用户名: 密码: 验证码:
核桃花芽分化组织学和激素原位分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃的产量由其树体花芽分化的数量和质量决定,而激素是调控花芽分化的重要因子。因此,前人开展了许多关于激素与花芽分化关系的研究,并在生产实践中施用生长调节剂对花芽分化进行调节。然而,目前即使最先进的激素含量测定方法,也需要一定量的组织材料,所得结果是成百上千个细胞的平均值,而不能对单个细胞或亚细胞中的激素进行精准定位,同时,也不能较准确的分析激素在细胞间的运输与代谢途径。所以本研究采用免疫胶体金定位新技术,以国内主栽早实核桃品种‘辽宁1号’和美国品种‘爱米格’为试材,研究了激素(生长素、脱落酸)在核桃花芽分化过程各组织中的原位分布及可能的运输途径。另外,以液质联用的方法测定茎尖生长素、脱落酸含量的变化,辅助分析了激素对核桃花芽分化的作用。取得的主要结果如下:
     (1)以核桃雄花芽为试材,利用形态观察和组织切片的方法研究了雄花芽与树体的变化,发现雄花芽外部形态及内部结构变化与核桃树的物候期之间存在密切的相关性。雄先型核桃的雄花芽分化和发育过程是:春季雄花开放始期,可见到幼嫩鳞片包裹的小芽贴生于叶腋,此时雄花芽已进入鳞片分化;在新梢伸长物候期,雄花序呈扁平状,花序内部沿花序轴自下而上逐渐形成苞片原基,并在苞片原基靠近花序轴的基部形成雄花原基;在生理落果物候期,雄花序伸长,并突破鳞片,苞片鲜绿色,此时雄花序组织内部包含了雄花原基,花被原基和雄蕊原基等若干分化时期;在果实迅速生长物候期,雄花序呈松果状,苞片呈黄绿色,尖端褐色,此时花序全部进入雄蕊分化期;在果实缓慢生长物候期,苞片呈褐色,各单体雄花间排列更加紧密,雄花序内部开始花药分化,此后进入分化停滞状态,一直持续到第二年春天;在第二年萌芽物候期,雄花序伸长增粗,花被和花药显现,花序内部开始花粉母细胞分化;新梢抽生物候期,雄花序伸长约10cm,花药变成黄色;此时花粉发育成熟,中层压缩、解体,绒毡层退化解体,待开花后进入新一年的花芽分化进程。
     雌先型核桃‘爱米格’的花芽分化经历的各时期与雄先型相同,所不同的是各阶段开始分化的时间和进程。雌先型的雄花与雄先型的雌花同时开放,雄花芽的各分化阶段落后于雄先型,至休眠期只进行到雄蕊分化期。
     (2)以核桃雄花芽为试材,采用免疫胶体金定位技术分析了雄花序中生长素的分布和变化,发现在雄花序分化初期顶端分生组织聚集大量的生长素,此时顶端分生组织可能是生长素的合成部位。当花器官分化时,苞片原基、雄花原基和雄蕊原基中也分布较多的生长素,研究结果证明生长素可能对形态分化有重要的影响。另外,在细胞特化过程中,花粉母细胞和绒毡层仍分布较多的生长素,说明该部位可能是生长素合成的重要部位。当花粉成熟时,花粉萌发孔分布较明显的生长素信号,说明生长素有利于花粉的萌发。
     (3)以核桃雌雄花芽为试材,利用免疫胶体金定位技术对花芽分化过程脱落酸进行定位分析,结果在花芽分化过程中花柄、幼叶和维管组织始终分布大量的脱落酸,表明这些部位可能是脱落酸重要的源,或为积累源,或为原位源。花芽分化过程中脱落酸的时空分布变化明显。雌雄花芽分化所需的脱落酸水平不一致。对核桃花芽分化过程中脱落酸的原位分析发现由叶芽状态向雌花芽转化时顶端分生组织中脱落酸的水平明显降低。脱落酸在原基细胞(苞片和花被)中信号明显,而当器官分化完成时明显降低。然而,在雄花序分化过程中脱落酸分布广泛,与生殖细胞的发生密切相关。这些证据表明雌花芽的诱导和形态分化需要低于叶芽水平的脱落酸,而雄花序的分化可能与脱落酸关系更密切,分化活跃的细胞中分布较高水平的脱落酸。
     (4)以早实核桃茎尖为试材,采用免疫胶体金定位技术和液质联用方法对核桃花芽分化过程的生长素和脱落酸进行定量比较分析,结果表明胶体金定位法可以直观的反应植物激素在组织中的时空分布,同时达到定量分析的目的,优于液质联用法。对生长素和脱落酸的平衡分析,可以看出雌花芽的诱导需要较高的脱落酸/生长素,达1.9,而雄花序的分化与生长素和脱落酸的平衡关系不密切。
     (5)以河南汝阳地区栽植的早实核桃品种‘爱米格’为试材,利用摘叶、去除顶芽和施用生长调节剂的方法,发现去除顶芽会完全抑制二次花的发生;摘叶时间不同则会不同程度的抑制二次花的发生,4月17日摘叶完全抑制二次花的形成,5月7日摘叶处理,二次开花率为21%;而生长素运输抑制剂在核桃二次花的诱导中起到促进作用,两次处理后二次成花率分别为65.6%和61.1%。
Walnut production is decided by the quality and quantity of flower-bud differentiation.While plant hormones are the important regulatory factors. Many previous studies have beendone about the relationship between plant hormones and flower-bud differentiation. Growthregulators were used to control flower-bud differentiation in production practice. However,even the most advanced method for the determination of hormones also need amount ofmaterial tissue and the result was the average of hundreds or thousands cells, but not accuratepositioning in a single cell or subcellular cell. At the same time, this method could not analysisthe transport and metabolic pathway of hormones accurately. Then we used new technology ofimmuno-colloidal gold localization to monitor the temporal and spatial pattern of IAA andABA and their transport during flower bud differentiation in the walnut (Juglans regia L.)cultivar Liaoning1of Chnia and Amigo from American. The HPLC-MS used to analysis thequantification of IAA and ABA for supporting role. The main results obtained are as follows:
     (1) The methods of morphology observation and tissue sections were used in staminateflower study. There is a close correlation among phenology, external morphology and internalanatomical structure. For the protandrous walnuts, as the staminate flowers beginning open, thetender and little bud wrapped with squama pasted in axils. Now in the microscope we can seethe staminate flower bud has entered squama differentiation. During shoot elongationphenology, the staminate flower was flat and covered with squama as the only externallyvisible portion of the catkin. The bract primordia formed from bottom to top and the floretprimordia formed at the base of bract. When fruit drop stage beginning, the length of catkinswas elongated, with catkins protruding from the squama and the floret, perianth, and stamenprimordia formed basipetally. The staminate catkins like pine cones and bracts’ color variedfrom yellow-green to brown. The whole catkins turned into stamens differentiation during theperiod of fruit grown quickly. When the fruit began to grow slowly, the length of catkin did not change evidently. The bracts were brown and each floret arranged tightly. The anthers began todifferentiation and lasted to the spring of next year. When turned into germination stage, thecatkin elongared and thicked, the perianth and anther became visible externally, pollen mothercells begin to differentiate in catkin. As shoots growing coming, the catkin elongated to10cmand the color of anther turned into yellow. As the anthers became matured, middle layercompressing and disintegrating, the tapetum dissoluted and degradated. At this point the entirebud differentiation completed, until flowering a new flower bud differentiation process willbegin.
     Each differentiation stage of protogynous walnut is the same as the protandrous walnut.However, there are also some differences, such as the time and process of the variousdifferentiation stages. The pistillate flower of protogynous walnut and the staminate flower ofprotandrous walnut opened at the same time. While the staminate flower differentiation is fallbehind the protandrous just staied at stamen differentiation period.
     (2) The distribution and variation of IAA was analysised using immuno-colloidal goldlocalization in staminate flower of walnut. In staminate flower the auxin signal was strongest inthe shoot apical meristem (SAM) during early differentiation of catkin; thus, the SAM may bea site of auxin production. When the floral organs began centralized differentiation, auxin wasdistributed mainly in the differentiating tissues. Our findings indicate that a high level of auxinmay strongly affect morphogenesis. Additionally, the tapetal and reproductive cells that ariseduring cellular specialization may be important for auxin production. The distribution of auxinwas centralized in germ pores at the pollen grain surface, indicating that a high level of auxininduces pollen germination.
     (3) The distribution and variation of ABA was monitored using immuno-colloidal goldlocalization in walnut pistillate and staminate flowers. During flower differentiation, highlevels of ABA were consistently indentified in pedicle, young leaf and vascular bundle,indicating there might be the important ABA source caused either by accumulation ororigination. Obvious changes in temporal and spatial pattern were observed during flower-bud differentiation. The differentiation of pistillate and staminate flower needed different level ofABA. The levels of ABA in SAM decreased obviously as the transition from leaf bud topistillate flower-bud. ABA preferentially localized at primordial cells. As the tissues (bract andperianth) became highly differentiated, ABA was significantly and uniformly decreased.However, during stamen development, ABA accumulation was instead restricted to cells thatare closely linked to the formation of reproductive cells. This direct evidence indicates that lowlevel ABA may be needed during pistillate flower induction and morphogenesis, instead, ABAmay strongly affect staminate flower differentiation.
     (4) We used immunogold localization and HPLC-MS to analysis the quantification of IAAand ABA during flower-bud differentiation in precocious walnut. The result indicated thatimmunogold localization is better than HPLC-MS, because it can respond the spatial andtemporal distribution of plant hormones and achieve the purpose of quantitative analysissimultaneously. To analysis the balance of auxin and abscisic acid, we found that the pistillateflower-bud differentiation requires a higher ratio of ABA/IAA, about1.9. However, thestaminate inflorescence differentiation may have little correlation with the balance of auxin andabscisic acid.
     (5) The variety ‘Amigo’ of precocious walnut planted in Henan Ruyang area was tested.The methods of pick leaves, remove the terminal bud and application of exogenous growthregulators were used. It is found that the secondary flower inhibited completely by removingterminal bud and the time of pick leaves will affect the occurrence of secondary flowers indifferent degrees. Pick leaves in April17th inhibited secondary flowers completely,while inMay7secondary flowering rate is21%. The auxin transport inhibitor (NPA) plays animportant role in promoting secondary flowers. The secondary flowering rate is65.6%and61.1%respectively.
引文
Aaron, M.R., P. Julie, S.W. Candace, et al. Transport of the two natural auxins, indole-3-butyric acid andindole-3-acetic acid, inArabidopsis. Plant Physiol.,2003,133:761~772
    Aloni, R.K., M. Schwalm, and C.I. Langhans. Gradual shifts insites of free-auxin production duringleaf-primordium developmentand their role in vascular differentiation and leaf morphogenesisinArabidopsis. Planta,2003,216:841~853
    Aloni, R., E. Aloni, M. Langhans, et al. Role of auxin in regulating Arabidopsis flower development. Planta,2006,223:315~328
    Andreini, L., S. Bartolini, A. Guivarch, et al. Histological and immunohistochemical studies on flowerinduction in the olive tree (Olea europaea L.). Plant Biology,2008,10:588~595
    Arrom, L. and S. Munné-Bosch. Hormonal changes during flower development in floral tissues of Lilium.Planta,2012,236:343~354
    Avery, G.S. Differential distribution of phytohormone in the developing leaf of Nicotiana, and its relation topolarized growth. Bull. Torrey Bot. Club,1935,62:313~330
    Avsian-Kretchmer, O., J.C. Cheng, L. Chen, et al. Indole acetic acid distribution coincides with vasculardifferentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol.,2002,130,199~209
    Banasiak, A. Putative dual pathway of auxin transport in organogenesis of Arabidopsis. Planta,2011,233:49~61
    Bangerth, P.K. Can regulatory mechanism in growth and development be elucidated through the study ofendogenous hormone concentration. Acta. Gort.,1998,463:77~78
    Benjamins, R., A. Quint, D. Weijers, et al. The PINOID protein kinase regulates organ development inArabidopsis by enhancing polar auxin transport. Development,2001,128:4057~4067
    Bhalerao, R.P., J. Eklof, K. Ljung, et al. Shoot derived auxin is essential for early lateral root emergence inArabidopsis seedlings. Plant J.,2002,29,325~332
    Breton, C., D. Cornu, D. Chriqui, et al. Somatic embryogenesis, micropropagation and plant regeneration of“Early Mature” walnut trees (Juglans regia) that flower in vitro. Tree Physiol.,2004,24:425~435
    Cheng, Y., X. Dal, Y. Zhao. Auxin biosynthesis by the YUCCA flavin monooxygenases controls theformation of floral organs and vascular tissues in Arabidopsis. Genes Dev.,2006,20:1790~1799
    Cheng,Y.F. and Y.D. Zhao. A Role for Auxin in Flower Development. Journal of Integrative Plant Biology,2007,49(1):99~104
    Chernys, J.T. and J.A.D. Zeevaart. Characterization of the9-cis-epoxycarotenoid dioxygenase gene familyand the regulation of abscisic acid biosyntheses in avocado. Plant Physiol.,2000,124:343~353
    Christensen, S.K., N. Dagenals, J. Chory, et al. Regulation of auxin response by the protein kinase PINOID.Cell,2000,100:469~478
    Coenes and M. Meyerowitze. The war of the whorls: genetic interactions controlling flower development.Nature,1991,353(6339):31~37
    De Diego, N., J.L. Rodríguez, I.C. Dodd, et al. Immunolocalization of IAA and ABA in roots and needles ofradiata pine (Pinus radiata) during drought and rewatering. Tree Physiol.,2013,33:537~549
    Dewitte, W. and O.H. Van. Probing the distribution of plant hormones by immunochemistry. Plant GrowthRegulation,2001,33:67~74
    Dong, N.G., W.L. Yin, Y. Gao, et al. Indole-3-acetic acid accumulation during poplar rhizogenesis revealedby immunohistochemistry. Biologia Plantarum,2012a,56(3):581~584
    Dong, N.G., D. Pei, W.L. Yin. Tisssue-specific localization and dynamic changes of endogenous IAA duringpoplar leaf rhizogenesis revealed by in situ immunohistochemistry. Plant Biotechnology Reports,2012b,6(2):165~174
    Engin, H. and A. Unal. Examination of flower bud initiation and differentiation in sweet cherry and peach byscanning electronmicroscope. Turkish Journal of Agriculture and Forestry,2007,31(6):373~379
    Fitzpatrick, H., N. Shrestha, J. Bhandari, et al. Roles for farnesol and ABA in Arabidopsis flowerdevelopment. Plant Signaling&Behavior,2011,6:8,1189~1191
    Finkelstein, R.R., S.S. Gampala, C.D. Rock. Abscisic acid signaling in seeds and seedlings. Plant Cell,2002,14: S15~S45
    Food and agriculture organization of the united nations (FAO).2012. Agricultural production, crops,http://faostat.fao.org/site/339/default.aspx
    Friml, J., A.Vieten, M.Sauer, et al. Efflux dependent auxin gradients establish the apical-basal axis ofArabidopsis. Nature,2003,426,147~153
    Friml, J., X. Yang, M. Mlchnlewicz, et al. A PINOID-dependent binary switch in apical-basal PIN polartargeting directs auxin eflux. Science,2004,306:862~865
    Galweiler, L., C. Guan, A. Muller, et a1. Regulation of polar auxin transport by AtPIN1in Arabidopsisvascular tissue. Science,1998,282:2226~2230
    Gao, Y., H. Liu, N.G. Dong, et al.Temporal and spatial pattern of indole-3-acetic acid occurrence duringwalnut pistillate flower bud differentiation as revealed by immunohistochemistry. J. Amer. Soc. Hort.Sci.,2012,137(5):283~289
    Gao, Y., H. Liu, D. Pei. Morphological Characteristics and In Situ AuxinProduction during the Histogenesisof StaminateFlowers in Precocious Walnut. J. Amer. Soc. Hort. Sci.,2014,139(2):185~190
    Grochowska, M.J.,A. Karaszewska, B. Jankowska, et al. The pattern of hormones of intact apple shoots andits changes alter spraying with growth regulators. Acta Horticulturae,1984,149:25~38
    Grossmann, K., F. Scheltrup, J. Kwiatkowski, et al. Induction of abscisic acid is a common effect of auxinherbicides in susceptible plants. J. Plant Physiol.,1996,149:475~478
    Gregorio, O.A., V.S. Sonia, C. Aldebaran, et al. Inception of maleness: Auxin contribution to flowermasculinization in the dioecious cactus Opuntia stenopetala. Planta,2012,236:225~238
    Guo, J.L. and Q. Yang. Molecular Cloning and Expression Analysis of a LFY Homologous Gene fromPotato. Plant Molecular Biology Reporter,2008,26,(4):324~334
    Hou, Zh.X. and W.D. Huang. Immunohistochemical localization of IAA in developing strawberry fruit. J.Hort. Sci. Biotechnol.,2004,5:693~698
    Hou, Zh.X. and W.D. Huang. Immunohistochemical localization of IAA andABP1in strawberry shootapexes during floral induction. Planta,2005,222:678~687
    He, F.Q., H.X. Wang, and Zh.H. Zhang. Molecular cloning and sequence analysis of an LFY homologousgene from Juglans regia L. in Frontiers of Agriculture in China,2011,5(3):366~371
    Jiang, M.Y. and J.H. Zhang. Abscisic acid and antioxidant defense in plant cells. Acta. Bot. Sin.,2004,46:1~9
    Kamil, R., K. Ljung, S. Vanneste, et al. Ethylene regulates root growth through effects on auxin biosynthesisand transport dependent auxin distribution. Plant Cell,2007,19:2197~2212
    Kaufmann, K., F. Wellmer, J.M. Muino, et al. Orchestration of floral initiation by APETALA1. Science,2010,328:85~89
    Kinet, J.M. Environmental, chemical and genetic control of flowering. Hortic. Rev.,1993,15:279~334
    Koshita, Y., T. Takahara, T. Ogata, et al. Involvement of endogenous plant hormones (IAA, ABA, GAs) inleaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). Sci. Hortic.,1999,79:185~194
    Koshita, Y. and T. Takahara. Effect of water stress on flower-bud formation and plant hormone content ofSatsuma mandarin (Citrus unshiu Marc.). Sci. Hortic.,2004,99:301~307
    Krajewski, A.J. and E. Rabe. Citrus flowering: a critical evaluation. J. Hort. Sci.,1995,70:357~374
    Label, P., R. Maldiney, L. Sossountzov, et al. Endogenous levels of abscisic acid, indole-3-acetic acid andbenzyladenine during in vitro bud growth induction of wild cherry (Prunus avium L.). Plant GrowthRegulation,1988,7:171~180
    Lavee, S. Involvement of plant growth regulation and endogenous growth substances in the control ofalternate bearing. Act. Hortic.,1989,239:311~322
    Lee, B., R. Johnston, Y. Yang. Studies of aberrant phyllotaxy1mutants of maize indicate complexinteractions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiology,2009,150:205~216
    Li, H.B., Y. Cheng, A. Murphy, et al. Constitutive repression and activation of auxin signaling in Arabidopsis.Plant Physiol.,2009,149:1277~1288
    Li, L., X. Hou, T. Tsuge, et al. The possible action mechanisms of indole-3-acetic acid methyl ester inArabidopsis. Plant Cell Rep.,2008,27:575~84
    Liu Sh.Ch., W.Q. Chen, L. Qu, et al. Simultaneous determination of24or more acidic and alkalinephytohormones in femtomole quantities of plant tissues by high-performance liquidchromatography-electrospray ionization-ion trap mass spectrometry. Anal Bioanal Chem.,2013,405:1257~1266
    Ljung, K., R.P. Bhalerao, and G. Sandberg. Sites and homeostatic control of auxin biosynthesis inArabidopsis during vegetative growth. Plant J.,2001,28,465~474
    Lomax, T.L., G.K. Muday, and P.H. Rubery. Auxin transport. In Plant Hormones: Physiology, Biochemistry,and Molecular Biology, P.J. Davies, ed (Dordrecht: Kluwer Academic Press,1995
    Luckwill, L.C. The control of growth and fruitless of apple trees[c]∥Luckwill LC. Cutting CV, physiologyof tree crops. New York: Acad press,1970:237~253
    Luckwill, L.C. In proceedings of the XIX International horticulture congress.1974,11:169~177
    Luza, J.G. and V.S. Polito. Microsporogenesis and antherdifferentiation in Juglans regia L.: A developmentalbasis forheterodichogamy in walnut. Bot. Gaz.,1988,149:30~36
    MaLaughlin, J.M. and D.W. Greene. Fruit and hormone influence flowering of apple. Ⅱ. Effects ofhormones. J. Amer. Soc. Hort. Sci.,1991,116:450~453
    Moriyah, Z. and V.F. Irish. Flower development: Initiation, differentiation, and diversification. AnnualReview of Cell and Developmental Biology,2003,19:119~140
    Muradoglu, F., F. Balta, and P. Battal. Endogenous hormone levels in bearing and non-bearing shoots ofwalnut (Juglans regia L.) and their mutual relationships. Acta. Physiol. Plant,2010,32:53~57
    Okada, K., J. Ueda, M.K. Komakl, et al. Requirement of the auxin polar transport system in early stages ofArabidopsis floral bud formation. Plant Cell,1991,3:677~684
    Orna, A.K., J.C. Cheng, L.J. Chen, et al. Indole acetic acid distribution coincides with vasculardifferentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol.,2002,130:199~209
    Peng, Y.B., Ch. Zou, D.H. Wang. Preferential localization of abscisic acid in primordial and nursing cells ofreproductive organs of Arabidopsis and cucumber.New Phytologist,2006,170:459~466
    Petrasek, J., J. Mravec, R. Bouchard, et a1. PIN proteins perform a rate-limiting function in cellular auxinefflux. Science,2006,312:914~918
    Polito, V.S. and N.Y. Li. Pistillate flower differentiation in english walnut (Juglans regia L.): Adevelopmental basis for heterodichogamy. Sci. Hort.,1985,26:333~338
    Polito, V.S. and K. Pinney. The relationship between phenology of pistillate flower organogenesis and modeof heterodichogamy in Juglans regia L.(Juglandaceae). Sexual Plant Reproduction,1997,10(1):36~39
    Potchanasin, P., K. Sringarmb, P. Sruamsiri, et al. Floral induction (FI) in longan (Dimocarpus longan, Lour.)trees: Part I. Low temperature and potassium chlorate effects on FI and hormonal changes exerted interminal buds and sub-apical tissue. Scientia Horticulturae,2009,1~6
    Reinhardt, D., T. Mendel, and C. Kuhlemeler. Auxin regulates the initiation and radial position of plantlateral organs. Plant Cell,2000,12:507~518
    Rouskas, D.H. and G.I. Iakinthinos. Study stimulation of lateral fruitfullness on walnut cultivars (J. regia. L.)Hartley and Franquttle with Cytokinins use or the apical bud cutting off. Acta. Horticulture,1993,311:281~289
    Ryugo, K. The effects of shading on the physiology of close planted walnuts trees. Rivista dellaOrtoflorofruttico ltura Italiana,1982,66(5):353~360
    Sachs, R.M. Nutrient diversion: an hypothesis to explain the chemical control of flowering. Hortscience,1977,12(3):220~222
    Samuoliene, G.P. and Duchovskis. Flowering initiation in plants of different Apiaceae species.Zemdirbyste-Agriculture,2009,96(3):186~197
    Sessions, A., J.L. Nemhauser, A. McColl, et al. ETTIN patterns the Arabidopsis floral meristem andreproductive organs. Development,1997,124:4481~4491
    Sessions, R.A. and P.C. Zambryskl. Arabidopsis gynoecium structure in the wild and in ettin mutants.Development,1995,121:1519~1532
    Shi, L., L. Miller, and R. Moore. Immunocytochemicallocalization of indole-3-acetic acid in primary roots ofZea mays.Plant Cell Environ.,1993,16:967~973
    Sladky, Z. The role of endogenous growth regulators in the differentiation processes of walnut (Juglans regiaL.). Biologia Plantarum (Praha),1972,14(4):273~276
    Solfanelli, C., S. Bartolini, C. Vitagliano, et al. Immunolocalization and quantification of IAA after self-andfree-pollination in Olea europaea L. Scientia Horticulturae,2006,110:345~351
    Sun, H.F., Y.P. Meng, Q.F. Cao, et al. Molecular Cloning and Expression Analysis of a SQUA/AP1Homologue in Chinese Jujube (Ziziphus jujube Mill.). Plant Molecular Biology Reporter,2009,27,(4):534~541
    Su, W.R., K.L. Huang, R.S. Shen, et al. Abscisic acid affects floral initiation in Polianthes tuberose. J. PlantPhysiol.,2002,159:557~559
    Thimann, K.V., and F. Skoog. Studies on the growth hormone of plants: III. The inhibiting action of thegrowth substance on bud development. Proc. Natl. Acad. Sci. USA1933,19:714~716
    Thomas, C., R. Bronner, J. M. Els Prinsen, et al. Immuno-cytochemical localization of indole-3-acetic acidduring induction of somatic embryogenesis in cultured sunflower embryos. Planta,2002,215:577~583
    Tobena-Santamaria, R., M. Bllek, K. LJung, et a1. FLOOZY of petunia is a flavin monooxygenase-likeprotein required for the specification of leaf and flower architecture. Genes Dev.,2002,16:753~763
    Trivellini, A., A. Ferrante, P. Vernieri, et al.Effects of Promoters and Inhibitors of Ethylene and ABA onFlower Senescence of Hibiscus rosa-sinensis L. Journal of Plant Growth Regulation,2011,30(2):175~184
    Ulger, S., S. Sonmez, M. Karkacier, et al. Determination of endogenous hormones, sugars and mineralnutrition levels during the induction, initiation and differentiation stage and their effects on flowerformation in olive. Plant Growth Regul.,2004,42:89~95
    Valentina, C., M.A. Maria, F. Giuseppina, et al. Auxin regulates Arabidopsis anther dehiscence, pollenmaturation, and filament elongation. Plant Cell,2008,20:1760~1774
    Vladimira, L. and Z. Sladky. The role of growth regulators in the differentiation of walnut buds (Juglansregia L.). Biologia Plantarum (Praha),1971,13(5-6):361~367
    Vysotskaya, L.B., S.Yu. Veselov, D.S. Veselov. Immunohistological localization and quantification of IAA instudies of root growth regulation. Russ. J. Plant Physiol.,2007,54:827~832
    Wang, W.Y., W.S. Chen, W.H. Chen, et al. Influence of abscisic acid on flowering in Phalaenopsis hybrida.Plant Physiol. Biochem.,2002,40:97~100
    Wilmowicz, E., K. Frankowski, P. Glazinska, et al. Involvement of ABA in flower induction of pharbitis nil.Acta Societatis Botanicorum Poloniae,2011,80(1):21~26
    Wisniewska, J., J. Xu, D. Selfertova, et a1. Polar PIN localization directs auxin flow in plants. Science,2006,312:883
    Woodward, A.W. and B. Bartel. Auxin: regulation, action, and interaction. Ann. Bot.,2005,95:707~35
    Wu, J.Z., Y. Qin, and J. Zhao. Pollen tube growth is affected by exogenous hormones and correlated withhormone changes in styles in Torenia fournieri L. Plant Growth Regulat.,2008,55:137~148
    Xiong, L.M. and J.K. Zhu. Regulation of abscisic acid biosynthesis. Plant Physiol.,2003,133:29~36
    Yang,Y., R. Xu, C.J. Ma, et al. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated byseveral esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol.,2008,147:1034~45
    Zimmerman, R.H. Juvenile and flowering of fruit trees. Actan. Hortic.,1973,34:139~142
    Zhao, Y., S.K. Christensen, C. Fankhauaer, et a1. A role for flavin monooxygenase-like enzymes in auxinbiosynthesis. Science,2001,291:306~309
    陈鸿,李智辉,李天来,等.新铁炮百合花芽分化及发育过程中内源多胺及激素含量变化的研究.沈阳农业大学学报,2010,41(3):284~288
    陈海江,徐继忠,李晓东,等.外源多胺对核桃雌雄花芽分化的影响.中国果树,2003,4:28~30
    陈力耕,刘淑芳,胡西琴.葡萄高效再生体系的建立及转LEAFY基因的研究.浙江大学学报,2001,27(5):523~526
    陈芳芳,黄有军,王正加,等.山核桃FLOWERING LOCUST同源基因的克隆与序列分析.西南林学院学报,2009,29(6):34~37
    邓烈,何绍兰,奚声珂.核桃雌花芽形态分化电镜简报.落叶果树,1995,(4):5~7
    洑香香,冯岚,尚旭岚,等.青钱柳雌、雄花芽分化进程的形态解剖特征观察.南京林业大学学报(自然科学版),2011,35(6):17~22
    董宁光,王清民,陈明勇,等.木本植物内源生长素免疫胶体金定位分析技术的研究.西北植物学报,2008,28(4):0819~0825
    董宁光,高英,王伟,等.杨树试管苗嫩茎生根过程中内源IAA的免疫金银定位.植物学报,2011,46(3):324~330
    高小俊,吴兴恩,王仕玉,等.短截后芒果花芽分化期间内源激素含量的变化.福建农业学报,2009,24(3):227~230
    高英,董宁光,张志宏,等.早实核桃雌花芽分化外部形态与内部结构关系的研究.林业科学研究,2010,23(2):241~245
    郭成圆,魏安智,吕平会,等.板栗雏梢分化期内源激素的动态变化特征.西北植物学报,2010,30(10):2061~2066
    国家林业局.中国林业统计年鉴.北京:中国林业出版社,2012,91
    韩其谦,杨文衡.核桃雌花分化及其发育动态的观察.河北农业大学学报,1985,8(2):24~29
    何见,陈卫军,蒋丽娟,等.光皮树花芽分化与内源激素含量的关系.湖南林业科技,2012,39(2):27~31,37
    何业华,方少秋,胡中沂,等.菠萝体细胞胚发育过程的形态学和解剖学研究.园艺学报,2012,39(1):57~63
    胡盼,王川,王军辉,等.青海云杉花芽分化期内源激素含量的变化特征.西北植物学报,2012,32(3):0540~0545
    姜卓,刘政安,王亮生,等.牡丹花芽分化类型与促成连续二次开花.园艺学报,2007,34(3):683~687
    金雅琴,黄雪芳,李冬林,等.2种石蒜生长发育期鳞茎内源激素的动态变化.植物研究,2010,30(6):697~702
    李永涛,赵勇刚,杨克强,等.早实核桃花器官发育的解剖学研究.园艺学报,2011,38(3):434~440
    李敏,刘媛,赵勇刚,等.核桃花器官变异的研究.园艺学报,2009,36(1):21~26
    李建安,孙颖,郜爱玲,等.油桐花芽分化期营养与激素生理变化研究.中南林业科技大学学报,2011,31(3):34~37,53
    李天红,黄卫东,孟昭清.苹果花芽孕育机理的探讨.植物生理学报,1996,22(3):251~257
    刘宗莉,林顺权,陈厚彬.枇杷花芽和营养芽形成过程中内源激素的变化.园艺学报,2007,34(2):339~344
    刘静,邵建柱.农杆菌介导法将LFY基因导入苹果的研究.河北农业大学学报,2006(3):6~9
    刘建国,曹尚银,刘丽峰,等.根癌农杆菌介导LFY基因转化苹果的研究.江西农业学报,2008,20(6):34~35
    彭磊,高小俊,龙雯虹.短截后芒果花芽分化期间ABA含量的变化.云南农业大学学报,2011,26(3):434~436
    齐红岩,黄鹤,张多娇.外源多胺对薄皮甜瓜花芽分化及花发育的影响.中国蔬菜,2012,10:42~47
    荣瑞芬,郗荣庭.核桃雄花芽形态分化及发育的观察.河北农业大学学报,1991,14(1):44~46
    桑永明,周燮,张能刚,等.玉米根尖ABA结合蛋白的免疫金银法定位.安徽农业技术师范学院学报,1994,8(3):22~26
    覃喜军,黄夕洋,蒋水元,等.罗汉果花芽分化过程中内源激素的变化.植物生理学通讯,2010,46(9):939~942
    童二发,邓殷鸿,黄辉煌,等.台湾蜜雪梨二次花成因及影响分析.福建气象,2010,1:48~50
    童本群,郝忠颖.核桃雌花分化的内源激素模式.林业科学,1991,27(4):401~409
    汪向彬,王震,段俊华.构树去木质部后维管组织再生中内源IAA浓度的变化及其组织定位.植物学报,1999,41(12):1327~1331
    王幼群,韩静,林金星.紫丁香叶柄离区IAA的免疫组织化学定位.植物学报,2001,43(2):213~216
    王正加,黄有军,夏国华,等.山核桃APETALA1同源基因的克隆与序列分析.浙江林学院学报,2008,25(4):427~430
    魏志刚,钱婷婷,张凯旋,等.外源GA3对白桦成花基因影响的定量PCR分析.林业科学,2011,47(7):187~192
    吴根良,孙瑶,沈国正,等.卡特兰花芽分化与发育的解剖学研究.浙江大学学报(农业生命科学版),2009,35(2):173~179
    郗荣庭,张毅萍.中国核桃.北京:中国林业出版社,1992,192~199,27~246
    郗荣庭,张毅萍.中国果树志(核桃卷).北京:中国林业出版社,1996,1~18
    郗荣庭,荣瑞芬.核桃雄花芽发育特点及疏雄增产机理.河北林果研究,1997,12(1):40~44
    夏雪清,郗荣庭.核桃雌花芽的生理分化和形态分化时期.河北农业大学学报,1989,1:18~21
    徐美容,黄华宏,高立旦,等.香榧雌花芽分化期内源多胺的变化.浙江林业科技,2008,3(28):13~16
    徐继忠,李晓东,张志华,等.核桃雌雄异熟型品种花芽分化期叶片和芽内源多胺含量的变化.园艺学报,2006,33(2):363~365
    徐继忠,陈海江,李晓东,等.外源多胺对核桃雌雄花芽分化及叶片内源多胺含量的影响.园艺学报,2004,31(4):437~440
    叶宝兴,毕建杰,孙印石.植物细胞与组织研究方法.北京:化学工业出版社,2011,54
    赵珺,陈丹,安鹏,等.烟草花发育过程中花药和花粉IAA分布规律.武汉植物学研究,2009,27(5):541~547
    张立民,李凤鸣,苏淑钗,等.板栗二次花芽分化过程中激素含量变化.经济林研究,2009,27(4):31~35
    张志华,王文江,高仪,等.核桃雌雄异熟性的花芽分化进程.园艺学报,1995,22(4):391~393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700