用户名: 密码: 验证码:
城市化背景下青岛城市森林植被多样性格局成因及其维持
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速城市化进程对植被的物种多样性、群落类型及结构、分布格局乃至于种群更新和群落演替都会产生重要影响。自1992年以来,青岛经历了快速而激烈的城市化变迁,其特殊的地形地貌造就了青岛独特的城市发展模式,并保存了相对完好的残存自然植被。本论文在对青岛城市空间扩展历程和土地利用现状进行总结和分析的基础上,定量化地划分了城乡梯度,并据此重点探究了城乡梯度上青岛城市森林植被多样性格局及其主要影响因素,构建了青岛城市森林植被分类体系,对青岛城市森林群落的成因及其动态发展进行了分析;同时以片段化的残存丘陵森林为对象,探讨了城市自然生境岛屿化对物种多样性的影响,以期为青岛“森林城市”和园林绿化建设提供理论支撑和科学依据。主要结论如下:
     (1)青岛城市空间扩展模式大致分为两个阶段:1992年以前的轴向带状扩展模式和1992年至今的多中心、飞地式扩展模式。对2009年遥感影像的土地利用类型分析表明:下垫面不透水率大于90%的区域与百年前最早城市化的区域一致;不透水率介于70%至90%的区域为老城区外延和新城区中心地带;不透水率介于40%至70%的区域为新城区外延;不透水率低于40%的区域为丘陵林地和包含农田的村镇。据此,青岛城乡梯度可被划分为高密度城区、中密度城区、低密度城区和非城市区域。
     (2)以丘陵、公园和道路3种绿地为对象,分别在城乡梯度上进行样线调查,共设置336个样方,记录木本植物52科111属189种。参考样方聚类分析结果,在56%水平上划分出51个群落类型;依据群落的生活型组成、建群种亲缘性和优势种组成,建立植被型组-群系组-群系3级分类等级,并结合群落的起源性质(残存自然林和人工林),构建了青岛城市森林植被分类体系:其中残存自然林中包括1个植被型组、2个群系组、3个群系,人工林包括4个植被型组、15个群系组、50个群系。
     (3)沿城乡梯度,丘陵、公园和道路绿地在物种丰富度和个体密度上呈现不同变化格局。公园绿地在城乡梯度上无显著的丰富度和个体密度变化。在丘陵和道路绿地中,乡土物种的丰富度和个体密度由高密度城区至非城市区逐渐增加;外来物种的丰富度则逐渐降低,但个体密度无显著变化。由于丘陵绿地的乡土物种增加趋势强于外来物种减少趋势,总体上其物种丰富度和个体密度呈增加趋势;而道路绿地的乡土物种增加趋势和外来物种减少趋势接近,总体上无显著变化。
     (4)选取自然环境、群落结构和人为活动3大类16个因子对群落的物种丰富度和物种组成进行了分析,乡土物种的丰富度在丘陵和公园绿地中均受3类因素影响,其中人为干扰影响最大;在道路绿地中主要由群落结构决定,且不受自然环境影响。外来物种的丰富度在丘陵绿地中仅由人为活动因素决定,在其他两类绿地中则由自然环境和群落结构决定。此外,随人为管控强度增加,在丘陵-公园-道路中,乡土物种受3类因素的影响逐渐降低,而外来物种逐渐增加。3类因子对群落物种组成的总体解释率很低,其中人为干扰的影响最大。
     (5)以逆-J字型、L型、间歇(多峰)型、单峰型和单柱型为五种基本更新格局,分别对51个群落的主要物种进行种群结构分析,依据各类更新格局出现频次的分布,判定每一乔木树种的更新潜力,进而对各群落的短期发展趋势进行预判,并最终将各群落归纳为自我维持型群落、干扰依赖维持型群落、自优势种替代型群落和侵入优势种替代型群落四种类型。
     (6)群落的林下更新层幼苗的丰富度和密度主要取决于群落结构和人为活动两种因素;前者中上木层个体密度的影响最大,表明了种源对幼苗更新的重要贡献;后者中人为干扰强度影响较大,表明了森林管理和利用的方式、频度及强度对幼苗更新的抑制作用。此外,残存自然林中乡土种的幼苗丰富度受3类因子的影响较人工林中的大;外来物种则相反。这与残存自然林乡土种种源丰富、人工林外来种种源丰富有关。
     (7)以片段化残存森林斑块为对象,采用斑块面积、距离种源(崂山)远近、斑块隔离度和人为干扰强度4个影响因子,通过CCA分析量化影响因子与物种组成的关系,赋予各影响因子权重,形成岛屿化综合指数,进而探讨其与物种丰富度的关系。结果表明,城市中片段化森林斑块的物种丰富度与岛屿化综合指数的关系随着种类性质的变化而不同。乡土物种丰富度与岛屿化综合指数有显著关系,但外来物种无此关系;鸟类传播和风力传播物种的丰富度与岛屿化综合指数关系有显著关系,而重力传播物种无此关系;除常绿物种、灌木物种和针叶物种外,其他生活型的物种丰富度与岛屿化综合指数均以对数函数拟合效果最佳。这表明,城市化带来的片段化效应对位于暖温带落叶阔叶林区的青岛森林植被所产生的负面影响,集中体现在散播能力强的落叶阔叶乔木乡土物种上。
The rapid urbanization process has a significant impact on species diversity and distribution, community types and structure, even population regeneration and community succession. Since1992, Qingdao has experienced rapid and intense urbanization, and formed a special urban space expansion mode while the remaining natural vegetation is preserved well on hills in urban area. This study summarized the urban development process and analyzed the status of land use of Qingdao, according to which the urban-rural gradients were divided, built a vegetation classification system for Qingdao urban forests, and analyzed the community assemblage rules and dynamics of Qingdao urban forests. Moreover, fragmentation effects on species diversity were studied on remaining natural forests in hills scattered in urban region. We hope this study can provide the theoretical support and scientific basis for "Qingdao Forest City" and landscaping construction. The main conclusions are as follows:
     (1) Generally, Qingdao urban space expansion mode was divided into two phases: axial belt expansion mode before1992and multi-center expansion mode after1992. The land use type analysis based on2009remote sensing image showed that, the regions where impervious land percentage greater than90%are consistent with the earliest urbanized area before a century; the regions where impervious land percentage between70%and90%are the extension of old urban area and new urban centers; the regions where impervious land percentage between40%and70%are the extension of new urban area; the regions where impervious land percentage lower than40%are hill forests and farm land in villages and towns. According to these, urban-rural gradients were divided into high-density urban areas, medium-density urban areas, low-density urban areas and non-urban areas, in Qingdao.
     (2) Three transects were established along urban-rural gradients for urban forests in hills (HF), parks (PF) and aside roads(RF), respectively. The surveys showed that 111genera,52families,189species of woody plants were recorded in336plots, totally. In56%level,51community types were divided based on clustering analysis. We established a four-level vegetation classification system for Qingdao urban forest. In the first level, urban forests were divided into two groups:remain natural forests and plantations. In the second level, both of two groups were classified into vegetation type groups by life form composition. In the third level, all vegetation type groups were classified into formation groups by constructive species' affinity. Finally, all formation groups were classified into formations by dominant species. In summary, there were one vegetation type group, two formation groups and three formations for the remaining natural forests and four vegetation type groups, fifteen formation groups and fifty formations for plantations.
     (3) Species richness and individual density along urban-rural gradients were different among HF, PF and RF. In PF, there were no significant variations for both richness and individual density. In HF and RF, from high-density urban areas to non-urban areas, it showed an increasing tendency in richness and individual density for native species, but decreased tendency in richness for alien species with consistent individual density. Because the increasing rate of native species was greater than the decreasing rate of alien species in HF, it showed an increasing trend of species richness and individual density, totally. In contrast, there was no significant variation in RF due to the similar relative variation rates between the increasing trend of native species and decreasing trend of alien species.
     (4) Multiple regression and canonical correspondence analysis (CCA) were used to determine the effects on species richness and species composition, by using sixteen influencing factors that divided into three types:natural environment (NEFs), community structure (CSFs) and human activities (HAFs). Native species richness was influenced by all three types factors in which HAFs was the most important for both of HF and PF, and was only determined by CSFs for RF. Alien species richness was determined by HAFs in HF and determined by NEFs&CSFs in PF and RF. In addition, the explanations of variation of native species richness decreased along HF-PF-RF with increased human management intensity. Inversely, the explanations of variation of alien species richness increased. All factors had little contribution on explaining the community species composition according to CCA analysis, in which human disturbance intensity was the most effective factor.
     (5) Population size-structure was analyzed for main species in51communities and classified into five basic regeneration patterns:reverse-J type, L-type, sporadic type, unimodal type and unibar type. According to frequency in five basic regeneration patterns, regeneration potential of each species was determined, and then the short-term dynamics of communities were predicted, based on which communities were summarized into four groups:self-sustaining community, disturbance-dependent sustaining community, coexist species dominance replacing community and post-colonized species dominant community.
     (6) For seedlings, richness and individual density mainly depends on CSFs and HAFs. Density of individual taller than1.5m was the greatest influencing factor in the former, which suggested a significant contribution of seed production on seedling recruitment. Human disturbance intensity was the greatest influencing factor in the latter, which suggested forest management and utilization had negative effects on seedling recruitment. In addition, the explanations of variation of seedling richness decreased for native species but increased for alien species, along remain natural forests-plantations with increased human management intensity, which could be explained by higher native species richness in HF and higher alien species richness in RF.
     (7) To explore the effects of habitat fragment on remnant natural forests, CCA was used to analysis the relationship between species composition (present-absence data) and four factors:area, distance to species pool, human disturbance intensity and the isolation degree. The length of vector in CCA biplot was used as weights for each influencing factor, to calculate the sum, named isolated island index (Ⅲ). Then, the relationships between III and species richness were simulated by linear model, logarithmic curve, power curve and S curve. The results indicated that relationship between III and richness was significant negative for native species, but not significant for alien species richness, and relationship between III and richness was significant negative for bird dispersal species and wind dispersal species, but not significant for gravity dispersal species. Moreover, logarithmic curve was the best simulating model for any life form group, except for evergreen broadleaved species, shrub species and coniferous species which cannot be simulated by all four models. All those results indicated that the negative fragmentation impact on Qingdao urban forest which belongs to warm temperate deciduous broad-leaved forest region was mainly embodied in tree native deciduous broad-leaved species with great dispersal ability.
引文
[1]Abe M, Izaki J, Miguchi H, et al. The effects of Sasa and canopy gap formation on tree regeneration in an old beech forest [J]. Journal of Vegetation Science,2002,13(4): 565-574.
    [2]Aguilar RL, Ashworth LG, Aizen MA. Plant reproductive susceptibility to habitat fragmentation:review and synthesis through a meta-analysis [J]. Ecology Letters,2006, 9:968-980.
    [3]Angeler DG, Alvarez-Cobelas M. Island biogeography and landscape structure: Integrating ecological concepts in a landscape perspective of anthropogenic impacts in temporary wetlands [J]. Environmental Pollution,2005,138(3):420-424.
    [4]Bart F, Hans DK, Frank B. Soil nutrient heterogeneity alters competition between two perennial grass species [J]. Ecology,2001,82:2534-2546.
    [5]Berry BJL, Gillard Q. The changing shape of metropolitan America:Commuting patterns, urban fields, and decentralization processes,1960-1970 [M]. Pensacola, FL: Ballinger Publishing Company.1977:13-68.
    [6]Bourne KS, Conway TM The influence of land use type and municipal context on urban tree species diversity [J]. Urban Ecosystems,2014,17:329-348.
    [7]Burton PJ, Bazzaz FA. Ecophysiological response of tree seedling invading different patches of old-field vegetation [J]. Journal of Ecology,1995,83:99-112.
    [8]Byers JE. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes [J]. Oikos,2002,97:449-458.
    [9]Camagni R, Gibelli M C, Rigamonti P. Urban mobility and urban form:The social and environmental costs of different patterns of urban expansion [J]. Ecological Economics, 2002,40(2):199-216.
    [10]Cepelova B, Munzbergova Z. Factors determining the plant species diversity and species composition in a suburban landscape [J]. Landscape and Urban Planning,2012 106(4):336-346.
    [11]Chen XX, Wang WB, Liang H, et al. Dynamics of ruderal species diversity under the rapid urbanization over the past half century in Harbin, Northeast China [J]. Urban Ecosystems,2014, doi:10.1007/s11252-013-0338-8.
    [12]Cilliers SS, Bredenkamp GJ. Vegetation of road verges on an urbanization gradient in Potchefstroom, South Africa [J]. Landscape and Urban Planning,2000,46:217-239.
    [13]Da LJ, Ohsawa M. Abandoned pine-plantation succession and the influence of pine mass-dieback in the urban landscape of Chiba, Central Japan [J]. Japanese Journal of Ecology,1992,42(1):81-93.
    [14]Da LJ, Kang MM, Song K, et al. Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, Eastern China [J]. Ecological Research,2009,24(6):1287-1299.
    [15]Dana ED, Vivas S, Mota JF. Urban vegetation of Almeria City-a contribution to urban ecology in Spain [J]. Landscape and Urban Planning,2002,59:203-216.
    [16]David SW, David R, Jason D, et al. Quantifying threats to imperiled species in the Unite States [J]. BioScience,1998,48(8):607-615.
    [17]Douglas JL, Benjamin MB, Joshua JT. Effects of landscape corridors on seed dispersal by birds [J]. Science,2005(309):146-148.
    [18]El-Ghani MA, Shehata MN, Mobarak A, et al. Factors affecting the diversity and distribution of synanthropic vegetation in urban habitats of the Nile Delta, Egypt [J]. Rendiconti Lincei,2012,23(4):327-337.
    [19]Fei Y, Marvin EB. Mapping impervious surface area using with high resolution imagery: A comparison of object-based and per-Pixel classication [C]. Proceedings of ASPRD Annual Conference Reno, Nevada,2006,85-95.
    [20]Forman RTT. Land mosaics:The ecology of landscape and regions [M]. Cambridge: Cambridge University Press,1995:25-70.
    [21]Gilliam FS, Roberts MR. Interactions between the herbaceous layer and overstory canopy of eastern forests. The Herbaceous Layer in Forests of Eastern North America [M]. Oxford:Oxford University Press,2003:198-223.
    [22]Godefroid S, Monbaliu D, Koedam N. The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels, Belgium [J]. Landscape and Urban Planning,2006,80:45-55.
    [23]Hahs AK, McDonnell MJ, McCarthy MA, et al. A global synthesis of plant extinction rates in urban areas [J]. Ecology Letters,2009,12:1165-1173.
    [24]Hahs AK, McDonnell MJ. Composition of the plant community in remnant patches of grassy woodland along an urban-rural gradient in Melbourne, Australia [J]. Urban Ecosystem,2007,10:355-377.
    [25]Hanski I, Ovaskainen O. Metapopulation theory for fragmented landscapes [J]. Theoretical Populmion Biology,2003,64(1):119-127.
    [26]Hayasaka D, Akasaka M, Miyauchi D, et al. Qualitative variation in roadside weed vegetation along an urban-rural road gradient. [J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2012,207(2):126-132.
    [27]Hector A, Bagchi R. Biodiversity and:ecosystem multifunctionality [J]. Nature,2007, 448(7150):188-190.
    [28]Honnay O, Piessens K, Van Landuyt W, et al. Satellite based land use and landscape complexity indices as predictors for regional plant species diversity [J]. Landscape and Urban Planning,2003,63:241-250.
    [29]Imhoff ML, Zhang P, Wolfe RE. Remcte sensing of the urban heat island effect across biomes in the continental USA [J]. Remote Sensing of Environment,2009,114(3): 504-513.
    [30]Kalmar A, Currie DJ. A global model of island biogeography [J]. Global Ecology and Biogeography,2006,15(1):72-81.
    [31]Kim Nam-choon. Ecological restoration and revegetation works in Korea [J]. Landscape and Ecological Engineering,2005,1(1):77-83.
    [32]Kowarik I. On the role of alien species in urban flora and vegetation. Urban Ecology [M]. Netherlands:Springer US,2008,321-338.
    [33]Kowarik Ⅰ. Some responses of flora and vegetation to urbanization in central Europe. Urban Ecology:Plants and Plant Communities in Urban Environments [M]. Amsterdam: SPB Academic Publishing B.V.,1990:45-74.
    [34]Kiihn Ⅰ, Klotz S. Urbanization and homogenization-comparing the floras of urban and rural areas in Germany [J]. Biological Conservation,2006,127:292-300.
    [35]Laurance WF, Lovejoy TE, Vasconcelos HL, et al. Ecosystem decay of amazonian forest fragments:a 22-year investigation [J]. Conservation Biology,2002,16:605-618.
    [36]Leach MK, Givnish TJ. Gradients in the composition, structure, and diversity of remnant oak savannas in southern Wisconsin [J]. Ecological Monographs,1999,69: 353-379.
    [37]Leorey OM, Nariidac S. A framework for linking urbanform and air quality [J]. Environmental Modelling and Software,1999,14(6):541-548.
    [38]Liang H, Chen XS, Yin JG, et al. The spatial-temporal pattern and influencing factors of negative air ions in urban forests, Shanghai [J]. Journal of Forestry Research,2014, doi: 10.1007/s11676-014-0475-9.
    [39]Liu JG, Diamond J. China's environment in a globalizing world [J]. Nature,2005, 435(30):1179-1186.
    [40]Liu L, Gundersen P, Zhang T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China [J]. Soil Biology and Biochemistry,2012,44(1):31-38.
    [41]Long Q, Wang JY, Da LJ. Assessing the spatial-temporal variations of heavy metals in farmland soil of Shanghai, China [J]. Fresenius Environmental Bulletin,2013,22: 928-938.
    [42]Long X, Chen C, Xu ZH, et al. Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning [J]. Science of the Total Environment,2014,470:578-586.
    [43]Lu JB, Ding LZ, Zhao XZ. Landscape ecological changes of large dams and reservoir in China [J]. Korean Journal of Ecology,2004,27(1):9-13.
    [44]MacArthur RH, Wilson EO. An equilibrium theory of insular zoogeography [J]. Evolution,1963,17:373-397.
    [45]MacArthur RH, Wilson EO. The theory of island biogeography [M]. Princeton: University Press,1967:45-100.
    [46]Machin RR, Pinowski J, Solon J, et al. Changes in vegetation, avifauna, and mammals in a suburban habitat [J]. Polish Ecological Studies,1988,4:293-330.
    [47]Martin D, Chambers J. Restoration of riparian meadows degraded by livestock grazing: above and belowground responses [J]. Plant Ecology,2002,163:77-91.
    [48]Martin JH. Ruderal communities in English cities [J]. Urban Ecology,1980,4:329-338.
    [49]McDonnell MJ, Pickett ST, Groffman P, et al. Ecosystem processes along an urban-to-rural gradient [J]. Urban Ecosystems,1997,1(1):21-36.
    [50]McDonnell MJ, Pickett STA. Ecosystem structure and function along urban-rural gradients:an unexploited opportunity for ecology [J]. Ecology,1990,71(4):1232-1237.
    [51]McIntyre NE. Ecology of urban arthropod:A review and a call to action [J]. Annals of Entomological Society of America,2000,93:825-835.
    [52]McKinney ML. Urbanization as a major cause of biotic homogenization [J]. Biological Conservation,2006,127:247-260.
    [53]Miyawaki A. Restoration of urban green environments based on the theories of vegetation ecology [J]. Ecologieal Engineering,1998,11:157-165.
    [54]Moffatt SF, McLachlan SM, Kenkel NC. Impacts of land use on riparian forest along an urban-rural gradient in southern Manitoba [J]. Plant Ecology,2004,174:119-135.
    [55]Molofsky J, Augspurger CK. The effect of leaf litter on early seedling establishment in a tropical forest [J]. Ecology,1992,73:68-77.
    [56]Murakami K, Maenaka H, Morimoto Y. Factors influencing species diversity of ferns and fern allies in fragmented forest patches in the Kyoto city area [J]. Landscape and Urban Planning,2005,70:221-229.
    [57]Murphy HT, Lovett-Doust J. Context and connectivity in plant metapopulations and landscape mosaics:does the matrix matter? Oikos.2004,105 (1):3-14.
    [58]Nakamura A, Morimoto Y, Mizutani Y. Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan [J]. Landscape and Urban Planning,2005,70:291-300.
    [59]Nielsen AB, Matilda van den B, Maruthaveeran S, et al. Species richness in urban parks and its drivers:A review of empirical evidence [J]. Urban Ecosystems,2014,17(1): 305-327.
    [60]Noguchi M. Yoshida T. Tree regeneration in partially cut conifer-hardwood mixed forests in northernJapan:roles of establishment substrate and dwarf bamboo [J]. Forest Ecology and Management,2004,190:335-344.
    [61]Nowak DJ. Contrasting natural regeneration and tree planting in fourteen North American cities [J]. Urban Forestry and Urban Greening,2012,11(4):374-382.
    [62]Ohsawa M, Da LJ, Otuka T. Urban vegetation-its structure and dynamics. In Obara H (ed.) Integrated Studies in Urban Ecosystems as the Basis of Urban Planning [C]. Tokyo: Ministry of ECS,1988:11-89.
    [63]Ohsawa M. Difference of vegetation zones and species strategies in the subaipine region of Mt.Fuji. [J]. Vegetation,1984,57:15-52.
    [64]Otto R, Garcia-del-Rey E, Mendez J, et al. Effects of thinning on seed rain, regeneration and understory vegetation in a Pinus canariensis plantation (Tenerife, Canary Islands) [J]. Forest Ecology and Management,2012,280:71-81.
    [65]Overdyck E, Clarkson BD, Laughlin DC, et al. Testing broadcast seeding methods to restore urban forests in the presence of seed predators [J]. Restoration Ecology,2013, 21(6):763-769.
    [66]Puerta PC, Brotons L, Coll L, et al. Valuing acorn dispersal and resprouting capacity ecological functions to ensure Mediterranean forest resilience after fire [J]. European Journal of Forest Research,2012,131(3):835-844.
    [67]Ramalho CE, Hobbs RJ. Time for a change:dynamic urban ecology [J]. Trends in Ecology and Evolution,2012,27(3):179-188.
    [68]Ramalho CE, Laliberte E, Poot P, et al. Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot [J]. Ecology, 2014, doi:org/10.1890/13-1239.1.
    [69]Ren WW, Zhong Y, Meligrana J, et al. Urbanization, land use, and water quality in Shanghai 1947-1996 [J]. Environment International,2003,29:649-659.
    [70]Retalis A, Nastos P, Retalis D. Study of small ions concentration in the air above Athens, Greece [J]. Atmospheric Research,2009,91(2):219-228.
    [71]Ridd MK. Exploring V-Ⅰ-S (Vegetation-impervious Surface-soil) Model for urban ecosystem analysis through remote sensing:comparative anatomy for cities [J]. International Journal of Remote Sensing,1995,16:2165-2185.
    [72]Robert LW, George LWP. Climate change, biodiversity and the urban environment:a critical review based on London, UK [J]. Progress in Physical Geography,2006,30: 73-98.
    [73]Rosenzweig M. Species Diversity in Space and Time [M]. Cambridge:Cambridge University Press,1995:79-120.
    [74]Rowntree RA. Urban forest ecology:conceptual points of departure [J]. Journal of Arboriculture,1998,24:62-70.
    [75]Savard JL. Clergeau P, Mennechez G, et al. Biodiversity concepts and urban ecosystems [J]. Landscape and Urban Planning,2000,48(3):131-142.
    [76]Seto KC, Kaufimann RK, Woodcock CE. Landsat reveals China's farmland reserves, but they're vanishing fast [J]. Nature,2000,406:121-122.
    [77]Shimano K. A power function for forest structure and regeneration pattern of pioneer and climax species in patch mosaic forest [J]. Plant Ecology,2000,146:207-220.
    [78]Sikorski P, Szumacher I, Sikorska D, et al. Effects of visitor pressure on understory vegetation in Warsaw forested parks (Poland). Environmental monitoring and assessment,2013,185(7):5823-5836.
    [79]Stone PA. The structure size and costs of urban settlements [M]. Cambridge:Cambridge University Press,1973:20-90.
    [80]Sukopp H. Human-caused impact on preserved vegetation [J]. Landscape and Urban Planning,2004,68:347-355.
    [81]Szwagrzyk J, Szewczyk J, Bodziarczyk J. Dynamics of seedling banks in beech forest: result of a 10-year study on germination, growth and survival [J]. Forest Ecology and Management,2001,141:237-250.
    [82]Triantis KA, Mylonas M, Lika K, et al. A model for the species-area-habitat relationship [J]. Journal of Biogeography,2003,30:19-27.
    [83]Van der Veken S, Verheyen K, Hermy M. Plant species loss in an urban area (Tumhout, Belgium) from 1880 to 1999 and its environmental determinants [J]. Flora,2004,199: 516-523.
    [84]Wang GM, Jiang GM, Zhou YL, et al. Biodiversity conservation in a fast-growing metropolitan area in China:a case study of plant diversity in Beijing [J]. Biodiversity and Conservation,2007,16:4025-4038.
    [85]Wang JY, Da LJ, Song K. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China [J]. Environmental Pollution,2008,152:387-393.
    [86]Wang N, Jiao J, Du HD, et al. The role of local species pool, soil seed bank and seedling pool in natural vegetation restoration on abandoned slope land [J]. Ecological Engineering,2013,52:28-36.
    [87]Wang YQ, Moskovits DK. Tracking fragmentation of natural communities and changes in land cover:Applications of landsat data for conservation in an urban landscape (Chicago wilderness) [J]. Conservation Biology,2001,15(4):835-843.
    [88]Wilcove DS, McLellan CH, Dobson AP. Habitat fragmentation in the temperate zone [J]. Conservation Biology.1986,6:237-256.
    [89]Williamson M. Island population [M]. New York:Oxford University Press,1981:29-70.
    [90]Witting R, Ruvkert E. Die erstellung eines biotop-management plans auf grundlage der aktuellen vegetation [J]. Landschaft Stadt,1985,17(2):73-81.
    [91]Wu X, Zhang Z, Meng XF, et al. Dynamics of diversity, distribution patterns and interspecific associations of understory herbs in the city-suburb-exurb context of Wuhan city, China [J]. Archives of Biological Sciences,2013,65(4):1619-1628.
    [92]Xia TY, Wang JY, Da LJ. Variations in Air Quality during Rapid Urbanization in Shanghai, China [J]. Landscape and Ecological Engineering,2011,123(1):1-13.
    [93]Xian G, Crane M, Su J. An analysis of urban development and its environmental impact on the Tampa Bay watershed [J]. Journal of Environmental Management,2007,85(4): 965-976.
    [94]Xian G, Crane M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data [J]. Remote Sensing of Environment,2006,104(2):147-156.
    [95]Yeo HH, Chong KY, Yee AT, et al. Leaf litter depth as an important factor inhibiting seedling establishment of an exotic palm in tropical secondary forest patches [J]. Biological Invasions,2013,16(2):381-392.
    [96]Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants [J]. Trends in Ecology and Evolution,1996,11(10):413-418.
    [97]Zhang KX, Wang R, Shen CC, et al. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China [J]. Environmental Monitoring and Assessment,2010,169:101-112.
    [98]Zhang M, Zhu J, Li MC, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels [J]. Forest Ecology and Management,2013,306:234-242.
    [99]Zhang Y, Odeh IOA, Han CF. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis [J]. International Journal of Applied Earth Observations and Geoinformation. 2009,11:256-264.
    [100]Zhao SQ, Da LJ, Tang ZY, et al. Ecological consequences of rapid urban expansion: Shanghai, China [J]. Frontiers in Ecology and the Environment,2006,4(7):341-346.
    [101]Zhou LM, Robert ED, Tian YH, et al. Evidence for a significant urbanization effect on climate in China [J]. Proceedings of the National Academy of the Sciences of the United States of America,2004,101(26):9540-9544.
    [102]常云妮,钟全林,程栋梁,等.闽西北地区不同林龄常绿阔叶混交林物种多样性比较[J].生态环境学报,2013,22(6):955-960.
    [103]陈爱莲,陈小勇.片段森林植物多样性及其保护和恢复价值[J].生态学杂志,2005,24(6):691-695.
    [104]陈汉斌.山东植物志[M].青岛:青岛出版社,1997,1-12.
    [105]陈克霞.上海中心城区自然草本群落类型,分布及其季节变化规律研究[D].上海:华东师范大学,2005,10..41.
    [106]陈树培,梁志贤,邓义.深圳市植被的基本特点及其生态评价[J].植物生态学与地植学丛刊,1985,9(2):150-157.
    [107]陈伟峰,达良俊,陈克霞,等.“宫协生态造林法”在上海外环环城林带建设中的应用[J].中国城市林业,2004,2(5):21-23.
    [108]陈小勇,焦静,童鑫.一个通用岛屿生物地理学模型[J].中国科学,2012,41(12):1196-1202.
    [109]陈小勇.生境片断化对植物种群遗传结构的影响及植物遗传多样性保护[J].生态学报2000,20(5):884-892.
    [110]陈倬.青岛植物的景观[J].山东大学学报(理学版),1958,2(4):176-256.
    [111]程积民,万惠娥,雍绍萍,等.干旱环境胁迫下草地水分动态与生产潜力[J].草业科学,2002,19(增刊):341-344.
    [112]崔功豪.都市区规划——地域空间规划的新趋势[J].国外城市规划,2001,5(1):5.
    [113]达良俊,杨永川,陈燕萍.上海大金山岛的自然植物群落多样性研究[J].城市林业,2004a,2(3):22-25.
    [114]达良俊,杨永川,宋永昌,等.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型[J].植物生态学报,2004b,28(3):376-384.
    [115]单刚,王晓原,王凤群.城市交通与城市空间结构演变[J].城市问题,2007,9:37-42.
    [116]丁立仲,徐高福,卢剑波,等.景观破碎化及其对生物多样性的影响[J].江苏林业科技,2006,32(4):45-49.
    [117]丁立仲.千岛湖岛屿化景观及其对植物多样性的影响[D].杭州:浙江大学,2005,10-50.
    [118]方和俊,达良俊,王晨曦.上海又一天然次生林保护区——佘山[J].中国城市林业,2006,4(1):53-56.
    [119]方和俊.上海城市绿地植物群落现状及综合评价研究[D].上海:华东师范大学,2006,1-100.
    [120]方精云,王襄平,沈泽昊,等.植物群落调查的主要内容、方法和技术规范[J].生物多样性,2009,17(6):533-548.
    [121]方修琦,章文波.近百年来北京城市空间扩展与城乡过滤带演变[J].城市规划,2002,26(4):56-60.
    [122]符婵娟,刘艳红,赵本元,等.神农架巴山冷杉群落更新特点及影响因素[J].生态学报,2009,29(8):4179-4186.
    [123]付红军,杨懿琨.游憩践踏对张家界国家森林公园植被的影响研究[J].中南林业科技大学学报(自然科学版),2010,30(8):143-147.
    [124]傅德平,袁月,吕光辉,等.艾比湖湿地植物群落特征与土壤环境关系研究[J].江西农业学报,2008,20(5):106-109.
    [125]高德民,樊守金.山东崂山植被研究[J].山东科学,2002,15(1):23-27.
    [126]高贤明,杜晓军,王申磊,等.北京东灵山区两种生境条件下辽东栎幼苗补充与建立的比较[J].植物生态学报,2003,27(3):404-411.
    [127]高增祥,陈尚,李典谟,等.岛屿生物地理学与集合种群理论的本质与渊源[J].生态学报,2007,27(1):304-313.
    [128]宫胁昭(主编).横滨市植被(日文)[M].横滨市,1972,23-75.
    [129]宫胁昭(主编).藤泽市植被——城市发展过程中的植被变化和城市环境保护及创造的植被学研究(日文)[M].藤泽市,1984,35-90.
    [130]顾朝林,吴莉娅.中国城市化研究主要成果综述[J].城市问题,2008,12:2-12.
    [13 1]管东生.旅游和环境污染对广州城市公园森林植物和土壤的影响[J].中国环境科学,2000,20(3):277-280.
    [132]郭正刚,刘慧霞,孙学刚,等.白龙江上游地区森林植物群落物种多样性的研究 [J].植物生态学报,2003,27(3):388-395.
    [133]韩文娟,袁晓青,张文辉,等.油松人工林林窗对幼苗天然更新的影响[J].应用生态学报,2012,23(11):2943-2951.
    [134]韩兴国.岛屿生物地理学理论与生物多样性保护——生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994:83-103.
    [135]韩旭.青岛市生态系统评价与生态功能分区研究[D].上海:东华大学,2008,38.
    [136]韩有志,王政权.森林更新与空间异质性[J].应用生态学报,2002,5:615-619.
    [137]何流,崔功豪.南京城市空间扩展的特征与机制[J].城市规划汇刊,2000,6:56-60.
    [138]何兴元,金莹杉,朱文泉,等.城市森林生态学的基本理论与研究方法[J].应用生态学报,2002,13(12):1679-1683.
    [139]胡广.生境丧失和片段化对植物物种多样性的多尺度影响[D].杭州:浙江大学,2011,43-51.
    [140]黄荣花.城市化对植物多样性的影响:北海市的研究[J].广西林业科学,2011,40(2):116-120.
    [141]黄兆铭.云浮市城郊生态公益林改造类型及主要造林树种的选择研究[J].热带林业,2005,33(3):35-37.
    [142]黄忠良,孔国辉,何道泉.鼎湖山植物群落多样性的研究[J].生态学报,2000,20(2):193-198.
    [143]蒋高明.城市植被:特点、类型与功能[J].植物学通报,1993,10(3):21-27.
    [144]金则新.浙江天台山七子花种群结构与分布格局研究[J].生态学杂志,1997,16(4):16-20.
    [145]靳润成,刘露.明代以来天津城市空间结构演化的主要特点[J].天津师范大学学报(社会科学版),2010,1:22-26.
    [146]孔祥安,李广海,郑锋先,等.青岛崂山主要植被类型及物种丰富度研究[J].中国农学通报,2009,25(10):241-245.
    [147]李宝华.青岛崂山植被调查报告[J].防护林科技,2004,1:138-140.
    [148]李凤会.天津城市空间结构演化探析[D].天津:天津大学,2007,16-25.
    [149]李俊生,高吉喜,张晓岚,等.城市化对生物多样性的影响研究综述[J].生态学杂志,2005,24(8):953-957.
    [150]李书娟,曾辉.快速城市化地区建设用地沿城市化梯度的扩张特征[J].生态学报,2004,24(1):55-62.
    [151]李小双,彭明春,党承林.植物自然更新研究进展[J].生态学杂志,2007,26(12):2081-088.
    [152]林波,刘庆,吴彦,等.川西亚高山针叶林凋落物对土壤理化性质的影响[J].应用 环境生物学报,2003,9(4):346-351.
    [153]林常青.青岛市城市空间结构演变的研究[D].西安:西安建筑科技大学,2011,10-22.
    [154]、 刘灿然,马克平,于顺利,等.北京东灵山地区植物群落多样性研究——种-面积曲线的拟合与评价[J].植物生态学报,1999(6):490-500.
    [155]刘凤元,李华.乡土植物资源在城市水土保持中的应用[J].水土保持应用技术2008,5:44-45.
    [156]刘家光,韩庆.天津市大港区盐碱地的植被类型及其指示性[J].植物生态学和地植学丛刊,1985,9(2):158-164.
    [157]刘杰,杨志峰,崔保山,等.人为干扰下的生态负效应研究综述[J].生态学杂志,2005,24(11):1317-1322.
    [158]刘敏.青岛历史文化名城价值评价与文化生态保护更新[D].重庆:重庆大学,2003,7-22.
    [159]刘全儒,张潮,康慕谊.小五台山种子植物区系研究[J].植物研究,2004,24(4):499-506.
    [160]刘盛和,吴传钧,沈洪泉.基于GIS的北京城市土地利用扩展模式[J].地理学报,2000,55(4):407-416.
    [161]刘小丽,陈晓双,王伟波,等.城乡梯度上哈尔滨城市杂草分布格局及生境型生态种组划分[J].城市环境与城市生态,2013,26(3):22-25.
    [162]卢剑波,丁立仲,徐高福.千岛湖岛屿化对植物多样性的影响初探[J].应用生态学报,2005,16(9):1672-1676.
    [163]吕浩荣,刘颂颂,朱剑云,等.人为干扰对风水林群落林下木本植物组成和多样性的影响[J].生物多样性,2009,17(5):458-467.
    [164]马姜明,刘世荣,史作民,等.川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子[J].植物生态学报,2009,33(4):646-657.
    [165]马克明,傅伯杰,郭旭东.农业区城市化对植物多样性的影响:遵化的研究[J].应用生态学报,2001,12(6):837-840.
    [166]马莉薇,张文辉,周建云,等.秦岭北坡林窗大小对栓皮栎实生幼苗生长发育的影响[J].林业科学,2013,49(12):43-50.
    [167]梅琳琳,冯树丹,达良俊,等.哈尔滨城市森林自然演替格局研究[J].中国农学通报,2012,28(34):112-118.
    [168]孟宪磊.不透水面,植被,水体与城市热岛关系的多尺度研究[D].上海:华东师范大学,2010,28-52.
    [169]娜日苏.呼和浩特市区自然植物区系及植被初步分析[J].科技与经济,1999,6: 25-26.
    [170]欧晓昆,余梅.昆明的城市自然植被和植物区系[J].云南大学学报(自然科学版),1994,16(3):266-270.
    [171]彭羽,刘雪华,薛达元,等.城市化对本土植物多样性的影响—以廊坊市为例[J].生态学报,2012,32(3):723-729.
    [172]彭羽,刘雪华.城市化对植物多样性影响的研究进展[J].生物多样性,2007,15(5):558-562.
    [173]青岛统计局.青岛统计年鉴[M].北京:中国统计出版社,2012,10-40.
    [174]任海,王俊.试论人工林下乡土树种定居限制问题[J].应用生态学报,2007,18(8):1855-1860.
    [175]任金华,吴绍华,周生路,等.城市不透水面遥感研究进展[J].国土资源遥感,2012,24(4):8-15.
    [176]尚玉昌.普通生态学[M].北京:北京大学出版社,2002:296-325.
    [177]沈烈英.上海城市森林的植被特征与综合评价研究[D].南京:南京林业大学,2008,10-60.
    [178]盛洁,袁圣明.基于健康城市理论的青岛城市化发展战略研究[C].城市规划和科学发展—中国城市规划年会论文集,2009,470-484.
    [179]宋坤,秦俊,高凯,等.上海居住区植物多样性的均质化[J].应用生态学报,2009,20(7):1603-1607.
    [180]宋垚彬,张奇平,达良俊.浙江天童受损常绿阔叶林实验生态学研究(Ⅳ):土壤子库在不同受损常绿阔叶林恢复初期的作用[J].华东师范大学学报(自然科学版),2010(3):1-9.
    [181]宋永昌,由文辉,王祥荣.城市生态学[M].上海:华东师范大学出版社,2000,99-146.
    [182]宋永昌.对中国植被分类系统的认知和建议[J].植物生态学报,2011,35(8):882-892.
    [183]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001,22-200.
    [184]孙雀,卢剑波,张凤凤,等.植物物种多样性与岛屿面积的关系[J].生态学报,2009,29(5):2195-2202.
    [185]汤景明,翟明普.影响天然林树种更新因素的研究进展[J].福建林学院学报,2005,25(4):379-383.
    [186]汤雨宁,刘明国,殷有,等.朝阳地区油松天然更新规律初探[J].辽宁林业科技,2007(4):41-43.
    [187]唐志尧,乔秀娟,方精云.生物群落的种—面积关系[J].生物多样性,2009,17(6): 549-559.
    [188]田志慧,蔡北溟,达良俊.城市化进程中上海植被的多样性,空间格局和动态响应(Ⅷ):上海乡土陆生草本植物分布特征及其在城市绿化中的应用前景[J].华东师范大学学报(自然科学版),2011,24-34.
    [189]田志慧.上海城乡陆生生态系统杂草群落[D].上海:华东师范大学,2011,10.-41.
    [190]汪军英,达良俊,宋坤.上海快速城市化过程中地表水质的空间与年际变迁[J].南京大学学报(自然科学),2007(5),43:125-134.
    [191]汪军英,张凯旋,达良俊.河口城市化进程中城市环境的时空变迁——快速城市化过程中城市环境的时空格局.陈吉余主编.21世纪的长江河口初探[M].北京:海洋出版社,2009,185-201.
    [192]汪军英.上海城市快速化进程中地表水、大气、土壤环境质量的时空变迁研究[D].上海:华东师范大学,2006,20-56.
    [193]王伯荪.城市植被与城市植被学[J].中山大学学报(自然科学版),1998,37(4):9-12.
    [194]王伯荪.植物群落学[M].北京:高等教育出版社,1987,10-50.
    [195]王晨曦,王娟,李艳艳,等.城市化进程中上海植被的多样性,空间格局和动态响应(Ⅰ):上海余山地区残存自然植被种子植物区系及其50年的动态变化特征[J].华东师范大学学报(自然科学版),2008,4:31-39.
    [196]王晨曦.人为干扰下上海佘山地区植被研究[D].上海:华东师范大学,2008,1-61.
    [197]王承义,徐起,何林荣.人工林天然更新过程的干扰效应与人为干扰方式[J].林业科技,2000,5:1-3.
    [198]王春叶,李德志,袁月,等.千岛湖区破碎化生境景观的归一化植被指数特征分析[J].东北林业大学学报,2012,5:98-101.
    [199]王宏伟.中国城市增长的空间组织模式研究[J].城市发展研究,2004,11(1):28-31.
    [200]王健.天津与巴黎城市空间形态的比较分析[J].天津大学学报(社会科学版),2010,12(5):428--432.
    [201]王娟.上海中心城区人工植被自然恢复潜力研究[D].上海:华东师范大学,2009,14-20.
    [202]王军,姚海元,麦俊伟,等.广州长岗山森林凋落物土壤动物群落结构及季节变化.生态学杂志,2008,27(3):408-413.
    [203]王良健.旅游可持续发展评价指标体系及评价方法研究[J].旅游学刊,2001,16(1):67-70.
    [204]王娜,郝清玉.森林天然更新影响因子研究进展[J].广东农业科学,2012,39(6):67-70.
    [205]王仁卿.山东森林植被恢复的生态学研究[D].济南:山东大学,2005,125-135.
    [206]王世雄,王孝安,李国庆,等.陕西子午岭植物群落演替过程中物种多样性变化与环境解释[J].生态学报,2010,30(6):1638-1647.
    [207]王希明,迟仁平.青岛地区受威胁的鸟类及其保护[J].山东林业科技,2001,6:15-18.
    [208]王应刚,李建梅,李淑兰,等.人为干扰对城市地区植物多样性的影响[J].生态学杂志,2004,23(2):102-104.
    [209]王雨朦,高明,董希斌.大兴安岭火烧迹地改造后土壤化学性质研究[J].森林工程,2013,1:21-25.
    [210]魏广君,董伟.大连城市空间发展模式及内涵研究[J].华中建筑,201 1,12:77-79.
    [211]吴敏,张文辉,周建云,等.不同分布区栓皮栎实生苗更新及其影响因子[J].应用生态学报,2013,24(8):2106-2114.
    [212]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991,13(增刊):1-13.
    [213]谢帆,王素珍.井冈山区森林更新和森林群落的演替[J].江西师范大学学报(自然科学版),1990,14(4):79-87.
    [214]熊宽.基于GIS和历史地形图的青岛城市空间形态演变研究[D].天津:天津大学,2008,16-25.
    [215]徐涵秋.城市不透水面与相关城市生态要素关系的定量分析[J].生态学报,2009,29(5):2456-2462.
    [216]徐文铎,何兴元,陈玮,等.沈阳市区植物区系与植被类型的研究[J].应用生态学报,2004,14(12):2095-2102.
    [217]徐振邦,代力民,陈吉泉,等.长白山红松阔叶混交林森林天然更新条件的研究[J].生态学报,2001,21(9):1413-1420.
    [218]闫梅,黄金川.国内外城市空间扩展研究评析[J].地理科学进展,2013,32(7):1039-1049.
    [219]杨超.1990's以来青岛城市空间形态演变研究[D].济南:山东建筑大学,2010,27-51.
    [220]杨慧茹,马玉寿,李世雄,等.青海草地早熟禾栽培草地植被特征及土壤物理性状动态[J].草业科学,2011,6:910-915.
    [221]杨永川,王娟,达良俊.城市化进程中上海植被的多样性、空间格局和动态响应(II):城市废弃地上海江湾机场的植物组成[J].华东师范大学学报(自然科学版),2008,4:40-48.
    [222]杨永川.中国中亚热带东部低山丘陵地形梯度上植被的分异及其形成和维持机制[D].上海:华东师范大学,2005,82.
    [223]姚拓,马丽萍,张德罡.我国草地土壤微生物生态研究进展及浅评[J].草业科学, 2005,22(11):1-7.
    [224]要元媛,闫明,毕润成.山西霍山植物群落种-面积曲线与物种多样性的关系[J].生态学杂志,2013,32(1):39-44.
    [225]尹锴,崔胜辉,石龙宇,等.人为干扰对城市森林灌草层植物多样性的影响——以厦门市为例[J].生态学报,2009,29(2):563-572.
    [226]昝启杰,李鸣光.黑石顶针阔叶混交林演替过程中群落结构动态[J].应用生态学报,2000,11(1):1-4.
    [227]臧得奎.山东崂山木本植物区系的研究[J].山东农业大学学报(自然科学版),1992,4:405-409.
    [228]张金屯,Pickett STA.城市化对森林植被,土壤和景观的影响[J].生态学报,1999,1 9(5):654-658.
    [229]张金屯.数量生态学[M].北京:科学出版社,2004,208.
    [230]张丽珍,牛伟,郭晋平,等.关帝山寒温性针叶林土壤营养状况与林下更新关系研究[J].西北植物学报,2006,25(7):1329-1334.
    [231]张利权,吴健平,甄或,等.基于GIS的上海市景观格局梯度分析[J].植物生态学报,2004,28(1):78-85.
    [232]张胜强.植物多样性对城市化梯度的响应[D].武汉:华中农业大学,2012,14.
    [233]张志东,韩广轩,毛培利,等.成年个体密度,距海远近及下层植被对烟台黑松海防林天然更新的影响[J].自然资源学报,2009,24(5):782-790.
    [234]沼田真(监修).湾岸都市生态系统及自然保护—千叶市野生动植物生态状况及生态系统调查(日文)[M].东京:信山社,1997,14-89.
    [235]赵淑清,雷光春.物种保护的理论基础——从岛屿生物地理学理论到集合种群理论[J].生态学报,2001,21(7):1171-1179.
    [236]郑瑞文.北京市城市建成区绿地植物多样性研究[D].北京:北京林业大学,2006,51-56.
    [237]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1991:10-893.
    [238]周光兵,龙翠玲.人为干扰对城市近郊区森林植物多样性的影响[J].西南师范大学学报(自然科学版),2011,36(5):98-103.
    [239]周光裕.山东的植被分类和分区[J].山东大学学报(理学版),1963,1:62-74.
    [240]周光裕.山东植物地理[J].山东大学学报(皙学社会科学版),1955,1:78-92.
    [241]周劲松,严岳鸿,邢福武.香港蒲台群岛植物传播与形成初步探讨[J].中山大学学报(自然科学版),2006,45(2):183-188.
    [242]周秀佳.上海的主要自然植被类型及其分布[J].植物生态学报和地植物学丛刊, 1984,9(2):189-198.
    [243]宗跃光.大都市空间扩展的廊道效应与景观[J].地理研究,1998,17(2):119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700