用户名: 密码: 验证码:
氮、磷对核桃苗木水分代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃(Juglans regia L.)-绿豆(Vigna radiata L.)复合间作作为“立体林业”(Stereoforesting)的一种生态经济林营造模式,是太行山区退耕还林工程中推广应用最广泛的生态经济林模式之一。本研究以核桃为研究对象,调查了田间核桃-绿豆复合系统中土壤水肥空间变化规律;通过温室模拟核桃-绿豆间作、养分控制试验,研究固氮植物绿豆和氮、磷元素对核桃苗木水分平衡、光合生理特性和生长的影响;进一步了解核桃苗木养分状况对其水分平衡的影响。为太行山低山丘陵山区的农林复合系统优化经营模式提供理论依据。主要研究结果如下:
     1、土壤水分研究结果显示:核桃-绿豆复合系统、单作核桃及单作绿豆土壤水分空间变化趋势基本一致。在垂直方向上,随土层深度的增加,土壤含水量增加,40cm土层以下递增幅度减小;在水平方向上,0-20cm土层含水量随距离林带越远含水量越少;20-80cm土层随距离林带越近,土壤含水量越少。三种经营方式垂直变化梯度上存在差异,0-20cm土层含水量单作核桃>核桃-绿豆>单作绿豆,20-80cm土壤含水量则是单作绿豆>核桃-绿豆>单作核桃。土壤养分研究结果显示:核桃-绿豆复合系统与单作绿豆土壤有效氮、速效磷、速效钾和有机质含量均有一定的表聚性。垂直方向上,土壤有效氮除外,其它养分含量均随土层深度增加而降低;在水平方向上,0-20cm土层养分含量随距离林带距离增加,养分含量降低;20-80cm土层养分随距离林带距离增加含量增加;与单作核桃相比,核桃-绿豆复合系统土壤养分含量高于单作核桃。核桃、绿豆对土壤养分需求情况为有效氮>速效磷>有机质>速效钾。
     2、种植绿豆可以增加土壤氮素含量和核桃茎内氮含量,但对叶和根系中的氮含量影响不明显。种植绿豆显著地增加不施氮素核桃的根系生长、高生长和直径生长,但是种植绿豆非但没有增加正常供氮核桃的生长反而降低了生长。无论种植绿豆与否,不供氮处理降低了核桃的总叶面积,而提高它们的根/冠比。核桃叶片气体交换对各处理的响应和生长有相同的趋势。缺氮显著降低了核桃叶柄在中午的导水率、提高了相应的导水损失率;种植绿豆显著提高不供氮核桃的导水率,降低了其导水损失率。然而,种植绿豆使正常供氮核桃导水率降低、导水损失率加剧。另一方面,绿豆受到间作的竞争压力,其产量和生物量有所下降。
     3、结果显示:pH与磷素对核桃苗木的影响是两个相互独立的过程,酸性(pH3.0)条件下,核桃苗木根系生物降低、根冠比减小,根系导水率降低,对磷素的吸收利用减小,尽管其正常供磷但各生长指标及生理指标反应与磷胁迫条件下反应相似;但两因素具有一定叠加性,在磷胁迫条件下,酸化(pH3.0)进一步加剧对核桃苗木的损害。各指标具体变化如下:酸化及磷胁迫条件下核桃根系水分导度降低,叶柄木质部结构改变,导管密度降低,木质部导管栓塞程度增加,叶柄导水率下降,植株水分运输效率降低,叶片水势降低,诱导气孔关闭;气孔导度降低,光合作用下降;胁迫条件下,叶绿素荧光参数Fv/Fm、ΦPSⅡ、qP下降NPQ增加,核桃苗木受胁迫环境损害,叶片PSⅡ光合电子传递活性受到抑制,光合能力下降。
     4、不同氮素水平对核桃苗木生长、水分平衡和光合特性的作用研究结果显示:正常供氮苗木叶面积及叶片气孔增加,促进苗木及根系生长;低氮或者高氮条件下苗木生长指标和生理指标降低。适量氮素增加叶柄导管直径、纹孔径和穿孔径,导管水分运输效率增加;低氮和高氮处理叶柄及根系导管密度均降低,根系导水力降低,叶片水势降低,导水损失率增加;叶片气体交换指标与根系导水率和叶片水势趋势一致。氮素浓度过高核桃苗木叶片Fv/Fm值低于0.8,光合机构遭受一定损害。核桃苗木根压具有周期性变化,不同氮素浓度下最高值均能达到25Kpa以上,足以修复由于强烈蒸腾造成的木质部栓塞。
     5、不同氮素条件下核桃苗木对干旱胁迫有着不同的应对机制:低氮处理苗木较正常供氮处理叶面积减小,叶片气孔密度增加,叶柄木质部安全性增加,随土壤含水量降低,叶柄及根系导水率降低,叶片气孔导度降低,减少水分损失,叶片光合作用下降,根冠比增加,减少地上部分耗水,调整植株适应干旱胁迫的策略,严重干旱条件,低氮对苗木导水能力和光和能力的促进作用高于正常供氮处理;复水后,苗木水分运输能力迅速恢复,光合能力恢复。高氮处理苗木较正常供氮处理,根冠比降低,栓塞脆弱性增加,水分运输能力降低,地上耗水增加,加剧干旱胁迫的负面效应,随土壤含水量降低,苗木叶柄导水损失率增加,叶片水势降低,气孔导度降低,植株降低叶片水分蒸腾和光合作用应对土壤干旱胁迫;复水后,苗木光合能力降低。正常供应氮素促进苗木根系生长,水分运输能力提高,苗木光合能力最强,耗水最快;在正常供水和轻度干旱条件下,苗木根系增加,导管直径增加,水分运输效率提高,保证植株正常生理活动;极度干旱条件下,苗木根系导水力降低,叶柄导水损失率增加,降低叶片气体交换指标,正常供应氮素促进作用减弱并转向抑制;复水后,苗木补偿效应最为明显。
Walnut-mung bean intercropping is one of main agroforestry patterns in hilly region ofTaihang Mountain in China. In this study, spatial distributions of water and nutrients in soilwere investigated in walnut-mung bean intercropping field. A potting experiment wasconducted in a greenhouse to study effects of nitrogen-fixing plant, mung bean, and nitrogenfertilizer on walnut water balance, gas exchange and growth. Moreover, influence of nutrientson walnut water relations was explored through a nutrient control experiment. This study aimsat providing a theoretical basis for understanding the competition and facilitation betweendifferent components in agroforestry systems and improving management model of theagroforestry systems in the Taihang Mountain. The main findings are as follows:
     1、The spatial distribution of water in soil: The change patterns of soil moisture weresimilar in the walnut and mung bean monocroppings and the walnut–mung bean intercroppingsystems. In vertical direction, soil moisture increased with increasing soil depth, however thevariation magnitude of soil moisture decreased from40to80cm soil layers. In the horizontaldirection, in0-20cm soil layers, the farther the distance was from the forest belt, the lower ofsoil moisture, and in20-80cm soil layers, the closer the distance was from the forest belt, thelower the soil moisture. There was difference in the decline rate of soil moisture in the verticaldirectionin the monocroppings and the intercropping systems. In20-80cm soil layers, the soilmoisture in mung bean monoculture was highest, then was the agroforestry system, and the soilmoisture in walnuts monoculture was lowest. In0-20cm soil layer, the order of soil moisturewas mung bean monoculture the agroforestry system walnut monoculture.
     The spatial distribution of nutrient in soil: Walnut-mung bean intercropping and mungbean monoculture field had the highest nutrient content in shallow soil layers. In verticaldirection, phosphorus and potassium and soil organic matter content decreased with increasingsoil depth; In horizontal direction, in0-20cm soil layer, the farther the distance was from the forest belt, the lower of soil nutrients; and in20-80cm soil layer, the farther the distance wasfrom the forest belt, the higher the soil nutrients. Soil nutrient content of different layers inagroforestry system were more than walnut monoculture. The requirement of walnut and mungbeans to soil nutrients was available nitrogen> available phosphorus> organic matter>available potassium.
     2、The study was to explore effects of V. radiata, a nitrogen fixing-crop, on growth, waterbalance and gas exchanges of the intercropping J. regia seedlings and to investigate thehydraulic mechanism involved in photosynthesis and growth. We measured growth, hydrauliccharacteristics, and gas exchanges of J. regia seedlings, analyzed the effects of theintercropping nitrogen fixing V. radiata on xylem anatomic structure, water balance andphotosynthetic characteristics of J. regia seedlings under nitrogen deprivation and abundance.Results showed that under the condition of nitrogen deficiency, the nitrogen fixing V. radiatafacilitated growth of the intercropping J. regia seedlings by improving xylem development,water transport and hydraulic characteristics in high transpiration demand. However, withnitrogen addition, V. radiata plantation inhibited growth of J. regia likely by competing waterand other elements with the intercropping J. regia.
     3、The growth, hydraulic characteristics, and photosynthetic characteristics of J. regiaseedlings were measured in this study, to explore effects of phosphorous deficient soils withdifferent pH values on growth, water balance and photosynthetic characteristics of J. regiaseedlings. The results showed that: With phosphorous, pH3significantly reduced the P uptakeefficiency and P use efficiency of J. regia seedlings, and had similar reaction with phosphorusstress in the growth and physiological indexes. With phosphorous deficient, pH3increased thepoisoning effect of stress environment on J. regia seedlings. The change of indexes as follows:Under stress conditions the root growth of J. regia seedlings was inhibited, the root area toabsorb water and fertilizer was reduced, the development of petiole xylem was changed, thevessel density decreased, and PLC increased, water transport capacity decreased, inducedstomatal closure. With the stomatal conductance decreased, photosynthesis declined, the phenomenon of photoinhibition of J. regia leaf was induced and photo-oxidative was damaged,Fv/Fm, ΦPSⅡ, qP declined, optical systems starts physiology protection mechanisms, NPQincreased, to reduce photo-oxidative damage, regulated the ability of J. regia seedlings to adaptto environmental, affected the growth of J. regia seedlings.
     4、This study explored of nitrogen on growth, water balance and photosynthesis of walnutseedlings. The results showed that: leaf area, stomata size and root growth increased undernormal nitrogen supply, while indicators were towards downward trends under high nitrogensupply. Vessel diameter, pit diameter, and perforation diameter of petiole were increased bynitrogen, thus water transport efficiency of vessel was enhanced; While vessel density ofpetiole decreased by both high and low nitrogen, resulting in reducing of leaf water potentialand increasing of water loss rate. Vessel diameter and density were consistent to that of petiole,and root hydraulic conductivity decreased both under high and low nitrogen; While leaf gasexchange and vessel density had the same trend with leaf water potential. Leaf photosyntheticapparatus was damage to a certain degree by high nitrogen treatment and FV/Fmvalue wasbelow0.80. Periodical changes were present in the root pressure of walnut and the maximumvalues could all reach above25Kpa, which was sufficient to repair xylem embolism becauseof strong transpiration.
     5、Walnut seedlings with different nitrogen concentration conditions response distinctly todrought stress by adopting different coping mechanisms: Low concentration of nitrogentreatment increased root-shoot ratio, leaf stomata density and petioles xylem safety, anddecreased leaf area of seedling. Meanwhile, as soil moisture constant deduced, hydraulicconductivity of petiole and root and stomata conductance were decreased to reduce water loss,furthermore, leaf photosynthesis was also decreased to reduce water consumption fromabover-ground part of plant, which aimed to adjust its strategy of adapting to drought stress.On the other hand, after re-watering treatment, water transporting and photosynthetic ability ofseedlings quickly recovered. Besides, high concentration of nitrogen treatment decreased rootgrowth, root hydraulic conductivity of plant. As soil moisture constant deduced, petiole hydraulic conductivity loss rate was increased, and leaf water potential and were deduced todecrease the leaf transpiration and photosynthesis rate to response to drought stress. However,after re-watering treatment, photosynthetic ability of seedling was decreased. Normal amountsupply of nitrogen promote root growth, water transporting ability, water consumption andphotosynthetic ability of seedlings. Besides, at normal water and mild drought condition,seedling increased root amount, vessel diameter, and water transportation efficiency, to ensurenormal physiological activities. At extreme drought condition, seedling reduced its roothydraulic conductivity and index of leaf gas exchange, also increased petiole hydraulicconductivity loss rate, and adjusted itself to adapt to drought stress. On the one hand, afterre-watering treatment, compensation effect of seedling was most significant.
引文
Adams M, Campbell R, Allen H, et al. Root and foliar nutrient concentrations in loblolly pine: effe-cts of season, site, and fertilization. Forest science,1987,33(4):984-996.
    Aerts R. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soilfeedbacks. Journal of experimental botany,1999,50(330):29-37.
    Antal T, Mattila H, Hakala-Yatkin M, et al. Acclimation of photosynthesis to nitrogen deficiency inPhaseolus vulgaris. Planta,2010,232(4):887-898.
    Barrowclough D E, Peterson C A, Steudle E. Radial hydraulic conductivity along developing onionroots. Journal of experimental botany,2000,51(344):547-557.
    Berger T W, Glatzel G. Response of Quercus petraea seedlings to nitrogen fertilization. Forest Ecol-ogy and Management,2001,149(1):1-14.
    Bijlsma R, Lambers H. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon.2. Balanced growth driven by C fluxes and regulated by signals from C and N substrate. Plantand Soil,2000,220(1-2):71-87.
    Bilbrough C J, Caldwell M M. The effects of shading and N status on root proliferation in nutrientpatches by the perennial grass Agropyron desertorum in the field. Oecologia,1995,103(1):10-16.
    Blum A, Ebercon A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance. Crop Science,1976,16(3):428-431.
    Bond B J, Kavanagh K L. Stomatal behavior of four woody species in relation to leaf-specific hydr-aulic conductance and threshold water potential. Tree Physiology,1999,19(8):503-510.
    Brodribb T J, Hill R S. Increases in water potential gradient reduce xylem conductivity in whole plants.Evidence from a low-pressure conductivity method. Plant Physiology,2000,123(3):1021-1028.
    Brooker R W, Maestre F T, Callaway R M, et al. Facilitation in plant communities: the past, thepresent, and the future. Journal of Ecology,2008,96(1):18-34.
    Bucci S J, Scholz F G, Goldstein G, et al. Nutrient availability constrains the hydraulic architectureand water relations of savannah trees. Plant, cell&environment,2006,29(12):2153-2167.
    Callaway R M, Walker L R. Competition and facilitation: a synthetic approach to i-nteractions in plantcommunities. Ecology,1997,78(7):1958-1965.
    Carvajal M, Cooke D T, Clarkson D T. Responses of wheat plants to nutrient deprivation may involvethe regulation of water-channel function. Planta,1996,199(3):372-381.
    Chapin III F S, Bloom A J, Field C B, et al. Plant responses to multiple environmental factors.Bioscience,1987,37(1):49-57.
    Choat B, Ball M C, Luly J G, et al. Hydraulic architecture of deciduous and evergreen dry rainforesttree species from north-eastern Australia. Trees,2005,19(3):305-311.
    Choat B, Ball M, Luly J, et al. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology,2003,131(1):41-48.
    Clarkson D T, Carvajal M, Henzler T, et al. Root hydraulic conductance: diurnal aquaporin expressionand the effects of nutrient stress. Journal of experimental botany,2000,51(342):61-70.
    Comstock J P. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of experimental botany,2002,53(367):195-200.
    Coomes D A, Grubb P J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecological Monographs,2000,70(2):171-207.
    Cornell S E. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organiccomponent. Environmental Pollution,2011,159(10):2214-2222.
    Darlington A B, Halinska A, Dat J F, et al. Effects of increasing saturation vapour pressure deficiton growth and ABA levels in black spruce and jack pine. Trees,1997,11(4):223-228.
    Davis A S, Jacobs D F. Quantifying root system quality of nursery seedlings and relationship to out-planting performance. New Forests,2005,30(2-3):295-311.
    Demmig A B, Adams III W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fra-ction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum,1996,98(2):253-264.
    Erice G, Louahlia S, Irigoyen J J, et al.Biomass partitioning, morphology and water status of fouralfalfa genotypes submitted to progressive drought and subsequent recovery. Plant Physiol,2010,167(2):114-120.
    Ewers F W, Cochard H, Tyree M T. A survey of root pressures in vines of a tropical lowland forest.Oecologia,1997,110(2):191-196.
    Fan M, Bai R, Zhao X, et al. Aerenchyma formed under phosphorus deficiency contributes to the red-uced root hydraulic conductivity in maize roots. Journal of Integrative Plant Biology,2007,49(5):598-604.
    Fichot R, Barigah T S, Chamaillard S, et al. Common trade-offs between xylem resistance to cavitationand other physiological traits do not hold among unrelated Populus deltoides×Populus nigra hybri-ds. Plant, cell&environment,2010,33(9):1553-1568.
    Fisher J B, Guillermo Angeles A, Ewers F W, et al. Survey of root pressure in tropical vines andwoody species. International Journal of Plant Sciences,1997:44-50.
    Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under droughtand salinity in C3plants. Plant Biology,2004,6(3):269-279.
    Francisco B L,Campos A,Alves J,et al. Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environmental and Experimental Botany,2006,58(1):158-168.
    Fredeen A L, Raab T K, Rao I M, et al. Effects of phosphorus nutrition on photosynthesis in Glycinemax (L.) Merr. Planta,1990,181(3):399-405.
    Fustec J, Lesuffleur F, Mahieu S, et al. Nitrogen rhizodeposition of legumes. Sustainable AgricultureVolume2, Springer,2011:869-881.
    Gallé A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescentoak (Quercus pubescens) trees during drought stress and recovery. New Phytologist,2007,174(4):799-810.
    Gorska A, Ye Q, Holbrook N M, et al. Nitrate control of root hydraulic properties in plants: transla-ting local information to whole plant response. Plant Physiology,2008,148(2):1159-1167.
    Grassi G, Colom M R, Minotta G. Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies. Physiologia Plantarum,2001,111(2):245-254.
    Gulías J, Flexas J, Abadía A, et al. Photosynthetic responses to water deficit in si-x Mediterraneansclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovicisalvatoris, an endemic Balearic species. Tree Physiology,2002,22(10):687-697.
    Gullo M, Salleo S, Piaceri E, et al. Relations between vulnerability to xylem embolism and xylemconduit dimensions in young trees of Quercus corris. Plant, cell&environment,1995,18(6):661-669.
    Hacke U G, Plavcová L, Almeida-Rodriguez A, et al. Influence of nitrogen fertilization on xylem traitsand aquaporin expression in stems of hybrid poplar. Tree Physiology,2010,30(8):1016-1025.
    Hacke U G, Sperry J S, Ewers B, et al. Influence of soil porosity on water use in Pinus taeda.Oecologia,2000,124(4):495-505.
    Hacke U G, Sperry J S, Feild T, et al. Water transport in vesselless angiosperms: conducting efficiencyand cavitation safety. International Journal of Plant Sciences,2007,168(8):1113-1126.
    Hacke U G, Sperry J S, Wheeler J K, et al. Scaling of angiosperm xylem structure with safety andefficiency. Tree Physiology,2006,26(6):689-701.Hargrave K, Kolb K, Ewers F, et al. Conduit diameter and drought-induced embolism in Salviamellifera Greene (Labiatae). New Phytologist,1994,126(4):695-705.
    Harvey H, Van Den Driessche R. Nutrition, xylem cavitation and drought resistance in hybrid poplar.Tree Physiology,1997,17(10):647-654.
    Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomassallocation? Trends in plant science,2006,11(12):610-617.
    Hodge A, Stewart J, Robinson D, et al. Spatial and physical heterogeneity of N supply from soil doesnot influence N capture by two grass species. Functional Ecology,2000,14(5):645-653.
    Holbrook N M, Ahrens E T, Burns M J, et al. In vivo observation of cavitation and embolism rep-air using magnetic resonance imaging. Plant Physiology,2001,126(1):27-31.
    Horswill P, O'Sullivan O, Phoenix G K, et al. Base cation depletion, eutrophication and acidificationof species-rich grasslands in response to long-term simulated nitrogen deposition. EnvironmentalPollution,2008,155(2):336-349.
    Hsiao T C, Xu L K. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of experimental botany,2000,51(350):1595-1616.
    Hubbard R, Ryan M, Stiller V, et al. Stomatal conductance and photosynthesis vary linearly with pl-ant hydraulic conductance in ponderosa pine. Plant, cell&environment,2001,24(1):113-121.
    Iivonen S, Kaakinen S, Jolkkonen A, et al. Influence of long-term nutrient optimization on biomass,carbon, and nitrogen acquisition and allocation in Norway spruce. Canadian journal of forest rese-arch,2006,36(6):1563-1571.
    Kaakinen S, Jolkkonen A, Iivonen S, et al. Growth, allocation and tissue chemistry of Picea abiesseedlings affected by nutrient supply during the second growing season. Tree Physiology,2004,24(6):707-719.
    Kamaluddin M, Zwiazek J J. Effects of root medium pH on water transport in paper birch (Betulapapyrifera) seedlings in relation to root temperature and abscisic acid treatments. Tree Physiology,2004,24(10):1173-1180.
    Kang S, Zhang J. Controlled alternate partial root-zone irrigation: its physiological consequences andimpact on water use efficiency. Journal of experimental botany,2004,55(407):2437-2446.
    Kolber Z, Zehr J, Falkowski P. Effects of growth irradiance and nitrogen limitation on photosyntheticenergy conversion in photosystem II. Plant Physiology,1988,88(3):923-929.
    Koranda M, Kerschbaum S, Wanek W, et al. Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Annals of botany,2007,99(1):161-169.
    Kramer P J, Boyer J S. Water relations of plants and soils: Academic press,1995.
    Leng H, Lu M Z, Wan X C. Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone. Physiologia Plantarum,2013,147(3):329-339.
    Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distributionhave different effects on root system architecture of Arabidopsis. The Plant Journal,2002,29(6):751-760.
    Liu Z, Dickmann D I. Responses of two hybrid Populus clones to flooding, drought, and nitrogenavailability. I. Morphology and growth. Canadian Journal of Botany,1992,70(11):2265-2270.
    Lo Gullo M A, Nardini A, Salleo S, et al. Changes in root hydraulic conductance (KR) of Oleaoleaster seedlings following drought stress and irrigation. New Phytologist,1998,140(1):25-31.
    Lowther J. Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of pinus radiataneedles. Communications in Soil Science&Plant Analysis,198011,175–188.
    Lu Y, Alejandra Equiza M, Deng X, et al. Recovery of Populus tremuloides seedlings following severedrought causing total leaf mortality and extreme stem embolism. Physiologia Plantarum,2010,140(3):246-257.
    Lu Y, Duan B, Zhang X, et al. Differences in growth and physiological traits of Populus cathayanapopulations as affected by enhanced UV-B radiation and exogenous ABA. Environmental andExperimental Botany,2009,66(1):100-109.
    Ludwig F, Dawson T E, Kroon H, et al. Hydraulic lift in Acacia tortilis trees on an East Africansavanna. Oecologia,2003,134(3):293-300.
    Lynch J. Root architecture and plant productivity. Plant Physiology,1995,109(1):7.
    Ma Z, Bielenberg D, Brown K, et al. Regulation of root hair density by phosphorus availability inArabidopsis thaliana. Plant, cell&environment,2001,24(4):459-467.
    Maestre FT, Cortina J. Do positive interactionsincrease with abioticstress? A test from asemi-arid ste-ppe. Proc. R. Soc. Lond, B (Suppl.),2004,271, S331–S333.
    Markesteijn L, Poorter L, Paz H, et al. Ecological differentiation in xylem cavitation resistance isassociated with stem and leaf structural traits. Plant, cell&environment,2011,34(1):137-148.
    Martre P, North G B, Nobel P S. Hydraulic conductance and mercury-sensitive water transport for rootsof Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiology,2001,126(1):352-362.
    Mayr S, Hacke U, Schmid P, et al. Frost drought in conifers at the alpine timberline: xylem dysfun-ction and adaptations. Ecology,2006,87(12):3175-3185.
    Mayr S, Sperry J S. Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments valid-ate the ‘thaw-expansion hypothesis’ but conflict with ultrasonic emission data. New Phytologist,2010,185(4):1016-1024.
    Mazzoleni S, Dickmann D I. Differential physiological and morphological responses of two hybridPopulus clones to water stress. Tree Physiology,1988,4(1):61-70.
    Meinzer F C, Clearwater M J, Goldstein G. Water transport in trees: current perspectives, new insig-hts and some controversies. Environmental and Experimental Botany,2001,45(3):239-262.
    Mencuccini M, Comstock J. Vulnerability to cavitation in populations of two desert species, Hymenoclea salsola and Ambrosia dumosa, from different climatic regions. Journal of experimental botany,1997,48(6):1323-1334.
    Mugendi D, Nair P, Mugwe J, et al. Alley cropping of maize with calliandra and leucaena in thesubhumid highlands of Kenya: Part2. Soil-fertility changes and maize yield. Agroforestrysystems,1999,46(1):39-50.
    Nardini A, Pedá G, Salleo S. Alternative methods for scaling leaf hydraulic conductance offer new insig-hts into the structur-function relationships of sun and shade leaves. Functional Plant Biology,2012,39(5):394-401.
    Niinemets ü, Cescatti A, Lukjanova A, et al. Modification of light-acclimation of Pinus sylvestrisshoot architecture by site fertility. Agricultural and forest meteorology,2002,111(2):121-140.
    North G B, Nobel P S. Drought-induced changes in hydraulic conductivity and structure in roots ofFerocactus acanthodes and Opuntia ficus-indica. New Phytologist,1992,120(1):9-19.
    Nunes C, Sousa Araújo S, Silva J M, et al. Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environmental and Experimental Botany,2008,63(1):289-296.gren E. Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. PlantPhysiology,1990,93(4):1280-1285.
    Pallardy S G. Physiology of woody plants: Academic Press,2010.
    Pérez López U, Robredo A, Lacuesta M, et al.Atmospheric CO2concentration influences the contri-butions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars.Plant Physiol,2010,167(1):15-22.
    Pitre F E, Lafarguette F, Boyle B, et al. High nitrogen fertilization and stem leaning have overlappingeffects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Phys-iology,2010,30(10):1273-1289.
    Plavcová L, Hacke U G. Phenotypic and developmental plasticity of xylem in hybrid poplar saplingssubjected to experimental drought, nitrogen fertilization, and shading. Journal of experimentalbotany,2012,63(18):6481-6491.
    Pregitzer K S, DeForest J L, Burton A J, et al. Fine root architecture of nine Nor-th American trees.Ecological Monographs,2002,72(2):293-309.
    Radin J W, Parker L L. Water relations of cotton plants under nitrogen deficiency II. Environmentalinteractions on stomata. Plant Physiology,1979,64(3):499-501.
    Ramalho J C, Pons T L, Groeneveld H W, et al. Photosynthetic acclimation to high light conditionsin mature leaves of Coffea arabica L.: role of xanthophylls, quenching mechanisms and nitrogen nutrition. Functional Plant Biology,2000,27(1):43-51.
    Remans T, Nacry P, Pervent M, et al. A central role for the nitrate transporter NRT2.1in the inte-grated morphological and physiological responses of the root system to nitrogen limitation inArabidopsis. Plant Physiology,2006,140(3):909-921.
    Rhiel E, Krupinska K, Wehrmeyer W. Effects of nitrogen starvation on the function and organizationof the photosynthetic membranes in Cryptomonas maculata (Cryptophyceae). Planta,1986,169(3):361-369.
    Rhizopoulou S, Meletiou-Christou M, Diamantoglou S. Water relations for sun and shade leaves offour Mediterranean evergreen sclerophylls. Journal of experimental botany,1991,42(5):627-635.
    Rieger M, Litvin P. Root system hydraulic conductivity in species with contrasting root anatomy.Journal of experimental botany,1999,50(331):201-209.
    Rosner S, Klein A, Müller U, et al. Hydraulic and mechanical properties of young Norway spruceclones related to growth and wood structure. Tree Physiology,2007,27(8):1165-1178.
    Roy J, Winner W E, Pell E J. Response of plants to multiple stresses: Academic Press,1991.
    Salleo S, Nardini A, Pitt F, et al. Xylem cavitation and hydraulic control of stomatal conductancein Laurel (Laurus nobilis L.). Plant, cell&environment,2000,23(1):71-79.
    Santiago L S, Goldstein G, Meinzer F C, et al. Leaf photosynthetic traits scale with hydraulic cond-uctivity and wood density in Panamanian forest canopy trees. Oecologia,2004,140(4):543-550.
    Scheurwater I, Koren M, Lambers H, et al. The contribution of roots and shoots to whole plant nit-rate reduction in fast-and slow-growing grass species. Journal of experimental botany,2002,53(374):1635-1642.
    Schipanski M, Drinkwater L, Russelle M. Understanding the variability in soybean nitrogen fixationacross agroecosystems. Plant and Soil,2010,329(1-2):379-397.
    Schwenke H, Wagner E. A new concept of root exudation1. Plant, cell&environment,1992,15(3):289-299.
    Sharp E, Davis-Poynter N, Farrell H. Analysis of the subcellular trafficking properties of murine cyt-omegalovirus M78, a7transmembrane receptor homologue. Journal of General Virology,2009,90(1):59-68.
    Smirnoff N, Colombe S V. Drought influences the activity of enzymes of the chloroplast hydrogenperoxide scavenging system. Journal of experimental botany,1988,39(8):1097-1108.
    Smith D M, Jarvis P G. Physiological and environmental control of transpiration by trees in windbr-eaks. Forest Ecology and Management,1998,105(1):159-173.
    Sperry J, Donnelly J, Tyree M. A method for measuring hydraulic conductivity and embolism inxylem. Plant, cell&environment,1988,11(1):35-40.
    Sperry J, Pockman W. Limitation of transpiration by hydraulic conductance and xylem cavitation inBetula occidentalis. Plant, Cell&Environment,1993,16:279-287.
    Sperry J, Tyree M. Water-stress-induced xylem embolism in three species of conifers. Plant, cell&environment,1990,13(5):427-436.
    Steudle E, Peterson C A. How does water get through roots? Journal of experimental botany,1998,49(322):775-788.
    Steudle E. Water uptake by plant roots: an integration of views. Plant and Soil,2000,226(1):45-56.
    Sun S J, Meng P, Zhang J S, et al. Hydraulic lift by Juglans regia relates to nutrient status in theintercropped shallow-root crop plant. Plant and Soil,2014,374(1-2):629-641.
    Sun S J, Meng P, Zhang J S, et al. Variation in soil water uptake and its effect on plant water sta-tus in Juglans regia L. during dry and wet seasons. Tree Physiology,2011,31(12):1378-1389.
    Svistoonoff S, Creff A, Reymond M, et al. Root tip contact with low-phosphate media reprogramsplant root architecture. Nature genetics,2007,39(6):792-796.
    Swift C, Jacobs S, Esler K. Drought induced xylem embolism in four riparian trees from the WesternCape Province: insights and implications for planning and evaluation of restoration. South AfricanJournal of Botany,2008,74(3):508-516.
    Szabó I, Bergantino E, Giacometti G M. Light and oxygenic photosynthesis: energy dissipation as aprotection mechanism against photo‐oxidation. EMBO reports,2005,6(7):629-634.
    Teklay T. Decomposition and nutrient release from pruning residues of two indigenous agroforestry spe-cies during the wet and dry seasons. Nutrient cycling in agroecosystems,2007,77(2):115-126.
    Tyree M T, Dixon M A. Water stress induced cavitation and embolism in some woody plants. Phys-iologia Plantarum,1986,66(3):397-405.
    Tyree M T, Ewers F W. The hydraulic architecture of trees and other woody plants. New Phytologist,1991,119(3):345-360.
    Tyree M T, Salleo S, Nardini A, et al. Refilling of embolized vessels in young stems of laurel. Dowe need a new paradigm? Plant Physiology,1999,120(1):11-22.
    Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap: Springer,2002.
    Tyree M, Cochard H, Cruiziat P, et al. Drought‐induced leaf shedding in walnut: evidence for vul-nerability segmentation. Plant, cell&environment,1993,16(7):879-882.
    Vance C P, Uhde C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist,2003,157(3):423-447.
    Vander Willigen C, Sherwin H, Pammenter N. Xylem hydraulic characteristics of subtropical trees fromcontrasting habitats grown under identical environmental conditions. New Phytologist,2000,145(1):51-59.
    Verhoeven A S, Demmig-Adams B, Adams III W W. Enhanced employment of the xanthophyll cycleand thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology,1997,113(3):817-824.
    Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle: sourcesand consequences. Ecological applications,1997,7(3):737-750.
    Wan X C, Zwiazek J J. Mercuric chloride effects on root water transport in aspen seedlings. PlantPhysiol,1999,121(3):939-946.
    Wang G, Li C, Zhang F. Effects of different nitrogen forms and combination with foliar spraying with6-benzylaminopurine on growth, transpiration, and water and potassium uptake and flow in tobacco.Plant and Soil,2003,256(1):169-178.
    Waring R. Responses of evergreen trees to multiple stresses. Response of plants to multiple stresses.Academic Press, San Diego, Calif,1991:371-390.
    Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diam-eters. Ecology,2001,82(3):882-892.
    Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceaeand other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport.Plant, cell&environment,2005,28(6):800-812.
    Xia J, Niu S, Wan S. Response of ecosystem carbon exchange to warming and nitrogen additionduring two hydrologically contrasting growing seasons in a temperate steppe. Global ChangeBiology,2009,15(6):1544-1556.
    Yang S, Tyree M. A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant, cell&environment,1992,15(6):633-643.
    Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in rootarchitecture. Science,1998,279(5349):407-409.
    Zhang J S, Meng P. Simulation on water ecological characteristics of agroforestry in the hilly areaof Taihang Mountain. Acta Ecologica Sinica,2003,24(6):1172-1177.
    Zhang W T, Jiang Y, Dong M-y, et al. Relationship between the radial growth of Picea meyeri andclimate along elevations of the Luyashan Mountain in North-Central China. Forest Ecology andManagement,2012,265:142-149.
    Zhang Y, Equiza M A, Zheng Q, et al. Factors controlling plasticity of leaf morphology in Robiniapseudoacacia L. II: the impact of water stress on leaf morphology of seedlings grown in acontrolled environment chamber. Annals of forest science,2012,69(1):39-47.
    Zhao Y, Zhang B, Wang M Z. Assessment of competition for water, fertilizer and light betweencomponents in the alley cropping system. Acta Ecologica Sinica,2006,26(6):1792-1801.
    安锋,张硕新.7种木本植物根和小枝木质部栓塞的脆弱性.生态学报,2005,25(8):1928-1933.
    安锋,张硕新.木本植物木质部栓塞脆弱性研究进展.西北林学院学报,2002,17(3):30-34.
    鲍思伟.水分胁迫对蚕豆(Vicia faba L.)光合作用及产量的影响.西南民族学院学报:自然科学版,2001,27(4):446-449.
    陈海波,卫星,王婧.水曲柳苗木根系形态和解剖结构对不同氮浓度的反应'.林业科学,2010,46(2):61-66.
    陈锦强,李明启.不同氮素营养对黄麻叶片的光合作用,光呼吸的影响及光呼吸与硝酸还原的关系.植物生理学报,1983,3:251-259.
    陈屏昭,陈顺方,刘忠荣.缺磷胁迫对温州蜜柑光合作用的光抑制研究(一).云南农业大学学报,2003,18(3):281-285.
    杜尧东,刘作新.水肥耦合对丘陵半干旱区春小麦产量的影响.华南农业大学学报,2003,24(1):8-12.
    樊卫国,王立新.不同供磷水平对纽荷尔脐橙幼树生长及叶片营养元素含量的影响.中国农业科学,2012,45(4):714-725.
    范燕萍,余让才.氮素营养胁迫对匙叶天南星生长及光合特性的影响.园艺学报,2000,27(4):297-299.
    高建社,王军,周永学等.5个杨树无性系抗旱性研究.西北农林科技大学学报(自然科学版),2005,33(2):112-116.
    关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报,2000,6(2):152-158.
    郭凤鸣,刘永香.保护地栽培中土壤盐渍化回避法.北方园艺,1996,(2):3-5.
    郭盛磊,阎秀峰,白冰.落叶松幼苗光合特性对氮和磷缺乏的响应.应用生态学报,2005,16(4):589-594.
    郭延平,陈屏昭,张良诚.不同供磷水平对温州蜜柑叶片光合作用的影响.植物营养与肥料学报,2002,8(2):186.
    何树斌.不同氮素和水分供应下紫花苜蓿碳同化和C/N响应机制研究.兰州大学2012.
    黄菊莹,余海龙,张硕新.施水和钾素添加对元宝枫和女贞木质部栓塞的影响.植物生态学报,2009,33(6):1199-1207.
    黄菊莹,张硕新,冯慧娟.4个树种木质部栓塞与N素营养关系的研究.西北林学院学报,2005,20(3):36-39.
    黄荣,孙虎威,刘尚俊.低磷胁迫下水稻根系的发生及生长素的响应.中国水稻科学,2012,26(5):563-568.
    姜琳琳,韩立思,韩晓日.氮素对玉米幼苗生长,根系形态及氮素吸收利用效率的影响.植物营养与肥料学报,2011,17(1):247-253.
    靳欣,徐洁,白坤栋.从水力结构比较3种共存木本植物的抗旱策略.北京林业大学学报,2011,33(6):135-141.
    李法云,官春云.辽西半干旱区农田水肥耦合作用对春小麦产量的影响.应用生态学报,2000,11(4):535-539.
    李海波,李全英,陈温福.氮素不同用量对水稻叶片气孔密度及有关生理性状的影响.沈阳农业大学学报,2004,34(5):340-343.
    李会科,赵政阳,张广军.种植不同牧草对渭北苹果园土壤肥力的影响.西北林学院学报,2004,19(2):31-34.
    李吉跃,翟洪波.木本植物水力结构与抗旱性.应用生态学报,2000,11(2):301-305.
    李绍长,胡昌浩,龚江等.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响.作物学报,2004,30(4):365-370.
    李生秀,李世清.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱地区农业研究,1994,12(1):38-46.
    李世清,田霄鸿.养分对旱地小麦水分腔迫的生理补偿效应.西北植物学报,2000,20(1):22-28.
    李卫民,张佳宝.植物木质部导管栓塞.植物生理学通讯,2008,44(3):581-584.
    李卫民,周凌云.氮肥对旱作小麦光合作用与环境关系的调节.植物生理学通讯,2003,39(2):119-121.
    李霞,饶龙兵,郭洪英.氮水平对桤木属幼苗根系形态及氮累积利用影响.土壤,2013,45(1):34-40.
    李秀春,陈日远,刘厚诚.磷素营养对不同品种芥蓝生长和品质的影响.园艺学进展(第八辑)中国园艺学会第八届青年学术讨论会暨现代园艺论坛论文集,2008.
    李永夫,金松恒,叶正钱.低磷胁迫对山核桃幼苗根系形态和生理特征的影响.浙江林学院学报,
    2010,27(2):239-245.
    李郑军,许修宏.不同地区大豆根瘤菌培养条件的优化.东北农业大学学报,2009,40(11):11-13.
    林世青,许春辉,张其德.叶绿素荧光动力学在植物抗性生理学,生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16.
    刘根华.氮素对山核桃幼苗生理生化的影响及营养诊断.浙江农林大学,2010.
    刘建福.磷胁迫对澳洲坚果幼苗叶片光合作用的影响.西南师范大学学报:自然科学版,2007,32(2):45-48.
    刘晚苟,山仑,邓西平.干湿条件下土壤容重对玉米根系导水率的影响.土壤学报,2003,40(5):779-782.
    刘晚苟,山仑.土壤机械阻力对玉米根系导水率的影响.水利学报,2004,4:114-117.
    刘兴宇.农林复合系统种间关系研究进展.生态学报,2007,26(9):1464-1470.
    刘洲鸿,刘勇.不同水分条件下施肥对侧柏苗木生长及抗旱性的影响.北京林业大学学报,2002,24(5):56-60.
    卢琦,慈龙骏.农用林业研究的回顾与展望.世界林业研究,1996,9(2):39-49.
    鲁如坤,时正元.磷在土壤中有效性的衰减.土壤学报,2000,37(3):323-329.
    吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应.植物生态学报,2007,31(2):205-218.
    罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学,1999,16(2):126-130.
    麦博儒,郑有飞,梁骏.模拟酸雨对小麦叶片同化物,生长和产量的影响.应用生态学报,2008,19(10):2227-2233.
    毛达如.植物营养研究方法:北京农业大学出版社,1994.
    慕自新,张岁岐,杨晓青等.氮磷亏缺对玉米根系水流导度的影响.植物生理与分子生物学学报,2003,29(1):45-51.
    潘文,张晓珊,丁晓纲.氮素营养对美丽异木棉等4个树种幼苗生长及光合特性的影响.中国农学通报,2012,28(31):41-45.
    潘晓华,刘水英,李锋.低磷胁迫对不同水稻品种幼苗光合作用的影响.作物学报,2003,29(5):770-774.
    裴冬,张喜英,王峻.高梁,谷子根系发育及其抗旱性研究.中国生态农业学报,2002,10(4):28-30.
    彭长连,林植芳,林桂珠.磷素利用效率不同小麦的光合作用和水分利用效率.作物学报,2000,26(5):543-548.
    钱晓晴,沈其荣,徐国华.配合施用NH4+-N和NO3--N对旱作水稻生长与水分利用效率的影响.土壤学报,2003,40(4):807-812.
    邱栋梁,刘星辉.模拟酸雨对龙眼叶片叶绿素a荧光特性的影响.园艺学报,2000,27(3):177-181.
    曲道春,江洪,由美娜.氮沉降对香樟叶片光合及叶绿素荧光特性的影响研究.环境污染与防治,2012,33(11):15-19.
    上官周平,李世清.旱地作物氮素营养生理生态:科学出版社,2004.
    沈玉芳,曲东,王保莉.干旱胁迫下磷营养对不同作物苗期根系导水率的影响.作物学报,2005,31(2):214-218.
    沈玉芳,王保莉,曲东.水分胁迫下磷营养对玉米苗期根系导水率的影响.西北农林科技大学学报(自然科学版),2002,30(5):11-15.
    史刚荣,赵金丽,马成仓.淮北相山不同群落中3种禾草叶片的生态解剖.草业学报,2007,16(3):62-68.
    舒翔,范川,李贤伟.施肥对香樟幼苗光合生理的影响.四川农业大学学报,2013,31(2):157-162.
    宋天宇,刘艳红,姚毅.土壤氮素与光照对盆栽珙桐幼苗光合参数的影响.生态科学,2011,30(3):243-249.
    孙守家,孟平,张劲松.华北石质山区核桃-绿豆复合系统氘同位素变化及其水分利用.生态学报,2010,(14):3717-3726.
    谭勇,梁宗锁,王渭玲.氮、磷、钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响.中国生态农业学报,2007,15(6):69-72.
    田晓玲.晋西黄土区核桃花生间作系统的种间关系研究.北京林业大学,2011.
    王建波,钟海秀,付小玲.氮沉降对小叶章光合生理特性的影响.中国农学通报,2013,29(7):45-49.
    王林,冯锦霞,王双霞.干旱和坡向互作对栓皮栎和侧柏生长的影响.生态学报,2013,33(8):2425-2433.
    王秋杰,张福锁,蔡聪.农林牧复合生态经济系统在我国农业可持续发展中的地位与作用.生态农业研究,1998,6(1):52-56.
    王冉,李吉跃,张方秋.不同施肥方法对马来沉香和土沉香苗期根系生长的影响.生态学报,2011,31(1):98-106.
    王远志.磷胁迫对阳桃叶片光合作用的影响.现代农业科技,2008,(10):6-7.
    魏红旭,徐程扬,马履一.不同指数施肥方法下长白落叶松播种苗的需肥规律.生态学报,2010,30(3):685-690.
    魏霞,李守中,郑怀舟.叶片气体交换和叶绿素荧光在植物逆境生理研究中的应用.福建师范大学学报:自然科学版,2007,23(4):124-128.
    肖祥希.氮对杉木不同家系苗木生长影响试验研究.福建林业科技,1995,22(1):31-35.
    徐茜,陈亚宁.胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应.中国生态农业学报,2012,20(8):1059-1065.
    杨长明,杨林章,欧阳竹.不同养分与水分管理对水稻植株根系形态及其活力的影响.中国生态农业学报,2004,12(4):82-85.
    杨建峰,贺立源,左雪冬.不同pH低磷土壤上水稻磷营养特性研究.植物营养与肥料学报,2009,15(1):62-68.
    姚利民,李伏生,佟玲土等.土壤水分有效性对梭梭苗根系导水率的动态影响.农业机械学报,2011,5(42):68-72.
    姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,2006,25(4):80-85.
    尹丽,胡庭兴,刘永安.干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响.应用生态学报,2010,(3):569-576.
    余利平,田立荣,张春雷等.低磷胁迫对油菜不同生育期叶片光合作用的影响.中国农学通报,2008,24(12):232-236.
    喻方圆,徐锡增.植物逆境生理研究进展.世界林业研究,2004,16(5):6-11.
    袁军.油茶低磷适应机理研究.北京林业大学,2013.
    曾琳,王更亮,王广东.氮磷钾营养水平对观赏向日葵生长发育及光合特性的影响.西北植物学报,2010,(6):1180-1185.
    曾希柏,谢德体,青长乐.氮肥施用量对莴笋光合特性影响的研究.植物营养与肥料学报,1997,3(4):323.
    翟进升,周静,王明珠.低丘红壤南酸枣与花生复合系统种间水肥光竞争的研究.中国生态农业学报,2005,13(4):82-84.
    张国盛,张仁陟,黄高宝.水分胁迫条件下春小麦根系对施肥的响应.草业学报,2003,12(3):105-109.
    张海敏.八个树种叶片水分特性和茎导水特性的比较研究.内蒙古农业大学,2010.
    张海昕,李姗,张硕新.4个杨树无性系木质部导管结构与栓塞脆弱性的关系.林业科学,2013,49(5):54-60.
    张虎天,郭丽琢,柴强.接种根瘤菌对豌豆/玉米体系根际细菌数量及氮营养的影响.甘肃农业大学学报,2011,46(1):30-33.
    张华,杨永奎,谢德体.酸雨对紫色土氮磷淋失的影响.水土保持学报,2007,21(1):22-25.
    张劲松,孟平.农林复合系统水分生态特征的模拟研究.生态学报,2004,24(6):1172-1177.
    张雷明,上官周平,毛明策.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响.应用生态学报,2003,14(5):695-698.
    张蕊,王艺,金国庆.施氮对木荷3个种源幼苗根系发育和氮磷效率的影响.生态学报,2013,33(12):3611-3621.
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    张硕新,张远迎.几个抗旱树种木质部栓塞脆弱性的研究.西北林学院学报,1997,12(2):1-6.
    张雪洁,谭晓风,袁军.低磷胁迫对油茶叶绿素荧光参数的影响.经济林研究,2012,30(2):48-51.
    赵忠,李鹏,薛文鹏.渭北主要造林树种细根生长及分布与土壤密度关系.林业科学,2004,40(5):50-55.
    周清.植物输水过程模拟研究.天津大学,2004.
    朱清科,朱金兆.黄土塬面农林复合系统的生态位特征.中国水土保持科学,2003,1(1):49-52.
    祝燕,刘勇,李国雷.氮素营养对长白落叶松移植苗生长及养分状况的影响.林业科学,2011,47(9):168-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700