(3):295-302
    [119] Zhang, L.-X.,Y.-F. BaiX.-G. Han.Differential responses of N: P stoichiometry of Leymuschinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol.ActaBotanica Sinica,2004,46(3):259-270
    [120]严正兵,金南瑛,韩廷申,等.氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响.植物生态学报,2013,37(6):551-557
    [121]朴河春,刘丛强,朱书法,等.贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响.第四纪研究,2005,25(5):552-560
    [122] Gorokhova, E.M. Kyle.Analysis of nucleic acids in Daphnia: development of methods and ontogeneticvariations in RNA-DNA content.Journal of Plankton Research,2002,24(5):511-522
    [123]顾大形,陈双林,黄玉清.土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响.植物生态学报,2011,35(12):1219-1225
    [124]郭子武,虞敏之,郑连喜,等.长期施用不同肥料对红哺鸡竹林叶片碳,氮,磷化学计量特征的影响.生态学杂志,2011,30(012):2667-2671
    [125]刘亚迪,范少辉,蔡春菊,等.地表覆盖栽培对雷竹林凋落物养分及其化学计量特征的影响.生态学报,2012,32(22):6955-6963
    [126]郭子武,陈双林,杨清平,等.雷竹林土壤和叶片N, P化学计量特征对林地覆盖的响应.生态学报,2012,32(20):6361-6368
    [127]刘广路,范少辉,郭宝华,等.经营时间梯度上的毛竹林碳氮动态特征.自然资源学报,2013,28(11):1955-1965
    [128]郭子武,陈双林,杨清平,等.密度对四季竹叶片C, N, P化学计量和养分重吸收特征的影响.应用生态学报,2013,24(4):893-899
    [129] Han, W.X., J.Y. Fang, D.L. Guo, et al.Leaf nitrogen and phosphorus stoichiometry across753terrestrial plant species in China.New Phytologist,2005,168(2):377-385
    [130]任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究.环境科学,2007,28(12):1-9
    [131]王冬梅,杨慧敏.4种牧草不同生长期C、N生态化学计量特征.草业科学,2011,28(6):921-925
    [132] gren, G.I.The C:N:P stoichiometry of autotrophs-theory and observations.Ecology Letters,2004,7(3):185-191
    [133] Elser, J.J., W.F. Fagan, R.F. Denno, et al.Nutritional constraints in terrestrial and freshwater foodwebs.Nature,2000,408(6812):578-580
    [134] Elser, J.J., M.E.S. Bracken, E.E. Cleland, et al.Global analysis of nitrogen and phosphorus limitationof primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters,2007,10(12):1135-1142
    [135] Güsewell, S.N:P ratios in terrestrial plants: variation and functional significance.New Phytologi-st,2004,164(2):243-266
    [136] He, J.S., L. Wang, D.F.B. Flynn, et al.Leaf nitrogen: phosphorus stoichiometry across Chinesegrassland biomes.Oecologia,2008,155(2):301-310
    [137] Elser, J.J., K. Acharya, M. Kyle, et al.Growth rate-stoichiometry couplings in diverse biota. EcologyLetters,2003,6(10):936-943
    [138] Treseder, K.K.P.M. Vitousek.Effects of soil nutrient availability on investment in acquisition of N andP in Hawaiian rain forests.Ecology,2001,82(4):946-954
    [139] Chapin, F.S., III,P.A. MstsonH.A. Mooney.Principles of Terrestrial Ecosystem Ecology.NewYork:Springer,2002
    [140]尉秋实,王继和,李昌龙,等.不同生境条件下沙冬青种群分布格局与特征的初步研究.植物生态学报,2006,29(4):591-598
    [141]严雪,于丹关,李永科.CO2浓度升高对沉水克隆植物生长速率及营养元素积累的影响.植物生态学报,2003,27(4):435-440
    [142] Kenzo, T., R. Yoneda, Y. Matsumoto, et al.Growth and photosynthetic response of fourMalaysian indigenous tree species under different light conditions.Journal of Tropical ForestScience,2011,23(3)
    [143]王振南,杨惠敏.植物碳氮磷生态化学计量对非生物因子的响应.草业科学,2013,30(06):927-934
    [144] Cui, Q., X.-T. Lü, Q.-B. Wang, et al.Nitrogen fertilization and fire act independently on foliarstoichiometry in a temperate steppe.Plant and soil,2010,334(1-2):209-219
    [145] Kozovits, A., M. Bustamante, C. Garofalo, et al.Nutrient resorption and patterns of litter productionand decomposition in a Neotropical Savanna.Functional Ecology,2007,21(6):1034-1043
    [146]袁伟,董元华,王辉.氨基酸态氮和硝态氮混合营养下番茄生长及其生态化学计量学特征土壤,2010,42(4):664-668
    [147]宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收,光合作用及生长的影响.植物学通报,2007,24(4):477-483
    [148]项文华,田大伦,项文化.第2代杉木林速生阶段营养元素的空间分布特征和生物循环.林业科学,2002(2):2-8
    [149]田大伦,项文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征.生态学报,2004(10):2207-2210
    [150]夏尚光,梁淑英.森林生态系统养分循环的研究进展.安徽林业科技,2009(3):1-6
    [151]李跃林,李志辉,谢耀坚.巨尾桉人工林养分循环研究.生态学报,2001,21(10):1734-1740
    [152]刘茜,项文化,蔡宝玉,等.湿地松人工林养分循环及密度关系的研究.林业科学,1998,34(3):11-17
    [153]樊瑞怀,杨水平,周志春,等.氮素营养对马褂木家系苗木生长效应分析.林业科学研究,2009,22(1):85-90
    [154] Vitousek, P., S. H ttenschwiler, L. Olander, et al.Nitrogen and nature.AMBIO: A Journal of theHuman Environment,2002,31(2):97-101
    [155]黄建国.植物营养学.北京:中国林业出版社,2004
    [156] H ttenschwiler, S., S. Coq, S. Barantal, et al.Leaf traits and decomposition in tropical rainforests:revisiting some commonly held views and towards a new hypothesis.New Phytologist,2011,189(4):950-965
    [157] Kang, H., H. Zhuang, L. Wu, et al.Variation in leaf nitrogen and phosphorus stoichiometry in Piceaabies across Europe: An analysis based on local observations.Forest ecology and management,2011,261(2):195-202
    [158]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [159]李振基,林鹏.闽南毛竹林几种元素的累积和分配.应用生态学报,1995,6(9):13
    [160]潘贤强.毛竹叶片衰老过程碳氮元素及灰分含量的季节动态.福建林业科技,2012,38(4):38-40
    [161]刘广路.毛竹林长期生产力保持机制研究.北京:中国林业科学研究院,2009
    [162]肖复明.毛竹林生态系统碳平衡特征的研究.中国林业科学研究院,2007
    [163]刘显旋,邓毓芳,张美琼.毛竹无机养分的研究.中南林学院学报,1983,3(1):61-67
    [164]杜满义.不同类型毛竹林碳库特征研究.中国林业科学研究院,2010
    [165]郭晓敏,牛德奎,范方礼,等.平衡施肥毛竹林叶片营养与土壤肥力及产量的回归分析.林业科学,2007,43(增刊1):53-57
    [166]蒋俊明,刘大雷,范少辉,等.川南毛竹林生态系统养分动态分析.南京林业大学学报:自然科学版,2010,34(2):31-36
    [167]黄伯惠.毛竹矿质营养元素动态的研究.竹子研究汇刊,1983,2(1):87-111
    [168]吴家森,周国模,钱新标,等.不同经营类型毛竹林营养元素的空间分布.浙江林学院学报,2005,22(5):486-489
    [169]庄明浩,李迎春,郭子武,等.CO2浓度升高对毛竹和四季竹叶片主要养分化学计量特征的影响.植物营养与肥料学报,2012,19(1):248-254
    [170]胡炳堂,洪顺山.毛竹施用硅肥的效应研究.林业科学研究,1990,3(4):368-374
    [171]洪顺山,胡炳堂,江业根.毛竹营养诊断的研究.林业科学研究,1989,2(1):15-24
    [172]南京林产工业学院竹类研究室.竹林培育.农业出版社,1974
    [173]黄承标,尹华田,王凌晖,等.毛竹林不同经营管理措施对土壤理化性质的影响.竹子研究汇刊,2010(3):35-41
    [174]黄作舟.闽南不同类型毛竹林地土壤分析.河北林业科技,2011(2):18-20
    [175]余奕然.杉木毛竹混交林土壤理化性状研究.福建林业科技,2011,38(3):74-77
    [176]郑郁善,陈礼光,洪伟.毛竹杉木混交林生产力和土壤性状研究.林业科学,1998,34(专刊1):16-25
    [177]郑兆飞.EM有机生物肥对毛竹林地土壤性质的影响.竹子研究汇刊,2008,27(2):38-41
    [178]王洪帆.毛竹纯林留养阔叶树后土壤理化性质的研究.安徽农业通报,2008,14(17):1170-173
    [179]林振清.不同海拔毛竹林土壤养分及碳储量的研究.竹子研究汇刊,2013,32(2):32-36
    [180]张昌顺,范少辉,漆良华,等.闽北典型毛竹林土壤微团聚体分形特征研究.水土保持学报,2009,22(6):170-175
    [181]黄启堂,陈爱玲,贺军.不同毛竹林林地土壤理化性质特征比较.福建林学院学报,2006,26(4):299-302
    [182]严晨.不同抚育方式对毛竹林土壤化学性质的影响.世界竹藤通讯,2009,7(2):32-34
    [183]游巍斌,刘勇生,何东进,等.武夷山风景名胜区不同天然林凋落物分解特征.四川农业大学学报,2010,28(2):141-147
    [184]徐涵湄,丁九敏,刘胜,等.雪灾对武夷山毛竹林凋落物分解动态的影响.南京林业大学学报:自然科学版,2010,34(3):131-135
    [185]符树根,黄宝祥,沈彩周,等.毛竹专用肥试验研究.江西林业科技,2006(1):10-12
    [186]张勇江,鲁顺保,汪峻,等.施肥对毛竹林地土壤养分和地上生物量的影响.江西农业大学学报,2011,33(3):542-547
    [187]赵超,王兵,戴伟,等.不同海拔毛竹土壤酶活性与土壤理化性质关系的研究.河北林果研究,2010,25(1):1-6
    [188]杜满义,范少辉,刘广路,等.土地利用方式转变对赣中地区土壤活性有机碳的影响.应用生态学报,2013,24(10):2897-2904
    [189]赵永艳,苏继申.竹阔混交林土壤性状与分析.南京林业大学学报(自然科学版),2007,31(1):81-84
    [190]漆良华,孟勇,岳祥华,等.湘中丘陵区不同经营目标对毛竹林土壤养分库的影响.华中农业大学学报,2012,31(5):584-588
    [191]冯博杰,金爱武,王宗星.龙游和衢江二地毛竹林土壤养分状况与分区推荐施肥研究.浙江林业科技,2013,33(1):12-16
    [192]夏根清,李国栋,周燕,等.不同人工经营毛竹林土壤理化性质变化.竹子研究汇刊,2012,31(3):38-43
    [193]孙棣棣,徐秋芳,田甜,等.不同栽培历史毛竹林土壤微生物生物量及群落组成变化.林业科学,2011,47(7):181-186
    [194]周航,黎青,杨文叶,等.有机肥配施化肥对毛竹产量和土壤养分的影响.安徽农业科学,2012,40(4):2108-2109
    [195]徐秋芳,张许昌,王绪南,等.毛竹林与马尾松林土壤生物学性质及微生物功能多样性比较.浙江林业科技,2008,28(3):8-12
    [196]吴家森,姜培坤,王祖良.天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响.江西农业大学学报,2008,30(4):689-692
    [197]徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究.水土保持学报,2004,18(6):84-87
    [198]赵洋毅,王玉杰,王云琦,等.渝北不同模式水源涵养林植物多样性及其与土壤特征的关系.生态环境学报,2009,18(6):2260-2266
    [199]余林.皖南毛竹林密度效应研究.北京:中国林业科学研究院,2011
    [200]许新健,俞新妥,陈金耀.武夷山主要杉木伴生树种落叶分解速率的研究.南京林业大学学报:自然科学版,1995,19(2):13-18
    [201]王兵,王燕,郭浩,等.江西大岗山毛竹林碳贮量及其分配特征.北京林业大学学报,2009,31(6):39-42
    [202]漆良华,蒋俊明,唐森强,等.川南山丘区典型退耕竹林凋落物产量动态与养分归还.林业科学,2013,49(10):17-22
    [203]刘应芳,黄从德,陈其兵.蜀南竹海风景区毛竹林生态系统碳储量及其空间分配特征.四川农业大学学报,2010,28(2):136-140
    [204]王阳,章明奎.不同类型林地土壤颗粒态有机碳和黑碳的分布特征.浙江大学学报:农业与生命科学版,2011,37(2):193-202
    [205]卢东琪,张勇,刘东晓,等.太湖流域上游西苕溪源头溪流中毛竹,石栎和山胡椒落叶分解比较.湖泊科学,2012,24(3):371-377
    [206]曹群根,傅懋毅,李正才.毛竹林凋落叶分解失重及养分累积归还模式.林业科学研究,1997,10(3):303-308
    [207] Garnier, E.Interspecific variation in plasticity of grasses in response to nitrogen supply.Populationbiology of grasses,1998:155-181
    [208] Chen, F.-S.,K.J. NiklasD.-H. Zeng.Important foliar traits depend on species-grouping: analysis of aremnant temperate forest at the Keerqin Sandy Lands, China.Plant and soil,2011,340(1-2):337-345
    [209]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740
    [210]方精云,朴世龙赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594-602
    [211]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究,2002,21(5):551-560
    [212]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报,2005,16(12):2248-2252
    [213]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律.中南林学院学报,2005,25(1):4-8
    [214]任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究.环境科学,2007,28(12):2665-2673
    [215]赵红洋,李玉霖,王新源,等.科尔沁沙地52种植物叶片性状变异特征研究.中国沙漠,2010,30(6):1292-1298
    [216]郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局.自然科学进展,2006,16(8):965-973
    [217] Lu, Y., B. Duan, X. Zhang, et al.Differences in growth and physiological traits of Populus cathayanapopulations as affected by enhanced UV-B radiation and exogenous ABA.Environmental andexperimental botany,2009,66(1):100-109
    [218]李从娟,雷加强,徐新文,等.塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征.生态学报,2013,33(18):5760-5767
    [219]林志斌,严平勇,杨智杰,等.福建万木林101种常见木本植物叶片N, P化学计量学特征.亚热带资源与环境学报,2011,6(1):32-38
    [220]赵明松,张甘霖,李德成,等.江苏省土壤有机质变异及其主要影响因素.生态学报,2013,33(16):5058-5066
    [221]唐国勇,李昆,孙永玉,等.干热河谷不同利用方式下土壤活性有机碳含量及其分配特征.环境科学,2010,31(5):1365-1371
    [222]白军红,邓伟,朱颜明,等.霍林河流域湿地土壤碳氮空间分布特征及生态效应.应用生态学报,2003,14(9):1494-1498
    [223]刘跃建,李强,马明东.四川西北部主要森林植被类型土壤养分库比较研究.水土保持学报,2010,24(5):146-152
    [224]李明锐,沙丽清.西双版纳不同土地利用方式下土壤氮矿化作用研究.应用生态学报,2005,16(1):54-58
    [225]刘文杰,陈生云,胡凤祖,等.疏勒河上游土壤磷和钾的分布及其影响因素.生态学报,2012,32(17):5429-5437
    [226]赵琼,曾德慧.陆地生态系统磷素循环及其影响因素.植物生态学报,2005,29(1):153-163
    [227] Lü, X.-T., D.-L. Kong, Q.-M. Pan, et al.Nitrogen and water availability interact to affect leafstoichiometry in a semi-arid grassland.Oecologia,2012,168(2):301-310
    [228] Aerts, R.F. Chapin III.The mineral nutrition of wild plants revisited.Advances in ecological research,2000,30:1-67
    [229] Liu, C., B. Berg, W. Kutsch, et al.Leaf litter nitrogen concentration as related to climatic factors inEurasian forests.Global Ecology and Biogeography,2006,15(5):438-444
    [230] Lambers, H., J.A. Raven, G.R. Shaver, et al.Plant nutrient-acquisition strategies change with soilage.Trends in Ecology&Evolution,2008,23(2):95-103
    [231]陈莎莎,刘鸿雁,郭大立.内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局.植物生态学报,2010,34(9):1007-1015
    [232]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展.林业科学,2006,42(4):94-100
    [233]黄锦学,黄李梅,林智超,等.中国森林凋落物分解速率影响因素分析.亚热带资源与环境学报,2010,5(003):56-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700