用户名: 密码: 验证码:
黄瓜嫁接苗microRNA鉴定及对非生物胁迫的应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus)与南瓜(Cucurbita moschata)砧木嫁接能明显促进黄瓜生长,提高黄瓜抗逆性。植物microRNA(miRNA)在转录后抑制靶基因表达,调节植物生长发育和应答各种非生物胁迫。然而尚缺乏miRNA调控黄瓜嫁接苗生长和抗逆性的研究。为研究miRNA参与调控黄瓜嫁接苗生长发育和抵御非生物胁迫的作用机制,分别以①黄瓜—南瓜(接穗—砧木)嫁接的黄瓜嫁接苗、②南瓜—黄瓜(接穗—砧木)嫁接的南瓜嫁接苗、③黄瓜自根嫁接苗和④南瓜自根嫁接苗的叶片和根尖构建了8个小RNA文库。利用高通量测序与生物信息学手段,鉴定黄瓜与南瓜中响应嫁接的miRNA。对黄瓜嫁接苗和黄瓜自根嫁接苗进行干旱、高盐、缺氮或缺磷胁迫,利用荧光定量PCR检测叶片和根中miRNA和靶基因的表达。主要结果如下:
     1.鉴定黄瓜和南瓜miRNA。利用Solexa测序,结合BLASTn和Mireap等,鉴定到112条已知miRNA(分属40个miRNA家族)以及48条新miRNA,预测了miRNA的靶基因。
     2.鉴定黄瓜中响应嫁接的miRNA。高通量测序结果显示,黄瓜嫁接苗与南瓜嫁接苗中75%的已知miRNA的表达发生显著变化。荧光定量PCR发现10条已知miRNA、16条新miRNA以及19条靶基因的表达均发生了显著变化,说明miRNA及其靶基因能响应嫁接。
     3. miRNA参与黄瓜嫁接苗应答干旱胁迫。与黄瓜自根嫁接苗相比,黄瓜嫁接苗叶片中多数miRNA表达在干旱3h后下调,8h和24h后明显上调;根中多数miRNA表达在干旱1h后下调,3h和8h后明显上调,24h后下调;叶片中多数靶基因表达在干旱3h后明显上调,8h和24h后下调;根中多数靶基因表达在干旱胁迫下明显上调。
     4. miRNA参与黄瓜嫁接苗应答盐胁迫。与黄瓜自根嫁接苗相比,黄瓜嫁接苗叶片多数miRNA表达在盐胁迫2h后下调,6h和24h后上调;根中多数miRNA表达在盐胁迫下明显上调;叶片中多数靶基因表达在盐胁迫24h后明显下调;根中多数靶基因表达在盐胁迫下明显上调。
     5. miRNA参与黄瓜嫁接苗应答缺氮或缺磷胁迫。与黄瓜自根嫁接苗相比,黄瓜嫁接苗叶片多数miRNA表达在缺氮或缺磷1h后明显下调,3h后上调,8h后又下调,缺氮24h和48h后上调,而缺磷24h和48h后明显下调;根中多数miRNA表达在缺氮24h后明显上调;缺磷1h和3h后上调,8h和24h后下调,48h后上调;叶片中多数靶基因表达在缺氮1h、3h和8h后明显下调,24h和48h后上调;缺磷1h和3h后明显上调,8h、24h和48h后下调;根中多数靶基因表达在缺氮或缺磷胁迫下明显上调。
     本研究为阐明miRNA参与调控黄瓜嫁接苗生长发育和抵御非生物胁迫的作用机制奠定了理论基础。
Pumpkins (Cucurbita moschata) are usually used as rootstocks for cucumber (Cucumis sativus)grafting to improve cucumber growth and tolerance to abiotic stresses. Plant microRNAs (miRNAs) areinvolved in regulating plant growth and development, and response to various abiotic stresses throughcleavage of target genes at post-transcriptional level. However, the miRNAs-mediated regulation ongrafting-induced enhancement of growth and stress tolerances in cucumber still needs further study.With the aim of probing the molecular mechanism of miRNAs-mediated growth and resistance toabiotic stresses of grafted cucumber seedlings, we constructed eight small RNA libraries from leavesand roots of seedlings that were grafted in the following four ways:(1) hetero-grafted cucumberseedling, using cucumber as scion and pumpkin as rootstock;(2) hetero-grafted pumpkin seedling, usingpumpkin as scion and cucumber as rootstock;(3) auto-grafted cucumber seedling, and (4) auto-graftedpumpkin seedling. By high-throughput sequencing and bioinformatics analysis, a group ofgrafting-responsive miRNAs were identified. And after treatments of drought, high salinity, nitrogen orphosphorus deficiencies, the expressions of miRNAs and target mRNAs in hetero-grafted cucumberseedlings and auto-grafted cucumber seedlings were detected by quantitative real-time PCR (qRT-PCR).The main results are as follows:
     1. Identification of miRNAs in cucumber and pumpkin. By Solexa high-throughput sequencing andbioinformatics analysis such as BLASTn and Mireap,112known miRNAs belonging to40miRNAfamilies, and48novel miRNAs were identified. The target genes of these miRNAs were predicted.
     2. Identification of grafting-responsive miRNAs in cucumber. According to the sequencing data,compared with auto-grafted seedlings, expressions of75%known miRNAs were significantly changed.The expressions of10known and16novel miRNA as well19predicted target genes were detected byqRT-PCR, and the expressions of miRNAs and target genes were changed dynamically in leaves androots of hetero-grafted cucumber seedlings. The expression-changed miRNAs and target genes wereconsidered as grafting-responsive miRNAs and targets.
     3. miRNAs of grafted cucumber seedlings are involved in response to drought stress. Underdrought stress, compared with auto-grafted cucumber seedlings, expressions of most miRNAs in leavesof hetero-grafted cucumber seedlings were dramatically reduced after3h, and then induced after8hand24h of drought stress; expressions of most miRNAs in roots of hetero-grafted cucumber seedlingswere reduced after1h, while induced after3h and8h, and then reduced significantly after24h ofdrought stress. On the other hand, compared with auto-grafted cucumber seedlings, expressions of mosttargets in leaves of hetero-grafted cucumber seedlings were remarkably induced after3h, and thenreduced after8h and24h of drought stress; expressions of most targets in roots of hetero-graftedcucumber seedlings were significantly induced under drought stress.
     4. miRNAs of grafted cucumber seedlings are involved in response to salt stress. Under salt stress,compared with auto-grafted cucumber seedlings, expressions of miRNAs in leaves of hetero-grafted cucumber seedlings were significantly reduced after2h, while induced after6h and24h of salt stress;expressions of most miRNAs in roots of hetero-grafted cucumber seedlings were induced under saltstress. On the other hand, compared with auto-grafted cucumber seedlings, expressions of most targetgenes in leaves of hetero-grafted cucumber seedlings were reduced after2h, and then dramaticallyreduced after24h of salt stress; most target genes showed induced expressions in roots of hetero-graftedcucumber seedlings under salt stress.
     5. miRNAs of grafted cucumber seedlings are involved in response to nitrogen (N) or phosphorus(P) deficiencies. Compared with auto-grafted cucumber seedlings, expressions of most miRNAs inleaves of hetero-grafted cucumber seedlings were significantly reduced after1h of N or P deficiencies,and induced after3h of N or P deficiencies, and then reduced after8h of N or P deficiencies, andinduced after24h and48h of N deficiency, while reduced after24h and48h of P deficiency;expressions of most miRNAs in roots of hetero-grafted cucumber seedlings were induced remarkablyafter24h of N deficiency, while induced after3h of P deficiency, and reduced after8h and24h, andthen induced after48h of P deficiency. On the other hand, compared with auto-grafted cucumberseedlings, expressions of most target genes in leaves of hetero-grafted cucumber seedlings were reducedafter1h,3h and8h, and then induced after24h and48h of N deficiency, while induced after1h and3h, and then reduced after8h,24h and48h of P deficiency; most target genes in roots ofhetero-grafted cucumber seedlings showed induced expressions under N or P deficiencies.
     Our results are helpful for clarifying mechanisms of the miRNAs-mediated roles in improvinggrowth and abiotic stresses tolerance of grafted cucumber seedlings.
引文
1.陈小燕,王璐,司力珊,王树忠,赵景文,任华中,常规灌溉条件下自根和嫁接黄瓜灌溉水分配的研究.灌溉排水学报,2008,27:41-44.
    2.崔健,刘素芹,宋云云,江志训,嫁接与施肥对黄瓜产量及氮吸收利用效率的研究.农学学报,2012,2:63-65.
    3.高俊杰,张琳,秦爱国,于贤昌,氯化钠胁迫下嫁接黄瓜叶片SOD和CAT mRNA基因表达及其活性.应用生态学报,2008,19:1754-1758.
    4.姜涛,霍秀文,王淑英,刘建文,徐宝平,NaCl胁迫对黄瓜嫁接苗耐盐性的影响.华北农学报,2008,23:34-37.
    5.孔祥悦,王永泉,眭晓蕾,张振贤,高丽红,灌水量对温室自根与嫁接黄瓜根系分布及水分利用效率的影响.园艺学报,2012,39:1928-1936.
    6.李志强,陈月兰,柴江权,楼惠宁,黄瓜嫁接技术.上海蔬菜,1992,4:23.
    7.刘玉梅,不同施氮水平对嫁接和自根黄瓜生长和生理的影响.安徽农业科学,2009,37:12481-12484.
    8.刘玉梅,于贤昌,姜建辉,不同施氮水平对嫁接和自根黄瓜品质的影响.植物营养与肥料学报,2006,12:706-710.
    9.宋永海,黄瓜嫁接技术.现代农业科技,2010:145.
    10.杨立飞,朱月林,胡春梅,刘正鲁,张古文,NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报,2006,26:1195-2000.
    11.于贤昌,邢禹贤,马红,魏珉,黄瓜嫁接苗抗冷特性研究.园艺学报,1997,24:348-352.
    12.于贤昌,邢禹贤,马红,魏珉,不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学,1998,31:36-40.
    13.于贤昌,邢禹贤,马红,魏珉,李滨,低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报,1999,26:406-407.
    14.张莉,孟祥祥,刘娜,杨景华,张明方,低磷胁迫下嫁接对西瓜生长早期磷素吸收和利用的影响.果树学报,2012,29:120-124.
    15.张宪法,于贤昌,张振贤,土壤水分对温室嫁接和非嫁接黄瓜生长与生理特性的影响.应用生态学报,2002,13:1399-1402.
    16.张晓英,梁新书,张振贤,高丽红,亏缺灌溉下异根嫁接提高黄瓜产量和水分利用效率.农业工程学报,2013,29:117-124.
    17.张衍鹏,于贤昌,张振贤,赵雪丽,李衍素,日光温室嫁接黄瓜的光合特性和保护酶活性.园艺学报,2004,31:94-96.
    18.朱进,别之龙,黄远,不同耐盐性的黄瓜接穗嫁接后在NaCl胁迫下的生理响应.华中农业大学学报,2009,28:467-471.
    19. Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D. and Shinozaki K, Role ofArabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression.The Plant Cell,1997,9:1859-1868.
    20. Achard P., Herr A., Baulcombe D.C. and Harberd N.P., Modulation of floral development by agibberellin-regulated microRNA. Science Signalling,2004,131:3357.
    21. Adai A., Johnson C., Mlotshwa S., Archer-Evans S., Manocha V., Vance V. and Sundaresan V.,Computational prediction of miRNAs in Arabidopsis thaliana. Genome Research,2005,15:78-91.
    22. Agele S. and Cohen S., Effect of genotype and graft type on the hydraulic characteristics and waterrelations of grafted melon. Journal of Plant Interactions,2009,4:59-66.
    23. Ahn S.J., Im Y.J., Chung G.C., Cho B.H. and Suh S.R., Physiological responses ofgrafted-cucumber leaves and rootstock roots affected by low root temperature. ScientiaHorticulturae,1999,81:397-408.
    24. Aida M., Ishida T. and Tasaka M., Shoot apical meristem and cotyledon formation duringArabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOTMERISTEMLESS genes. Development,1999,126:1563-1570.
    25. Allen E., Xie Z.X., Gustafson A.M. and Carrington J.C., microRNA-directed phasing duringtrans-acting siRNA biogenesis in plants. Cell,2005,121:207-221.
    26. Allen R.S., Li J.Y., Stahle M.I., DubrouéA., Gubler F. and Millar A.A., Genetic analysis revealsfunctional redundancy and the major target genes of the Arabidopsis miR159family. Proceedingsof the National Academy of Sciences of the United States of America,2007,104:16371-16376.
    27. Aloni B., Cohen R., Karni L., Aktas H. and Edelstein M., Hormonal signaling in rootstock-scioninteractions. Scientia Horticulturae,2010,127:119-126.
    28. Apel K. and Hirt H., Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annual Review of Plant Biology,2004,55:373-399.
    29. Aukerman M.J. and Sakai H., Regulation of flowering time and floral organ identity by amicroRNA and its APETALA2-like target genes. The Plant Cell,2003,15:2730-2741.
    30. Aung K., Lin S.I., Wu C.C., Huang Y.T., Su C.L. and Chiou T.J., pho2, a phosphateoveraccumulator, is caused by a nonsense mutation in a microRNA399target gene. PlantPhysiology,2006,141:1000-1011.
    31. Axtell M.J. and Bartel D.P., Antiquity of microRNAs and their targets in land plants. The PlantCell,2005,17:1658-1673.
    32. Baker C.C., Sieber P., Wellmer F. and Meyerowitz E.M., The early extra petals1mutant uncoversa role for microRNA miR164c in regulating petal number in Arabidopsis. Current Biology,2005,15:303-315.
    33. Banerjee A.K., Chatterjee M., Yu Y.Y., Suh S.G., Miller W.A. and Hannapel D.J., Dynamics of amobile RNA of potato involved in a long-distance signaling pathway. The Plant Cell,2006,18:3443-3457.
    34. Bari R., Pant B.D., Stitt M. and Scheible W., PHO2, microRNA399, and PHR1define aphosphate-signaling pathway in plants. Plant Physiology,2006,141:988-999.
    35. Barrera-Figueroa B.E., Gao L., Diop N.N., Wu Z.G., Ehlers J.D., Roberts P.A., Close T.J., Zhu J.K.and Liu R.Y., Identification and comparative analysis of drought-associated microRNAs in twocowpea genotypes. BMC Plant Biology,2011,11:127.
    36. Bartel B. and Bartel D.P., MicroRNAs: at the root of plant development? Plant Physiology,2003,132:709-717.
    37. Bartel D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297.
    38. Baskerville S. and Bartel D.P., Microarray profiling of microRNAs reveals frequent coexpressionwith neighboring miRNAs and host genes. RNA,2005,11:241-247.
    39. Baulcombe D., RNA silencing in plants. Nature,2004,431:356-363.
    40. Baumberger N. and Baulcombe D.C., Arabidopsis ARGONAUTE1is an RNA Slicer thatselectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academyof Sciences of the United States of America,2005,102:11928-11933.
    41. Bentley D.L., Rules of engagement: co-transcriptional recruitment of pre-mRNA processingfactors. Current Opinion in Cell Biology,2005,17:251-256.
    42. Bock R., The give-and-take of DNA: horizontal gene transfer in plants. Trends in Plant Science,2010,15:11-22.
    43. Bolle C., The role of GRAS proteins in plant signal transduction and development. Planta,2004,218:683-692.
    44. Bollman K.M., Aukerman M.J., Park M., Hunter C., Berardini T.Z. and Poethig R.S., HASTY, theArabidopsis ortholog of exportin5/MSN5, regulates phase change and morphogenesis.Development,2003,130:1493-1504.
    45. Bonnet E., Wuyts J., RouzéP. and Van de Peer Y., Evidence that microRNA precursors, unlikeother non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics,2004,20:2911-2917.
    46. Bottino M.C., Rosario S., Grativol C., Thiebaut F., Rojas C.A., Farrineli L., Hemerly A.S. andFerreira P.C.G., High-throughput sequencing of small RNA transcriptome reveals salt stressregulated microRNAs in Sugarcane. PloS ONE,2013,8: e59423.
    47. Boutet S., Vazquez F., Liu J., Béclin C., Fagard M., Gratias A., Morel J., CrétéP., Chen X.M. andVaucheret H., Arabidopsis HEN1: A genetic link between endogenous miRNA controllingdevelopment and siRNA controlling transgene silencing and virus resistance. Current Biology,2003,13:843-848.
    48. Brodersen P., Sakvarelidze-Achard L., Bruun-Rasmussen M., Dunoyer P., Yamamoto Y.Y.,Sieburth L. and Voinnet O., Widespread translational inhibition by plant miRNAs and siRNAs.Science,2008,320:1185-1190.
    49. Brosnan C.A., Mitter N., Christie M., Smith N.A., Waterhouse P.M. and Carroll B.J., Nuclear genesilencing directs reception of long-distance mRNA silencing in Arabidopsis. Proceedings of theNational Academy of Sciences of the United States of America,2007,104:14741-14746.
    50. Buhtz A., Pieritz J., Springer F. and Kehr J., Phloem small RNAs, nutrient stress responses, andsystemic mobility. BMC Plant Biology,2010,10:64.
    51. Buhtz A., Springer F., Chappell L., Baulcombe D.C. and Kehr J., Identification andcharacterization of small RNAs from the phloem of Brassica napus. The Plant Journal,2008,53:739-749.
    52. Bulder H., Den Nijs A., Speek E.J., Van Hasselt P.R. and Kuiper P., The effect of low roottemperature on growth and lipid composition of low temperature tolerant rootstock genotypes forcucumber. Journal of Plant Physiology,1991,138:661-666.
    53. Cardon G., H hmann S., Klein J., Nettesheim K., Saedler H. and Huijser P., Molecularcharacterisation of the Arabidopsis SBP-box genes. Gene,1999,237:91-104.
    54. Carrington J.C., Kasschau K.D., Mahajan S.K. and Schaad M.C., Cell-to-cell and long-distancetransport of viruses in plants. The Plant Cell,1996,8:1669.
    55. Chen H.M. and Wu S.H., Mining small RNA sequencing data: a new approach to identify smallnucleolar RNAs in Arabidopsis. Nucleic Acids Research,2009,37: e69.
    56. Chen L., Wang T.Z., Zhao M.G., Tian Q.Y. and Zhang W.H., Identification ofaluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughputsequencing. Planta,2012,235:375-386.
    57. Chen X.M., A microRNA as a translational repressor of APETALA2in Arabidopsis flowerdevelopment. Science,2004,303:2022.
    58. Chen Y.H., Yang X.Y., He K., Liu M.H., Li J.G., Gao Z.F., Lin Z.Q., Zhang Y.F., Wang X.X., QiuX.M., et al., The MYB transcription factor superfamily of Arabidopsis: expression analysis andphylogenetic comparison with the rice MYB family. Plant Molecular Biology,2006,60:107-124.
    59. Cheng A.M., Byrom M.W., Shelton J. and Ford L.P., Antisense inhibition of human miRNAs andindications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research,2005,33:1290-1297.
    60. Cheng H., Qin L.J., Lee S., Fu X.D., Richards D.E., Cao D.N., Luo D., Harberd N.P. and Peng J.R.,Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function.Development,2004,131:1055-1064.
    61. Chiou T.J. and Lin S.I., Signaling network in sensing phosphate availability in plants. AnnualReview of Plant Biology,2011,62:185-206.
    62. Chiou T.J., Aung K., Lin S.I., Wu C.C., Chiang S.F. and Su C.L., Regulation of phosphatehomeostasis by microRNA in Arabidopsis. The Plant Cell,2006,18:412-421.
    63. Chiou T.J., The role of microRNAs in sensing nutrient stress. Plant, Cell&Environment,2007,30:323-332.
    64. Chuck G., Cigan A.M., Saeteurn K. and Hake S., The heterochronic maize mutant Corngrass1results from overexpression of a tandem microRNA. Nature Genetics,2007,39:544-549.
    65. Cohen R., Horev C., Burger Y., Shriber S., Hershenhorn J., Katan J. and Edelstein M.,Horticultural and pathological aspects of Fusarium wilt management using grafted melons.HortScience,2002,37:1069-1073.
    66. Colla G., Suárez C.M.C., Cardarelli M. and Rouphael Y., improving nitrogen use efficiency inmelon by grafting. HortScience,2010,45:559-565.
    67. Corbesier L., Vincent C., Jang S., Fornara F., Fan Q.Z., Searle I., Giakountis A., Farrona S., GissotL., Turnbull C., et al., FT protein movement contributes to long-distance signaling in floralinduction of Arabidopsis. Science,2007,316:1030-1033.
    68. Dai X.B. and Zhao P.X.C., psRNATarget: a plant small RNA target analysis server. Nucleic AcidsResearch,2011,39:155-159.
    69. Deloire A. and Hebant C., Peroxidase activity and lignification at the interface between stock andscion of compatible and incompatible grafts of Capsicum on Lycopersicum. Annuals of Botany,1982,49:887-891.
    70. Devaiah B.N., Madhuvanthi R., Karthikeyan A.S. and Raghothama K.G., Phosphate starvationresponses and gibberellic acid biosynthesis are regulated by the MYB62transcription factor inArabidopsis. Molecular Plant,2009,2:43-58.
    71. Dielen V., Quinet M., Chao J, Batoko H., Havelange A. and Kinet J.M., UNIFLORA, a pivotalgene that regulates floral transition and meristem identity in tomato (Lycopersicon esculentum).New Phytologist,2004,161:393-400.
    72. Ding B, Itaya A and Woo Y.M., Plasmodesmata and cell-to-cell communication in plants.International Review of Cytology,1999,190:251-316.
    73. Ding D., Zhang L.F., Wang H., Liu Z.J., Zhang Z.X. and Zheng Y.L., Differential expression ofmiRNAs in response to salt stress in maize roots. Annuals of Botany,2009,103:29-38.
    74. Doerner P., Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. CurrentOpinion in Plant Biology,2008,11:536-540.
    75. Dong Z.H., Shi L., Wang Y.W., Chen L., Cai Z.M., Wang Y.N., Jin J.B. and Li X., Identificationand dynamic regulation of microRNAs involved in salt stress responses in functional soybeannodules by high-throughput sequencing. International Journal of Molecular Sciences,2013,14:2717-2738.
    76. Drews G.N., Bowman J.L. and Meyerowitz E.M., Negative regulation of the Arabidopsis homeoticgene AGAMOUS by the APETALA2product. Cell,1991,65:991-1002.
    77. Dunoyer P., Schott G., Himber C., Meyer D., Takeda A., Carrington J.C. and Voinnet O., SmallRNA duplexes function as mobile silencing signals between plant cells. Science,2010,328:912-916.
    78. Elbashir S.M., Martinez J., Patkaniowska A., Lendeckel W. and Tuschl T., Functional anatomy ofsiRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBOJournal,2001,20:6877-6888.
    79. Eldem V., Ak ay U.., Ozhuner E., Bak r Y., Uranbey S. and Unver T., Genome-wideidentification of miRNAs responsive to drought in peach (Prunus persica) by high-throughputdeep sequencing. PloS ONE,2012,7: e50298.
    80. Ellis C.M., Nagpal P., Young J.C., Hagen G., Guilfoyle T.J. and Reed J.W., AUXIN RESPONSEFACTOR1and AUXIN RESPONSE FACTOR2regulate senescence and floral organ abscission inArabidopsis thaliana. Development,2005,132:4563-4574.
    81. Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P., Izhaki A., Baum S.F. and BowmanJ.L., Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI Genes. CurrentBiology,2003,13:1768-1774.
    82. Esta M.T., Martinez-Rodriguez M.M., Perez-Alfocea F., Flowers T.J. and Bolarin M.C., Graftingraises the salt tolerance of tomato through limiting the transport of sodium and chloride to theshoot. Journal of Experiental Botany,2005,56:703-712.
    83. Etehadnia M., Waterer D., De Jong H. and Tanino K.K., Scion and rootstock effects onABA-mediated plant growth regulation and salt tolerance of acclimated and unacclimated potatogenotypes. Journal of Plant Growth Regulation,2008,27:125-140.
    84. Fang Y.D. and Spector D.L., Identification of nuclear dicing bodies containing proteins formicroRNA biogenesis in living Arabidopsis plants. Current Biology,2007,17:818-823.
    85. Feng J.L., Wang Y.W., Lin R.H. and Chen J.S., Altered expression of microRNAs and targetmRNAs in tomato root and stem tissues upon different viral infection. Journal of Phytopathology,2013,161:107-119.
    86. Floyd S.K. and Bowman J.L., Gene regulation: ancient microRNA target sequences in plants.Nature,2004,428:485-486.
    87. Foo E., Turnbull C.G. and Beveridge C.A., Long-distance signaling and the control of branching intherms1mutant of pea. Plant Physiology,2001,126:203-209.
    88. Foyer C.H. and Noctor G., Redox homeostasis and antioxidant signaling: a metabolic interfacebetween stress perception and physiological responses. The Plant Cell,2005,17:1866-1875.
    89. Frazier T.P., Sun G., Burklew C.E. and Zhang B.H, Salt and drought stresses induce the aberrantexpression of microRNA genes in tobacco. Molecular Biotechnology,2011,49:159-165.
    90. Fu C.X., Sunkar R., Zhou C.E., Shen H., Zhang J.Y., Matts J., Wolf J., Mann D.G., Stewart C.N.,Tang Y.H. and Wang Z.Y., Overexpression of miR156in switchgrass (Panicum virgatum L.)results in various morphological alterations and leads to improved biomass production. PlantBiotechnology Journal,2012,10:443-452.
    91. Fujii H., Chiou T.J., Lin S.I., Aung K. and Zhu J.K., A miRNA involved in phosphate-starvationresponse in Arabidopsis. Current Biology,2005,15:2038-2043.
    92. Gandikota M., Birkenbihl R.P., H hmann S., Cardon G.H., Saedler H. and Huijser P., ThemiRNA156/157recognition element in the3’ UTR of the Arabidopsis SBP box gene SPL3prevents early flowering by translational inhibition in seedlings. The Plant Journal,2007,49:683-693.
    93. García Sánchez F., Syvertsen J., Gimeno V., Botía P. and Perez Perez J.G. Responses to floodingand drought stress by two citrus rootstock seedlings with different water-use efficiency.Physiologia Plantarum,2007,130:532-542.
    94. Gebhardt K. and Goldbach H., Establishment, graft union characteristics and growth of Prunusmicrografts. Physiologia Plantarum,1988,72:153-159.
    95. Giacomelli J.I., Weigel D., Chan R.L. and Manavella P.A., Role of recently evolved miRNAregulation of sunflower HaWRKY6in response to temperature damage. New Phytologist,2012,195:766-773.
    96. Gifford M.L., Dean A., Gutierrez R.A., Coruzzi G.M. and Birnbaum K.D., Cell-specific nitrogenresponses mediate developmental plasticity. Proceedings of the National Academy of Sciences ofthe United States of America,2008,105:803-808.
    97. Gocal G.F., Sheldon C.C., Gubler F., Moritz T., Bagnall D.J., MacMillan C.P., Li S.F., ParishR.W., Dennis E.S. and Weigel D., GAMYB-like genes, flowering, and gibberellin signaling inArabidopsis. Plant Physiology,2011,127:1682-1693.
    98. Goreta S., Bucevic-Popovic V., Selak G.V., Pavela-Vrancic M. and Perica S., Vegetative growth,superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced byrootstock. The Journal of Agricultural Science,2008,146:695-704.
    99. Gou J.Y., Felippes F.F., Liu C.J., Weigel D. and Wang J.W., Negative regulation of anthocyaninbiosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell,2011,23:1512-1522.
    100. Gregory B.D., O'Malley R.C., Lister R., Urich M.A., Tonti-Filippini J., Chen H.M., Millar A.H.and Ecker J.R., A link between RNA metabolism and silencing affecting Arabidopsis development.Developmental Cell,2008,14:854-866.
    101. Griffiths-Jones S., Grocock R.J., Van Dongen S., Bateman A. and Enright A.J., miRBase:microRNA sequences, targets and gene nomenclature. Nucleic Acids Research,2006,34:D140-D144.
    102. Griffiths-Jones S., Saini H.K., Van Dongen S. and Enright A.J., miRBase: tools for microRNAgenomics. Nucleic Acids Research,2008,36:D154-D158.
    103. Guo H.S., Xie Q., Fei J.F. and Chua N.H., MicroRNA directs mRNA cleavage of the transcriptionfactor NAC1to downregulate auxin signals for Arabidopsis lateral root development. The PlantCell,2005,17:1376-1386.
    104. Gutierrez L., Bussell J.D., P curar D.I., Schwambach J., P curar M. and Bellini C., Phenotypicplasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXINRESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell,2009,21:3119-3132.
    105. Hafner M., Landgraf P., Ludwig J., Rice A., Ojo T., Lin C, Holoch D, Lim C. and Tuschl T.,Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing.Methods,2008,44:3-12.
    106. Hagen G. and Guilfoyle T., Auxin-responsive gene expression: genes, promoters and regulatoryfactors. Plant Molecular Biology,2002,49:373-385.
    107. Han X., Tang S., An Y., Zheng D.C., Xia X.L. and Yin W.L., Overexpression of the poplarNF-YB7transcription factor confers drought tolerance and improves water-use efficiency inArabidopsis. Journal of Experimental Botany,2013,64:4589-4601.
    108. Haywood V., Yu T.S., Huang N.C. and Lucas W.J., Phloem long-distance trafficking ofGIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. The Plant Journal,2005,42:49-68.
    109. He Y., Zhu Z.J., Yang J., Ni X.L. and Zhu B., Grafting increases the salt tolerance of tomato byimprovement of photosynthesis and enhancement of antioxidant enzymes activity. Environmentaland Experimental Botany,2009,66:270-278.
    110. Huang S.W., Li R.Q., Zhang Z.H., Li L., Gu X.F., Fan W., Lucas W.J., Wang X, Xie B.Y., Ni P.X.,et al., The genome of the cucumber, Cucumis sativus L. Nature Genetics,2009,41:1275-1281.
    111. Huang S.Q., Peng J., Qiu C.X. and Yang Z.M., Heavy metal-regulated new microRNAs from rice.Journal of Inorganic Biochemistry,2009,103:282-287.
    112. Huang Y., Tang R., Cao Q.L. and Bie Z.L., Improving the fruit yield and quality of cucumber bygrafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae,2009,122:26-31.
    113. Hutvágner G., McLachlan J., Pasquinelli A.E., Bálint é., Tuschl T. and Zamore P.D., A cellularfunction for the RNA-interference enzyme Dicer in the maturation of the let-7small temporal RNA.Science,2001,293:834-838.
    114. Jagadeeswaran G., Nimmakayala P., Zheng Y., Gowdu K., Reddy U.K. and Sunkar R.,Characterization of the small RNA component of leaves and fruits from four different cucurbitspecies. BMC Genomics,2012,13:329.
    115. Jagadeeswaran G., Saini A. and Sunkar R., Biotic and abiotic stress down-regulate miR398expression in Arabidopsis. Planta,2009,229:1009-1014.
    116. Jeffree C.E. and Yeoman M.M., Development of intercellular connections between opposing cellsin a graft union. New Phytologist,1983,93:491-509.
    117. Jia X.Y., Wang W.X., Ren L.G., Chen Q.J., Mendu V., Willcut B., Dinkins R., Tang X.Q. andTang G.L., Differential and dynamic regulation of miR398in response to ABA and salt stress inPopulus tremula and Arabidopsis thaliana. Plant Molecular Biology,2009,71:51-59.
    118. Jiao Y.Q., Wang Y.H., Xue D.W., Wang J., Yan M.X., Liu G.F., Dong G.J., Zeng D.L., Lu Z.F.,Zhu X.D., et al., Regulation of OsSPL14by OsmiR156defines ideal plant architecture in rice.Nature Genetics,2010,42:541-544.
    119. Jones-Rhoades M.W. and Bartel D.P., Computational identification of plant microRNAs and theirtargets, including a stress-induced miRNA. Molecluar Cell,2004,14:787-799.
    120. Jones-Rhoades M.W., Bartel D.P. and Bartel B., MicroRNAs and their regulatory roles in plants.Annual Review of Plant Biology,2006,57:19-53.
    121. Kant S., Bi Y.M. and Rothstein S.J., Understanding plant response to nitrogen limitation for theimprovement of crop nitrogen use efficiency. Journal of Experimental Botany,2011,62:1499-1509.
    122. Kantar M., Lucas S.J. and Budak H., miRNA expression patterns of Triticum dicoccoides inresponse to shock drought stress. Planta,2011,233:471-484.
    123. Kasai A., Kanehira A., Harada T., Taylor D.C., Francis T., Lozinsky S., Hoffman T., Giblin M.,Marillia E. and Joyner E.Y., miR172can move long distances in Nicotiana benthamiana. OpenPlant Science Journal,2010,4:1-6.
    124. Kato T. and Lou H., Effects of rootstock on the yield, mineral nutrition and hormone level inxylem sap in eggplant [Solanum melongena]. Journal of the Japanese Society for HorticultrualScience.1989,2:345-352.
    125. Kawashima C.G., Matthewman C.A., Huang S.Q., Lee B.R., Yoshimoto N., Koprivova A., RubioSomoza I., Todesco M., Rathjen T., Saito K., et al., Interplay of SLIM1and miR395in theregulation of sulfate assimilation in Arabidopsis. The Plant Journal,2011,66:863-876.
    126. Kawashima C.G., Yoshimoto N., Maruyama Nakashita A., Tsuchiya Y.N., Saito K., Takahashi H.and Dalmay T., Sulphur starvation induces the expression of microRNA395and one of its targetgenes but in different cell types. The Plant Journal,2009,57:313-321.
    127. Khraiwesh B., Zhu J.K. and Zhu J.H., Role of miRNAs and siRNAs in biotic and abiotic stressresponses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819:137-148.
    128. Khvorova A., Reynolds A. and Jayasena S.D., Functional siRNAs and miRNAs exhibit strand bias.Cell,2003,115:209-216.
    129. Kim I. and Pai H., Mobile macromolecules in plant development. Journal of Plant Biology,2009,52:186-192.
    130. Kim J., Jung J.H., Reyes J.L., Kim Y.S., Kim S.Y., Chung K.S., Kim J.A., Lee M., Lee Y. andNarry Kim V., microRNA-directed cleavage of ATHB15mRNA regulates vascular development inArabidopsis inflorescence stems. The Plant Journal,2005,42:84-94.
    131. Kim J.H., Woo H.R., Kim J., Lim P.O., Lee I.C., Choi S.H., Hwang D. and Nam H.G., Trifurcatefeed-forward regulation of age-dependent cell death involving miR164in Arabidopsis. Science,2009,323:1053-1057.
    132. Kim J.Y., Kwak K.J., Jung H.J., Lee H.J. and Kang H., MicroRNA402affects seed germination ofArabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3mRNA.Plant Cell and Physiology,2010,51:1079-1083.
    133. Kim M., Canio W., Kessler S. and Sinha N., Developmental changes due to long-distancemovement of a homeobox fusion transcript in tomato. Science,2001,293:287-289.
    134. King S.R., Davis A.R., Liu W.G. and Levi A., Grafting for disease resistance. HortScience,2008,43:1673-1676.
    135. Kizis D., Lumbreras V. and Pagès M., Role of AP2/EREBP transcription factors in gene regulationduring abiotic stress. FEBS Letters,2001,498:187-189.
    136. Kollmann R. and Glockmann C., Sieve elements of graft unions [M]. Sieve Elements, SpringerBerlin Heidelberg,1999:219-237.
    137. Kousik C.S., Levi A., Ling K. and Wechter W.P., Potential sources of resistance to cucurbitpowdery mildew in US plant introductions of bottle gourd. HortScience,2008,43:1359-1364.
    138. Kranz H.D., Denekamp M., Greco R., Jin H.L., Leyva A., Meissner R.C., Petroni K., Urzainqui A.,Bevan M., Martin C., et al., Towards functional characterisation of the members of the R2R3-MYBgene family from Arabidopsis thaliana. The Plant Journal,2001,16:263-276.
    139. Kubo M., Udagawa M., Nishikubo N., Horiguchi G., Yamaguchi M., Ito J., Mimura T., Fukuda H.and Demura T., Transcription switches for protoxylem and metaxylem vessel formation. Gene&Development,2005,19:1855-1860.
    140. Kudo H. and Harada T., A graft-transmissible RNA from tomato rootstock changes leafmorphology of potato scion. HortScience,2007,42:225-226.
    141. Kurihara Y. and Watanabe Y., Arabidopsis micro-RNA biogenesis through Dicer-like1proteinfunctions. Proceedings of the National Academy of Sciences of the United States of America,2004,101:12753-12758.
    142. Kurihara Y., Takashi Y. and Watanabe Y., The interaction between DCL1and HYL1is importantfor efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA,2006,12:206-212.
    143. Lau N.C., Lim L.P., Weinstein E.G. and Bartel D.P., An abundant class of tiny RNAs withprobable regulatory roles in Caenorhabditis elegans. Science,2001,294:858-862.
    144. Laubinger S., Sachsenberg T., Zeller G., Busch W., Lohmann J.U., R tsch G. and Weigel D., Dualroles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNAprocessing in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of theUnited States of America,2008,105:8795-8800.
    145. Lee H., Yoo S.J., Lee J.H., Kim W., Yoo S.K., Fitzgerald H., Carrington J.C. and Ahn J.H.,Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs inArabidopsis. Nucleic Acids Research,2010,38:3081-3093.
    146. Lee R.C. and Ambros V., An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294:862-864.
    147. Lee R.C., Feinbaum R.L. and Ambros V., The C. elegans heterochronic gene lin-4encodes smallRNAs with antisense complementarity to lin-14. Cell,1993,75:843-854.
    148. Lexa M. and Cheeseman J.M., Growth and nitrogen relations in reciprocal grafts of wild-type andnitrate reductase-deficient mutants of pea (Pisum sativum L. var. Juneau). Journal of ExperimentalBotany,1997,48:1241-1250.
    149. Li B.S., Duan H., Li J.G., Deng X.W., Yin W.L. and Xia X.L., Global identification of miRNAsand targets in Populus euphratica under salt stress. Plant Molecular Biology,2013,81:525-539.
    150. Li J.J., Yang Z.Y., Yu B., Liu J. and Chen X.M., Methylation protects miRNAs and siRNAs froma3’-end uridylation activity in Arabidopsis. Current Biology,2005,15:1501-1507.
    151. Li R.Q., Li Y.R., Kristiansen K. and Wang J., SOAP: short oligonucleotide alignment program.Bioinformatics,2008,24:713-714.
    152. Li W.X., Oono Y., Zhu J.H., He X.J., Wu J.M., Iida K., Lu X.Y., Cui X.P., Jin H.L. and Zhu J.K.,The Arabidopsis NFYA5transcription factor is regulated transcriptionally andposttranscriptionally to promote drought resistance. The Plant Cell,2008,20:2238-2251.
    153. Li X.Y., Bian H.W., Song D.F., Ma S.Y., Han N., Wang J.H. and Zhu M.Y., Flowering timecontrol in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159expression. Annalsof Botany,2013,111:791-799.
    154. Li Y., Li W. and Jin Y.X., Computational identification of novel family members of microRNAgenes in Arabidopsis thaliana and Oryza sativa. Acta Biochimica et Biophysica Sinica,2005,37:75-87.
    155. Li Z., Zhang Z.H., Yan P.C., Huang S.W., Fei Z.J. and Lin K., RNA-Seq improves annotation ofprotein-coding genes in the cucumber genome. BMC Genomics,2011,12:540.
    156. Liang G. and Yu D.Q., Reciprocal regulation among miR395, APS and SULTR2;1in Arabidopsisthaliana. Plant Signaling&Behavior,2010,5:1257-1259.
    157. Liang G., He H. and Yu D.Q., Identification of nitrogen starvation-responsive microRNAs inArabidopsis thaliana. PloS ONE,2012,7: e48951.
    158. Liang G., Yang F.X. and Yu D.Q., MicroRNA395mediates regulation of sulfate accumulation andallocation in Arabidopsis thaliana. The Plant Journal,2010,62:1046-1057.
    159. Lin M.K., Belanger H., Lee Y.J., Varkonyi-Gasic E., Taoka K., Miura E., Xoconostle-Cázares B.,Gendler K., Jorgensen R.A., Phinney B., et al., FLOWERING LOCUS T protein may act as thelong-distance florigenic signal in the cucurbits. The Plant Cell,2007,19:1488-1506.
    160. Lin S.I., Chiang S.F., Lin W.Y., Chen J.W., Tseng C.Y., Wu P.C. and Chiou T.J., Regulatorynetwork of microRNA399and PHO2by systemic signaling. Plant Physiology,2008,147:732-746.
    161. Liu H.H., Tian X., Li Y.J., Wu C.A. and Zheng C.C., Microarray-based analysis of stress-regulatedmicroRNAs in Arabidopsis thaliana. RNA,2008,14:836-843.
    162. Liu K.H., Huang C.Y. and Tsay Y.F., CHL1is a dual-affinity nitrate transporter of Arabidopsisinvolved in multiple phases of nitrate uptake. The Plant Cell,1999,11:865-874.
    163. Liu N., Yang J.H., Guo S.G., Xu Y. and Zhang M.F., Genome-wide identification and comparativeanalysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing.PLoS ONE,2013,8: e57359.
    164. Liu P.P., Montgomery T.A., Fahlgren N., Kasschau K.D., Nonogaki H. and Carrington J.C.,Repression of AUXIN RESPONSE FACTOR10by microRNA160is critical for seed germinationand post-germination stages. The Plant Journal,2007,52:133-146.
    165. Llave C., Kasschau K.D., Rector M.A. and Carrington J.C., Endogenous and silencing-associatedsmall RNAs in plants. The Plant Cell,2002,14:1605-1619.
    166. Llave C., Xie Z., Kasschau K.D. and Carrington J.C., Cleavage of Scarecrow-like mRNA targetsdirected by a class of Arabidopsis miRNA. Science,2002,297:2053-2056.
    167. Lobbes D., Rallapalli G., Schmidt D.D., Martin C. and Clarke J., SERRATE: a new player on theplant microRNA scene. EMBO Reports,2006,7:1052-1058.
    168. Lough T.J. and Lucas W.J., Integrative plant biology: role of phloem long-distancemacromolecular trafficking. Annual Review of Plant Biology,2006,57:203-232.
    169. Lu P.L., Chen N.Z., An R., Su Z., Qi B.S., Ren F., Chen J. and Wang X.C., A noveldrought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates theexpression of stress-responsive genes in Arabidopsis. Plant Molecular Biology,2007,63:289-305.
    170. Lu S.F., Sun Y.H., Shi R, Clark C., Li L.G. and Chiang V.L., Novel and mechanicalstress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. The PlantCell,2005,17:2186-2203.
    171. Lu S.F., Sun Y.H. and Chiang V.L., Stress-responsive microRNAs in Populus. The Plant Journal,2008,55:131-151.
    172. Lu Y.D., Gan Q.H., Chi X.Y. and Qin S., Roles of microRNA in plant defense and virus offenseinteraction. Plant Cell Reports,2008,27:1571-1579.
    173. Lv D.K., Bai X., Li Y., Ding X.D., Ge Y., Cai H., Ji W., Wu N. and Zhu Y.M., Profiling ofcold-stress-responsive miRNAs in rice by microarrays. Gene,2010,459:39-47.
    174. Mallory A.C., Bartel D.P. and Bartel B., MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression of earlyauxin response genes. The Plant Cell,2005,17:1360-1375.
    175. Mallory A.C., Reinhart B.J., Jones Rhoades M.W., Tang G.L., Zamore P.D., Barton M.K. andBartel D.P., MicroRNA control of PHABULOSA in leaf development: importance of pairing to themicroRNA5’ region. The EMBO Journal,2004,23:3356-3364.
    176. Mantovani R., The molecular biology of the CCAAT-binding factor NF-Y. Gene,1999,239:15-27.
    177. Mao W.H., Li Z.Y., Xia X.J., Li Y.D. and Yu J.Q., A combined approach of high-throughputsequencing and degradome analysis reveals tissue specific expression of microRNAs and theirtargets in cucumber. PloS ONE,2012,7: e33040.
    178. Martin A., Adam H., Díaz-Mendoza M., urczak M., González-Schain N.D. and Suárez-López P.,Graft-transmissible induction of potato tuberization by the microRNA miR172. Development,2009,136:2873-2881.
    179. Martínez G., Forment J., Llave C., Pallás V. and Gómez G., High-throughput sequencing,characterization and detection of new and conserved cucumber miRNAs. PloS ONE,2011,6:e19523.
    180. Martínez-Ballesta M.C., Alcaraz-López C., Muries B., Mota-Cadenas C. and Carvajal M.,Physiological aspects of rootstock-scion interactions. Scientia Horticulturae,2010,127:112-118.
    181. Mette M.F., van der Winden J., Matzke M. and Matzke A.J., Short RNAs can identify newcandidate transposable element families in Arabidopsis. Plant Physiology,2002,130:6-9.
    182. Meyers B.C., Axtell M.J., Bartel B., Bartel D.P., Baulcombe D., Bowman J.L., Cao X.F.,Carrington J.C., Chen X.M., Green P.J., et al., Criteria for annotation of plant MicroRNAs. ThePlant Cell,2008,20:3186-3190.
    183. Mica E., Piccolo V., Delledonne M., Ferrarini A., Pezzotti M., Casati C., Del Fabbro C., Valle G.,Policriti A. and Morgante M., High throughput approaches reveal splicing of primary microRNAtranscripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC genomics,2009,10:558.
    184. Millar A.A. and Gubler F., The Arabidopsis GAMYB-like genes, MYB33and MYB65, aremicroRNA-regulated genes that redundantly facilitate anther development. The Plant Cell,2005,17:705-721.
    185. Miyake K., Ito T., Senda M., Ishikawa R., Harada T., Niizeki M. and Akada S., Isolation of asubfamily of genes for R2R3-MYB transcription factors showing up-regulated expression undernitrogen nutrient-limited conditions. Plant Molecular Biology,2003,53:237-245.
    186. Monzer J. and Kollmann R., Vascular connections in the heterograft Lophophora williamsii Coult.on Trichocereus spachianus Ricc. Journal of Plant Physiology,1986,123:359-372.
    187. Moore R., Graft formation in Kalanchoe blossfeldiana. Journal of Experimental Botany,1982,33:533-540.
    188. Moore R., Physiological aspects of graft formation. Vegetative compatibility responses in plants.Baylor University Press, Waco, Texas,1983:89-106.
    189. Moore R. and Walker D.B., Studies of vegetative compatibility-incompatibility in higher plants. I.A structural study of a compatible autograft in Sedum telephoides (Crassulaceae). AmericanJournal of Botany,1981:820-830.
    190. Morin R.D., Aksay G., Dolgosheina E., Ebhardt H.A., Magrini V., Mardis E.R., Sahinalp S.C. andUnrau P.J., Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryzasativa. Genome Research,2008,18:571-584.
    191. Mudge K., Janick J., Scofield S. and Goldschmidt E.E., A history of grafting. HorticulturalReviews,2009,35:437-493.
    192. Munns R., Genes and salt tolerance: bringing them together. New Phytologist,2005,167:645-663.
    193. Munns R. and Tester M., Mechanisms of salinity tolerance. Annual Review of Plant Biology,2008,59:651-681.
    194. Nakashima K., Ito Y. and Yamaguchi-Shinozaki K., Transcriptional regulatory networks inresponse to abiotic stresses in Arabidopsis and grasses. Plant Physiology,2009,149:88-95.
    195. Neilson J.R., Zheng G.X., Burge C.B. and Sharp P.A., Dynamic regulation of miRNA expressionin ordered stages of cellular development. Gene&Development,2007,21:578-589.
    196. Nelson D.E., Repetti P.P., Adams T.R., Creelman R.A., Wu J., Warner D.C., Anstrom D.C.,Bensen R.J., Castiglioni P.P., Donnarummo M.G., et al., Plant nuclear factor Y (NF-Y) B subunitsconfer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings ofthe National Academy of Sciences of the United States of America,2007,104:16450-16455.
    197. Niu Q.W., Lin S.S., Reyes J.L., Chen K.C., Wu H.W., Yeh S.D. and Chua N.H., Expression ofartificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. NatureBiotechnology,2006,24:1420-1428.
    198. Ohkama-Ohtsu N. and Wasaki J., Recent progress in plant nutrition research: cross-talk betweennutrients, plant physiology and soil microorganisms. Plant and Cell Physiology,2010,51:1255-1264.
    199. Ori N., Cohen A.R., Etzioni A., Brand A., Yanai O., Shleizer S., Menda N., Amsellem Z., Efroni I.and Pekker I., Regulation of LANCEOLATE by miR319is required for compound-leafdevelopment in tomato. Nature Genetics,2007,39:787-791.
    200. Palatnik J.F., Allen E., Wu X.L., Schommer C., Schwab R., Carrington J.C. and Weigel D.,Control of leaf morphogenesis by microRNAs. Nature,2003,425:257-263.
    201. Palatnik J.F., Wollmann H., Schommer C., Schwab R., Boisbouvier J., Rodriguez R., WarthmannN., Allen E., Dezulian T., Huson D., et al., Sequence and expression differences underliefunctional specialization of Arabidopsis microRNAs miR159and miR319. Developmental Cell,2007,13:115-125.
    202. Palukaitis P., Potato spindle tuber viroid: investigation of the long-distance, intra-plant transportroute. Virology,1987,158:239-241.
    203. Pant B.D., Buhtz A., Kehr J and Scheible W.R., MicroRNA399is a long-distance signal for theregulation of plant phosphate homeostasis. The Plant Journal,2008,53:731-738.
    204. Pant B.D., Musialak-Lange M., Nuc P., May P., Buhtz A., Kehr J., Walther D. and Scheible W.,Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensivereal-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiology,2009,150:1541-1555.
    205. Parkinson M., Jeffree C.E. and Yeoman M.M., Incompatibiliy in cultured explant-grafts betweenmembers of the Solanaceae. New Phytologist,1987,107:489-498.
    206. Peng M., Hannam C., Gu H.L., Bi Y.M. and Rothstein S.J., A mutation in NLA, which encodes aRING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. ThePlant Journal,2007,50:320-337.
    207. Pfeffer S., Zavolan M., Gr sser F.A., Chien M., Russo J.J., Ju J.Y., John B., Enright A.J., Marks D.,Sander C., et al., Identification of virus-encoded microRNAs. Science,2004,304:734-736.
    208. Piriyapongsa J. and Jordan I.K., A family of human microRNA genes from miniatureinverted-repeat transposable elements. PLoS ONE,2007,2: e203.
    209. Poethig R.S., Small RNAs and developmental timing in plants. Current Opinion in Genet ics&Development,2009,19:374-378.
    210. Ramachandran V. and Chen X.M., Degradation of microRNAs by a family of exoribonucleases inArabidopsis. Science,2008,321:1490-1492.
    211. Ramírez M., Flores-Pacheco G., Reyes J.L., Luz Alvarez A., Drevon J.J., Girard L. and HernándezG., Two common bean genotypes with contrasting response to phosphorus deficiency showvariations in the microRNA399-mediated PvPHO2regulation within the PvPHR1signalingpathway. International Journal of Molecular Sciences,2013,14:8328-8344.
    212. Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R.and Ruvkun G., The21-nucleotide let-7RNA regulates developmental timing in Caenorhabditiselegans. Nature,2000,403:901-906.
    213. Reinhart B.J., Weinstein E.G., Rhoades M.W., Bartel B. and Bartel D.P., MicroRNAs in plants.Genes&Development,2002,16:1616-1626.
    214. Reyes J.L. and Chua N.H., ABA induction of miR159controls transcript levels of two MYBfactors during Arabidopsis seed germination. The Plant Journal,2007,49:592-606.
    215. Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B.and Bartel D.P., Prediction of plantmicroRNA targets. Cell,2002,110:513-520.
    216. Richardson A.O. and Palmer J.D., Horizontal gene transfer in plants. Journal of ExperimentalBotany,2007,58:1-9.
    217. Rivard C.L, O'Connell S., Peet M.M. and Louws F.J., Grafting tomato with interspecific rootstockto manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease,2010,94:1015-1021.
    218. Rivero R.M., Ruiz J.M. and Romero L., Can grafting in tomato plants strengthen resistance tothermal stress? Journal of the Science of Food and Agriculture,2003,83:1315-1319.
    219. Romero L., Belakbir A., Ragala L. and Ruiz J.M., Response of plant yield and leaf pigments tosaline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). SoilScience and Plant Nutrition,1997,43:855-862.
    220. Rouphael Y., Cardarelli M., Colla G. and Rea E., Yield, mineral composition, water relations, andwater use efficiency of grafted mini-watermelon plants under deficit irrigation. Hortscience,2008a,43:730-736.
    221. Rouphael Y., Cardarelli M., Rea E. and Colla G., Grafting of cucumber as a means to minimizecopper toxicity. Environmental and Experimental Botany,2008b,63:49-58.
    222. Ru P., Xu L., Ma H. and Huang H., Plant fertility defects induced by the enhanced expression ofmicroRNA167. Cell Research,2006,16:457-465.
    223. Rubio V., Linhares F., Solano R., Martín A.C., Iglesias J., Leyva A. and Paz-Ares J., A conservedMYB transcription factor involved in phosphate starvation signaling both in vascular plants and inunicellular algae. Genes&Development,2001,15:2122-2133.
    224. Ruiz J.M. and Romero L., Nitrogen efficiency and metabolism in grafted melon plants. ScientiaHorticulturae,1999,81:113-123.
    225. Ruiz J.M., Belakbir A., López-Cantarero I. and Romero L., Leaf-macronutrient content and yieldin grafted melon plants. A model to evaluate the influence of rootstock genotype. ScientiaHorticulturae,1997,71:227-234.
    226. Ruiz-Medrano R., Xoconostle-Cázares B. and Lucas W.J., Phloem long-distance transport ofCmNACP mRNA: implications for supracellular regulation in plants. Development,1999,126:4405-4419.
    227. Ruiz-Medrano R., Xoconostle-Cázares B. and Lucas W.J., The phloem as a conduit for inter-organcommunication. Current Opinion in Plant Biology,2001,4:202-209.
    228. Russo P. and Slack S.A., Tissue culture methods for the screening and analysis of putativevirus-resistant transgenic potato plants. Phytopathology,1998,88:437-441.
    229. Sakamoto H., Maruyama K., Sakuma Y., Meshi T., Iwabuchi M., Shinozaki K. andYamaguchi-Shinozaki K., Arabidopsis Cys2/His2-type zinc-finger proteins function astranscription repressors under drought, cold, and high-salinity stress conditions. Plant Physiology,2004,136:2734-2746.
    230. Salehi R., Kashi A., Lee J., Babalar M., Delshad M., Lee S. and Huh Y., Leaf gas exchanges andmineral ion composition in xylem sap of Iranian melon affected by rootstocks and training methods.HortScience,2010,45:766-770.
    231. Sanders P.L. and Markhart A.H., Interspecific grafts demonstrate root system control of leaf waterstatus in water-stressed Phaseolus. Journal of Experimental Botany,1992,43:1563-1567.
    232. Santa-Cruz A., Martinez-Rodriguez M.M., Perez-Alfocea F., Romero-Aranda R. and Bolarin M.C.,The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science,2002,162:825-831.
    233. Satisha J., Doshi P. and Adsule P.G., Influence of rootstocks on changing the pattern of phenoliccompounds in Thompson seedless grapes and its relationship to the incidence of Powdery Mildew.Turkish Journal of Agriculture&Forestry,2008,32:1-9.
    234. Satisha J., Prakash G.S., Bhatt R.M. and Sampath Kumar P., Physiological mechanisms of wateruse efficiency in grape rootstocks under drought conditions. International Journal of AgriculturalResearch,2007,2:159-164.
    235. Savvas D., Colla G., Rouphael Y. and Schwarz D., Amelioration of heavy metal and nutrient stressin fruit vegetables by grafting. Scientia Horticulturae,2010,127:156-161.
    236. Savvas D., Papastavrou D., Ntatsi G., Ropokis A., Olympios C., Hartmann H. and Schwarz D.,Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake bytomato. HortScience,2009,44:1978-1982.
    237. Schachtman D.P. and Shin R., Nutrient sensing and signaling: NPKS. Annual Review of PlantBiology,2007,58:47-69.
    238. Schwab R., Palatnik J.F., Riester M., Schommer C., Schmid M. and Weigel D., Specific effects ofmicroRNAs on the plant transcriptome. Developmental Cell,2005,8:517-527.
    239. Serraj R. and Sinclair T.R., Processes contributing to N2-fixation intensitivity to drought in thesoybean cultivar Jackson. Crop Science,1996,36:961-968.
    240. Sharma Y.K. and Davis K.R., The effects of ozone on antioxidant responses in plants. Free RadicalBiology and Medicine,1997,23:480-488.
    241. Shin R., Transcriptional regulatory components responding to macronutrient limitation. Journal ofPlant Biology,2011,54:286-293.
    242. Shin R., Berg R.H. and Schachtman D.P., Reactive oxygen species and root hairs in Arabidopsisroot response to nitrogen, phosphorus and potassium deficiency. Plant and Cell Physiology,2005,46:1350-1357.
    243. Shinozaki K. and Yamaguchi-Shinozaki K., Gene networks involved in drought stress responseand tolerance. Journal of Experimental Botany,2007,58:221-227.
    244. Shinozaki K., Yamaguchi-Shinozaki K. and Seki M., Regulatory network of gene expression in thedrought and cold stress responses. Current Opinion in Plant Biology,2003,6:410-417.
    245. Fan S.X. and Wang S.H., Endurance to high temperature stress of grafted tomato. Transactions ofthe Chinese Society of Agricultural Engineering,2005: S2.
    246. Sieber P., Wellmer F., Gheyselinck J., Riechmann J.L. and Meyerowitz E.M., Redundancy andspecialization among plant microRNAs: role of the MIR164family in developmental robustness.Development,2007,134:1051-1060.
    247. Stoddard F.L. and McCully M.E., Histology of the development of the graft union in pea roots.Canadian Journal of Botany,1979,57:1486-1501.
    248. Sunkar R. and Zhu J.K., Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis. The Plant Cell,2004,16:2001-2019.
    249. Sunkar R., Chinnusamy V., Zhu J.H. and Zhu J.K., Small RNAs as big players in plant abioticstress responses and nutrient deprivation. Trends in Plant Science,2007,12:301-309.
    250. Sunkar R., Girke T., Jain P.K. and Zhu J.K., Cloning and characterization of microRNAs from rice.The Plant Cell,2005,17:1397-1411.
    251. Sunkar R., Kapoor A. and Zhu J.K., Posttranscriptional induction of two Cu/Zn superoxidedismutase genes in Arabidopsis is mediated by downregulation of miR398and important foroxidative stress tolerance. The Plant Cell,2006,18:2051-2065.
    252. Sunkar R., Zhou X.F., Zheng Y., Zhang W.H. and Zhu J.K., Identification of novel and candidatemiRNAs in rice by high throughput sequencing. BMC Plant Biology,2008,8:25.
    253. Taller J., Yagishita N. and Hirata Y., Graft-induced variants as a source of novel characteristics inthe breeding of pepper (Capsicum annuum L.). Euphytica,1999,108:73-78.
    254. Thies J.A., Ariss J.J., Hassell R.L., Olson S., Kousik C.S. and Levi A., Grafting for management ofsouthern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease,2010,94:1195-1199.
    255. Tiedemann R., Graft union development and symplastic phloem contact in the heterograft Cucumissativus on Cucurbita ficifolia. Journal of Plant Physiology,1989,134:427-440.
    256. Todd C.D., Zeng P.Y., Huete A.M.R., Hoyos M.E. and Polacco J.C., Transcripts of MYB-likegenes respond to phosphorous and nitrogen deprivation in Arabidopsis. Planta,2004,219:1003-1009.
    257. Todesco M., Rubio-Somoza I., Paz-Ares J. and Weigel D., A collection of target mimics forcomprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genetics,2010,6:e1001031.
    258. Trindade I., Capit o C., Dalmay T., Fevereiro M.P. and Dos Santos D.M., miR398and miR408areup-regulated in response to water deficit in Medicago truncatula. Planta,2010,231:705-716.
    259. Trionfetti N.P., Colla G., Granati E., Temperini O., Crino P. and Saccardo F., Rootstock resistanceto fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. ScientiaHorticulturae,2002,93:281-288.
    260. Tsay Y., Chiu C., Tsai C., Ho C. and Hsu P., Nitrate transporters and peptide transporters. FEBSLetters,2007,581:2290-2300.
    261. Valdés López O. and Hernández G., Transcriptional regulation and signaling in phosphorusstarvation: what about legumes? Journal of Integrative Plant Biology,2008,50:1213-1222.
    262. Valdés López O., Yang S.S., Aparicio Fabre R., Graham P.H., Reyes J.L., Vance C.P. andHernández G., MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrientdeficiency stresses and manganese toxicity. New Phytologist,2010,187:805-818.
    263. Valliyodan B. and Nguyen H.T., Understanding regulatory networks and engineering for enhanceddrought tolerance in plants. Current Opinion in Plant Biology,2006,9:189-195.
    264. Vance C.P., Uhde Stone C. and Allan D.L., Phosphorus acquisition and use: critical adaptations byplants for securing a nonrenewable resource. New Phytologist,2003,157:423-447.
    265. Vaucheret H., Mallory A.C. and Bartel D.P., AGO1homeostasis entails coexpression of MIR168and AGO1and preferential stabilization of miR168by AGO1. Molecular Cell,2006,22:129-136.
    266. Vaucheret H., Vazquez F., CrétéP. and Bartel D.P., The action of ARGONAUTE1in the miRNApathway and its regulation by the miRNA pathway are crucial for plant development. Genes&Development,2004,18:1187-1197.
    267. Vazquez F., Gasciolli V., CrétéP. and Vaucheret H., The nuclear dsRNA binding protein HYL1isrequired for microRNA accumulation and plant development, but not posttranscriptional transgenesilencing. Current Biology,2004,14:346-351.
    268. Vidal E.A. and Gutiérrez R.A., A systems view of nitrogen nutrient and metabolite responses inArabidopsis. Current Opinion in Plant Biology,2008,11:521-529.
    269. Vidal E.A., Araus V., Lu C., Parry G., Green P.J., Coruzzi G.M. and Gutiérrez R.A.,Nitrate-responsive miR393/AFB3regulatory module controls root system architecture inArabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States ofAmerica,2010,107:4477-4482.
    270. Vinocur B. and Altman A., Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations. Current Opinion in Biotechnology,2005,16:123-132.
    271. Voinnet O., Origin, biogenesis, and activity of plant microRNAs. Cell,2009,136:669-687.
    272. Voinnet O., Vain P., Angell S. and Baulcombe D.C., Systemic spread of sequence-specifictransgene RNA degradation in plants is initiated by localized introduction of ectopic promoterlessDNA. Cell,1998,95:177-187.
    273. Wang J.W., Park M.Y., Wang L.J., Koo Y., Chen X.Y., Weigel D. and Poethig R.S., miRNAcontrol of vegetative phase change in trees. PLoS Genetics,2011a,7: e1002012.
    274. Wang J.W., Wang L.J., Mao Y.B., Cai W.J., Xue H.W. and Chen X.Y., Control of root capformation by microRNA-targeted auxin response factors in Arabidopsis. The Plant Cell,2005,17:2204-2216.
    275. Wang L., Wang M.B., Tu J.X., Helliwell C.A., Waterhouse P.M., Dennis E.S., Fu T.D. and FanY.L., Cloning and characterization of microRNAs from Brassica napus. FEBS Letters,2007,581:3848-3856.
    276. Wang T.Z., Chen L., Zhao M.G., Tian Q.Y. and Zhang W.H., Identification of drought-responsivemicroRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMCGenomics,2011b,12:367.
    277. Wang Y.Q., Plant grafting and its application in biological research. Chinese Science Bulletin,2011c,56:3511-3517.
    278. Wang Y.Q. and Kollmann R., Vascular differentiation in the graft union of in-vitro grafts withdifferent compatibility. Journal of Plant Physiology,1996,147:521-533.
    279. Wang Z., Zhu Y., Wang L.L., Liu X., Liu Y.X., Phillips J. and Deng X., A WRKY transcriptionfactor participates in dehydration tolerance in Boea hygrometrica by binding to the W-boxelements of the galactinol synthase (BhGolS1) promoter. Planta,2009,230:1155-1166.
    280. Wei L.Y., Zhang D.F., Xiang F. and Zhang Z.X., Differentially expressed miRNAs potentiallyinvolved in the regulation of defense mechanism to drought stress in maize seedlings. InternationalJournal of Plant Science,2009,170:979-989.
    281. Whiting M.D., Lang G. and Ophardt D., Rootstock and training system affect sweet cherry growth,yield, and fruit quality. HortScience,2005,40:582-586.
    282. Williams L., Grigg S.P., Xie M.T., Christensen S. and Fletcher J.C, Regulation of Arabidopsisshoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP targetgenes. Development,2005,132:3657-3668.
    283. Wu G. and Poethig R.S., Temporal regulation of shoot development in Arabidopsis thaliana bymiR156and its target SPL3. Development,2006,133:3539-3547.
    284. Wu H.J., Ma Y.K., Chen T., Wang M. and Wang X.J., PsRobot: a web-based plant small RNAmeta-analysis toolbox. Nucleic Acids Research,2012,40: W22-W28.
    285. Wu M.F., Tian Q. and Reed J.W., Arabidopsis microRNA167controls patterns of ARF6and ARF8expression, and regulates both female and male reproduction. Development,2006,133:4211-4218.
    286. Xia K.F., Wang R., Ou X.J., Fang Z.M., Tian C.G., Duan J., Wang Y.Q. and Zhang M.Y., OsTIR1and OsAFB2downregulation via OsmiR393overexpression leads to more tillers, early floweringand less tolerance to salt and drought in rice. PloS ONE,2012,7: e30039.
    287. Xiang Y., Tang N., Du H., Ye H.Y. and Xiong L.Z., Characterization of OsbZIP23as a key playerof the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity andsalinity and drought tolerance in rice. Plant Physiology,2008,148:1938-1952.
    288. Xie F.L., Huang S.Q., Guo K., Xiang A.L., Zhu Y.Y., Nie L. and Yang Z.M., Computationalidentification of novel microRNAs and targets in Brassica napus. FEBS Letters,2007,581:1464-1474.
    289. Xie K.B., Wu C.Q. and Xiong L.Z., Genomic organization, differential expression, and interactionof SQUAMOSA promoter-binding-like transcription factors and microRNA156in rice. PlantPhysiology,2006,142:280-293.
    290. Xie Z.X., Kasschau K.D. and Carrington J.C., Negative feedback regulation of Dicer-like1inArabidopsis by microRNA-guided mRNA degradation. Current Biology,2003,13:784-789.
    291. Xoconostle-Cázares B., Xiang Y., Ruiz-Medrano R., Wang H.L., Monzer J., Yoo B.C., McFarlandK.C., Franceschi V.R. and Lucas W.J., Plant paralog to viral movement protein that potentiatestransport of mRNA into the phloem. Science,1999,283:94-98.
    292. Xu Z.H., Zhong S.H., Li X.H., Li W.X., Rothstein S.J., Zhang S.H., Bi Y.M. and Xie C.X.,Genome-wide identification of microRNAs in response to low nitrate availability in maize leavesand roots. PloS ONE,2011,6: e28009.
    293. Yamaguchi-Shinozaki K. and Shinozaki K., Transcriptional regulatory networks in cellularresponses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology,2006,57:781-803.
    294. Yamasaki H., Abdel-Ghany S.E., Cohu C.M., Kobayashi Y., Shikanai T. and Pilon M., Regulationof copper homeostasis by micro-RNA in Arabidopsis. Journal of Biological Chemistry,2007,282:16369-16378.
    295. Yamasaki H., Hayashi M., Fukazawa M., Kobayashi Y. and Shikanai T., SQUAMOSA promoterbinding protein-like7is a central regulator for copper homeostasis in Arabidopsis. The Plant Cell,2009,21:347-361.
    296. Yeoman M.M. and Brown R., Implications of the formation of the graft union for organisation inthe intact plant. Annals of Botany,1976,40:1265-1276.
    297. Yet r H., Sari N. and Yücel S., Rootstock resistance to Fusarium wilt and effect on watermelonfruit yield and quality. Phytoparasitica,2003,31:163-169.
    298. Yin Z.J., Li C.H., Han X.L. and Shen F.F., Identification of conserved microRNAs and their targetgenes in tomato (Lycopersicon esculentum). Gene,2008,414:60-66.
    299. Yoo B., Kragler F., Varkonyi-Gasic E., Haywood V., Archer-Evans S., Lee Y.M., Lough T.J. andLucas W.J., A systemic small RNA signaling system in plants. The Plant Cell,2004,16:1979-2000.
    300. Yu B., Bi L., Zheng B.L., Ji L.J., Chevalier D., Agarwal M., Ramachandran V., Li W.X., LagrangeT., Walker J.C., et al., The FHA domain proteins DAWDLE in Arabidopsis and SNIP1in humansact in small RNA biogenesis. Proceedings of the National Academy of Sciences of the UnitedStates of America,2008,105:10073-10078.
    301. Zeng H.Q., Wang G.P., Hu X.Y., Wang H.Z., Du L.Q. and Zhu Y.Y., Role of microRNAs in plantresponses to nutrient stress. Plant Soil,2014,374:1005-1021.
    302. Zeng H.Q., Zhu Y.Y., Huang S.Q. and Yang Z.M., Analysis of phosphorus-deficient responsivemiRNAs and cis-elements from soybean (Glycine max L.). Journal of Plant Physiology,2010,167:1289-1297.
    303. Zeng Y., Zhu Y.L., Huang B.J. and Yang L.F, Effects of Cucurbita ficifolia as rootstock on growth,fruit setting, disease resistance and leaf nutrient element contents in Cucumis sativus. Journal ofPlant Resources and Environment,2004,13:15-19.
    304. Zhang B.H., Pan X.P., Cobb G.P. and Anderson T.A., Plant microRNA: a small regulatorymolecule with big impact. Developmental Biology,2006,289:3-16.
    305. Zhang D.H., Meng Z.H., Xiao W.M., Wang X.C. and Sodmergon, Graft-induced inheritablevariation in mungbean and its application in mungbean breeding. Acta Botanica Sinica,2001,44:832-837.
    306. Zhang J.Z., Creelman R.A. and Zhu J.K., From laboratory to field. Using information fromArabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiology,2004,135:615-621.
    307. Zhang X.H., Li H.X., Zhang J.H., Zhang C.J., Gong P.J., Ziaf K., Xiao F.M. and Ye Z.B.,Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in acell-autonomous manner. Transgenic Research,2011,20:569-581.
    308. Zhang Z.K., Liu S.Q., Hao S.Q. and Liu S.H., Grafting increases the copper tolerance of cucumberseedlings by improvement of polyamine contents and enhancement of antioxidant enzymes activity.Agricultural Sciences in China,2010,9:985-994.
    309. Zhao B.T., Ge L.F., Liang R.Q., Li W., Ruan K.C., Lin H.X. and Jin Y.J., Members of miR169family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMCMolecular Biology,2009,10:29.
    310. Zhao B.T., Liang R.Q., Ge L.F., Li W., Xiao H.S., Lin H.X., Ruan K.C. and Jin Y.J., Identificationof drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications,2007a,354:585-590.
    311. Zhao L., Kim Y.J., Dinh T.T. and Chen X.M., miR172regulates stem cell fate and defines theinner boundary of APETALA3and PISTILLATA expression domain in Arabidopsis floralmeristems. The Plant Journal,2007b,51:840-849.
    312. Zhao M., Ding H., Zhu J.K., Zhang F.S. and Li W.X., Involvement of miR169in thenitrogen-starvation responses in Arabidopsis. New Phytologist,2009,190:906-915.
    313. Zhao M., Tai H.H., Sun S.Z., Zhang F.S., Xu Y.B. and Li W.X., Cloning and characterization ofmaize miRNAs involved in responses to nitrogen deficiency. PloS ONE,2012,7: e29669.
    314. Zhong R.Q. and Ye Z.H., Regulation of HD-ZIP III genes by microRNA165. Plant Signaling&Behavior,2007,2:351-353.
    315. Zhou L.G., Liu Y.H., Liu Z.C., Kong D.Y., Duan M and Luo L.J., Genome-wide identification andanalysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany,2010,61:4157-4168.
    316. Zhou M., Li D.Y., Li Z.G., Hu Q., Yang C.H., Zhu L.H. and Luo H., Constitutive expression of amiR319gene alters plant development and enhances salt and drought tolerance in transgeniccreeping bentgrass. Plant Physiology,2013,161:1375-1391.
    317. Zhou X.F., Wang G.D., Sutoh K., Zhu J.K. and Zhang W.X., Identification of cold-induciblemicroRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta (BBA)-GeneRegulatory Mechanisms,2008,1779:780-788.
    318. Zhou Z.S., Huang S.Q. and Yang Z.M., Bioinformatic identification and expression analysis ofnew microRNAs from Medicago truncatula. Biochemical and Biophysical ResearchCommunications,2008,374:538-542.
    319. Zhu C., Ding Y.F. and Liu H.L., MiR398and plant stress responses. Physiologia Plantarum,2011,143:1-9.
    320. Zhu J.K., Plant salt tolerance. Trends in Plant Science,2001,6:66-71.
    321. Zhu J., Bie Z.L., Huang Y. and Han X.Y., Effect of grafting on the growth and ion concentrationsof cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition,2008,54:895-902.
    322. Zhu J.Y., Pfuhl T., Motsch N., Barth S., Nicholls J., Gr sser F. and Meister G., Identification ofnovel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. Journal of Virology,2009,83:3333-3341.
    323. Zhu Q.H. and Helliwell C.A., Regulation of flowering time and floral patterning by miR172.Journal of Experimental Botany,2011,62:487-495.
    324. Zhu Q.H., Upadhyaya N.M., Gubler F. and Helliwell C.A., Over-expression of miR172causes lossof spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology,2009,9:149.
    325. Zijlstra S., Groot S. and Jansen J., Genotypic variation of rootstocks for growth and production incucumber; possibilities for improving the root system by plant breeding. Scientia Horticulturae,1994,56:185-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700