用户名: 密码: 验证码:
渤海湾北部苹果园土壤系统有机化过程的动力因素研究与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国苹果园大多分布在缓坡丘陵地,土壤有机质含量低,特别是有机肥逐年减少,连年大量施用化肥等一系列不合理的土壤管理措施,导致土壤肥力持续下降,降低了产量,影响了果实品质,严重地制约着苹果产业的健康发展。本研究通过系统比对相同土质的自然土壤、农田土壤和果园土壤有机质组分的动态变化、有机质的合成与分解、土壤微生物种群结构、土壤理化性状和酶活性的变化规律,探讨不同耕作模式下上述各个因子的变化特征,了解自然土壤与耕作土壤、果园土壤与大田土壤有机化过程的差异,分析其动力因子的核心,通过各种人为措施对土壤环境进行有目的的调控,明确果园土壤对人工调控措施的响应机制,从有机质行为的角度评价现有果园土壤管理制度的科学性与弊端,并提出果园土壤培肥的技术策略,为渤海湾北部苹果园土壤管理提供理论和技术支持。主要研究结果如下:
     1.土地利用方式对渤海湾北部苹果园土壤有机化过程的影响研究表明:土地利用方式对土壤蔗糖酶、β-葡萄糖苷酶和中性磷酸酶活性影响显著,而对纤维素酶和脲酶的影响未达到显著水平。土壤酶活性均随着土层深度的增加而递减,沿土层深度的变异程度依次为自然土壤>果园土壤>农田土壤。果园土壤的有机质及N、P、K含量介于农田土壤和自然土壤之间,果园土壤的全K含量高于农田和自然土壤,果园0cm-10cm土层速效K含量高于其他两种土地利用方式。果园土地利用方式显著改变了微生物在土壤中的空间分布状况,0cm-10cm土层,果园土壤微生物的丰富度指数(S)和多样性指数(H)均显著高于农田土壤和自然土壤。糖类和多聚类是区分土地利用方式土壤微生物群落功能差异的主要碳源。土壤总有机碳(SOC)含量及腐殖质组分胡敏酸(HA)和胡敏素(HM)以农田土壤最高,自然土壤最低,而富里酸(FA)在各土层中的分布差异较大。蔗糖酶、p-葡萄糖苷酶、脲酶和中性磷酸酶活性分别与SOC、HA、FA和HM呈显著正相关。纤维素酶活性则与SOC、HA、FA和HM呈负相关。土壤微生物的平均孔颜色变化率(AWCD)、丰富度指数(S)、多样性指数(H)和优势度指数(Ds)分别与SOC、HA、FA和HM呈正相关。纤维素酶、脲酶与土壤全K极显著正相关,蔗糖酶与土壤全N、速效N、全P、速效P、速效K存在极显著正相关,p-葡萄糖苷酶与土壤速效N极显著正相关,与全N、全K、速效K显著正相关;土壤中有机碳与全N存在极显著正相关,与速效N、全P、速效K显著正相关;胡敏素与土壤全N、速效N、全P、速效K显著正相关。
     2.不同土壤管理制度对渤海湾北部苹果园土壤有机化过程的影响研究表明:覆盖枝条与杂草均能提高苹果园土壤的养分水平和碳库质量,但覆盖枝条比杂草更有助于土壤碳库的稳定性。与秸秆和杂草相比,枝条处理土壤有机碳和胡敏素含量的增加更为显著,枝条回田将成为实现果园内部物质循环的途径之一
     3.不同有机物料对渤海湾北部苹果园土壤有机化过程的影响研究表明,羊粪处理的纤维素酶、蔗糖酶、过氧化氢酶活性以及碱解N、速效P和速效K含量最高,其次为稻壳;磷酸酶活性以稻壳处理最高。同一处理室内培养、盆栽处理和大田试验结果存在差异。盆栽试验全N和全P含量以豆秸处理最高,稻壳处理的有机质含量最高;大田试验中,玉米秸处理的全N含量最高,稻壳处理的全P含量最高,豆秸处理的全K含量最高。不同有机物料处理明显提高了苹果植株各器官的营养物质积累水平。其中以羊粪处理提升作用最明显,其次为稻壳处理。
     4.添加小分子有机物和蚯蚓对渤海湾北部苹果园土壤有机化过程的影响研究表明,添加葡萄糖和蚯蚓,微生物的功能多样性、土壤纤维素酶、蔗糖酶、β葡萄糖苷酶活性显著增加,促进了土壤有机碳库的稳定性。尿素和葡萄糖同时添加有助于微生物多样性和土壤腐殖质含量的增加。小分子有机物和蚯蚓数量均对土壤微生物的AWCD值影响显著,对碳源利用主成分起分异作用的主要是碳水化合物类和多聚物类。加入葡萄糖为土壤微生物提供可迅速利用的碳源,微生物功能多样性显著增加,蚯蚓活动加速了有机碳源的转化,提高了土壤碳库的活性和稳定性。小分子有机物种类和蚯蚓数量对山定子的长势均有显著影响。只添加葡萄糖处理山定子的长势最弱,光合性能降低,植株缺N,同时添加尿素改善植株光合能力,促进山定子的生长。蚯蚓活动提高了山定子植株对水分和N、P、K养分的利用,促进了山定子植株的植株高度、干粗及叶片数的增加。
Chinese apple orchards are mostly distributed in the hilly slope lands. Where the content of soil organic matter is low, especially a series of unreasonable soil management measures such as organic fertilizer deficit and excessive application of chemical fertilizer year after year, which resulted in declining of soil fertility, yields and fruit quality. The healthy development of apple industry was restricted seriously. In this study, the dynamic change of SOM, synthesis and decomposition of organic matter, soil microbial population structure, soil physical and chemical properties and soil enzymes activities of orchard soil, field soil and undisturbed soil from same parent soil material were compared to discuss the change characteristics of these factors under different cultivation mode, find the differences of soil system organification process of different land use pattern and analyze the core of power factor. Soil environment was regulated purposefully by artificial measures in order to identify the response mechanism of orchard soil on the artificial control measures. The science and disadvantages of existing organic orchard soil management system were evaluated from the perspective of organic matter behavior. The technology strategy orchard soil fertility were put forward, which provide theoretical and technical support for apple orchard soil management in northern Bohai Bay.The main results were as follows:
     1.The effect of different land use pattern on soil system organification process showed that:The soil invertase,β-glucosidase and neutral phosphatase activity significantly affected by different land use patterns, while the cellulase and urease activities did not reach a significant level. Soil enzyme activities were decreased with soil depth increasing, the order of variation along soil depth was natural soil>orchard orchard>field soil. Orchard soil organic matter and N, P, K content ranged between field soil and natural soil, the total potassium content of orchard soil was higher than that in farmland and natural soil, potassium content of0-10cm layer in orchards soil was higher than the other two land use patterns. Spatial distributions of microbes in soil were significantly affected by the mode of land use in orchards. Richness index (S) and diversity index (H) of orchard soil microbes were significantly higher than that of field soil and natural soil in0to10centimeter topsoil. It was found that carbohydrate and polymers carbon are the main carbon source to find the functional differentiation of soil microbial communities under different land use patterns Soil organic carbon (SOC) content and humus fractions HA and HM was highest in farmland soil and lowest in undisturbed soil, while the distribution of the FA in different soil layers was quite different. Cellulase and urease had extremely significantly positive correlation with soil total potassium. Sucrase had extremely significantly positive correlation with soil total nitrogen, available nitrogen, total phosphorus, available phosphorus and available potassium. β-glucosidase had extremely significantly positive correlation with available nitrogen, while had significantly positive correlation with total nitrogen, total potassium, available potassium. Soil organic carbon had extremely significantly positive correlation with total nitrogen, while had significant positive correlation with available nitrogen, total phosphorus, available potassium. Humic had significant positive correlation with soil total nitrogen, available nitrogen, total phosphorus, available potassium.
     2. The effect of different soil management on soil system organification process showed that:Covering branches and weeds improved the apple orchard soil nutrient levels and the quality of carbon pools, however, covering branches had more contribution than covering weeds to the stability of the soil carbon pool. Compared with crop stalks and weeds, branch treatment significantly increased the content of soil organic carbon and humin, which provided a strong guarantee for the realization of material circulation inside orchards.
     3. The effect of different soil organic materials on soil system organification process in northern Bohai Bay showed that:the cellulose, invertase, catalase activity and nitrogen, available phosphorus and potassium content were highest in sheep dung treatment, followed by rice shell treatment. Phosphatase activities of rice husk were the highest. The results of same treatment in indoor cultivation, processing and field trials pot were varied. For pot experiment, total nitrogen and total phosphorus content of soybean straw treatment was the highest, while the content of organic matter were higher in rice husk. For field trials, the nitrogen content of corn stalk treatment were the highest, total P content of rice husk treatment was the highest, total K content of soybean treatment was the highest. Different organic materials significantly increased nutrients accumulation level in different organs of apple plant. Among them, sheep dung treatment had the best effect on nutrients accumulation, followed by rice husk treatment.
     The effect of adding small organic molecules and earthworms on soil system organification process sin northern Bohai Bay showed that:After adding the small molecules of glucose and earthworm, microbial functional diversity, the activity of soil cellulase, invertase and β-glucosidase significantly increased, at the same time, improved the activity and stability of the soil carbon pool. It could make a contribution to increasing the soil humic content and microbial functional diversity while adding urea and glucose at the same time. Average Well Color Development (AWCD) values were significantly affected by small molecular organic compounds and numbers of earthworms. It was found that the differentiations of carbon utilization were mainly caused by carbohydrate and polymers carbon. The addition of glucose provided more available carbon sources for the soil microbes, as a result, the microbial functional diversity also had significant increase.The earthworm activities accelerated the soil organic pool transformation, and improved the activity and stability of the soil carbon pool. Small organic molecules and numbers of earthworms had a significant effect on the growing of Malus Baccata Borkh.. The vigor of Malus Baccata Borkh. was the weakest after adding only the glucose treatment, at the same time, photosynthetic performance and nitrogen content was degraded, while, at the same time, adding urea could improve plant photosynthetic capacity, and promote the growth of Malus Baccata Borkh.. Earthworm activities increased utilization of plants for moisture and nutrients (N, P, and K), promoted the increasing of plant height, leaf number and stem diameter.
引文
1. 卜玉山,苗果园,周乃健,等.2006.地膜和秸秆覆盖土壤肥力效应分析与比较[J].中国农业科学,39(5):1069-1075.
    2. 陈伏生,曾德慧,陈广生.2004.土地利用变化对沙地土壤全氮空间分布格局的影响[J].应用生态学报,15(6):953-957.
    3. 陈国潮,何振立,黄昌勇.2002.红壤微生物生物量碳周转及其研究[J].土壤学报,39(2):152-160.
    4. 陈鲜妮,岳西杰,葛玺祖,等.2012.长期秸秆还田对填土耕层土壤有机碳库的影响[J].自然资源学报,27(1):25-32.
    5. 崔永琴,马剑英,刘小宁,等.2011.人类活动对土壤有机碳库的影响研究进展[J].中国沙漠,31(2):407-414.
    6. 戴志刚,鲁剑巍,李小坤,等.2010.不同作物还田秸秆的养分释放特征试验[J].农业工程学报,26(6):272-276.
    7. 邓丰产.2009.果园生草的生态效应及在果树上的应用[J].北方园艺,(1):133-136.
    8. 邓丰产,安贵阳,郁俊谊,等.2003.渭北早塬苹果园的生草效应[J].果树学报,20(6):506-508.
    9. 丁永祯,李志安,邹碧.2005.土壤低分子量有机酸及其生态功能[J].土壤,37(3):243-250.
    10.窦全林,陈刚.2006.纤维素酶的研究进展及应用前景[J].畜牧与饲料科学,(5):58-60.
    11.窦森.2008.土壤腐殖物质形成转化及其微生物学机理研究进展[J].吉林农业大学学报,30(4):538-547.
    12.窦森,李凯,关松.2011.土壤团聚体中有机质研究进展[J].土壤学报,48(2):412-418.
    13.窦森,于水强,张晋京.2007.不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响[J].土壤学报,44(3):458-465.
    14.樊巍,孔令省,阴三军,等.2004.干旱丘陵区苹果-紫花苜蓿复合系统对苹果生长、产量和品质的影响[J].河南农业大学学报,38(4):423-426.
    15.樊廷录,王勇,王立明,等.1999.旱地冬小麦周年地膜覆盖栽培的增产机理及关键技术研究[J].干旱地区农业研究,17(2):1-7.
    16.高晟.2012.秸秆覆盖对冰脆李幼林土壤有机碳及速效养分含量的影响p].南京林业大学.
    17.高云超,朱文珊.2000.秸秆覆盖免耕对土壤细菌群落区系的影响[J].生态科学,19(3):27-32.
    18.巩杰,陈顶利,傅伯杰,等.2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,15(12):2292-2296.
    19.龚伟,颜晓元,蔡祖聪,等.2008.长期施肥对小麦-玉米作物系统土壤颗粒有机碳和氮的影响[J].应用生态学报,19(11):2375-2381.
    20.郭晓利.2013.谈谈土壤有机质的成分和在土壤肥力上的作用[J].内蒙古草业,25(1):19-20.
    21.郝淑英,刘蝴蝶,牛俊玲,等.2003.黄土高原区果园生草覆盖对土壤物理性状、水分及产量的 影响[J].土壤肥料,(1):25-27.
    22.何振立.1997.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,(2):61-69.
    23.黄昌勇.2000.土壤学[M].中国农业出版社.
    24.黄继川,彭智平,于俊红,等.2010.施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响[J].植物营养与肥料学报,16(2):348-353.
    25.惠竹梅,张振文,李华.2003.葡萄园生草的研究进展[J].陕西农业科学,(1):22-25.
    26.霍莲杰,纪雄辉,吴家梅,等.2012.土壤有机碳分类研究进展[J].湖南农业科学,(1):65-69.
    27.姜培坤,徐秋芳,俞益武.2002.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,19(1):17-19.
    28.焦蕊,赵同生,贺丽敏,等.2008.自然生草和有机物覆盖对苹果园土壤微生物和有机质含量的影响[J].河北农业科学,12(12):29-30.
    29.焦晓光,高崇升,隋跃宇,等.2011.不同有机质含量农田土壤微生物生态特征[J].中国农业科学,44(18):3759-3767.
    30.姜勇,庄秋丽,梁文举.2007.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志,26(2):278-28.
    31.兰彦平,解自典.2000.无芒雀麦对石灰岩旱地果园的保水效应研究[J].落叶果树,(6):15-16.
    32.兰宇,韩晓日,战秀梅,等.2013.施用不同有机物料对棕壤酶活性的影响[J].土壤通报,44(1):110-115.
    33.李逢雨,孙锡发,冯文强,等.2009.麦秆、油菜秆还田腐解速率及养分释放规律研究[J].植物营养与肥料学报,15(2):374-380.
    34.李会科,张广军,赵政阳,李凯荣.2007.黄土高原旱地苹果园生草对土壤养分的影响[J].园艺学报,34(2):477-480.
    35.李会科,赵政阳,张广军.2004.种植不同牧草对渭北苹果园土壤肥力的影响[J].西北林学院学报,19(2):31-34.
    36.李娟,赵秉强,李秀英,等.2008.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学,41(1):144-152.
    37.李君剑,石福臣,柴田英昭,等.2007.东北地区三种典型次生林土壤有机碳、总氮及微生物特征的比较研究[J].南开大学学报(自然科学版),40(3):84-91.
    38.李开宇,李亚男,文凤,等.2011.不同覆盖方式对辽西旱地玉米土壤温度和产量的影响[J].辽宁农业科学,(5):7-11.
    39.李娜,张利敏,张雪萍.2012.土壤微生物群落结构影响因素的探讨[J].哈尔滨师范大学自然科学学报,6(28):70-74.
    40.李雪转,樊贵盛.2006.土壤有机质含量对土壤入渗能力及参数影响的试验研究.农业工程学报,22(3):188-190.
    41.李玉进,王百群.2012.施用柳枝稷茎和叶对土壤有机碳与微生物量碳的影响及其分解特征[J]. 水土保持研究,19(5):78-82.
    42.李跃林,彭少麟,赵平,等.2002.鹤山几种土地利用方式的土壤碳储量研[J].山地学报,20(5):548-552.
    43.李云乐,乔玉辉,孙振钧,等.2006.不同土壤培肥措施下农田有机物分解的生态过程[J].生态学报,26(6):1933-1939.
    44.梁美英,卜玉山,李伟,等.2010.不同地膜与覆盖方式土壤水温与作物增产效应[J].山西农业大学学报:自然科学版,30(5):426-431.
    45.梁毅,杨慧,曹建华,等.2013.土地利用方式下土壤养分和酶活性的变化[J].广西师范大学学报,31(1):125-129.
    46.梁玉忠.2008.大棚果树应用秸秆生物反应堆技术[J].林果花卉,(6):16.
    47.刘金城,杨晶秋,白成云.1991.地膜覆盖下土壤有机质的分解与积累[J].华北农学报,6(1):99-104.
    48.刘世梁,傅伯杰,陈利顶,等.2002.卧龙自然保护区土地利用变化对土壤性质的影响[J].地理研究,21(6):682-688.
    49.刘世荣,王晖,栾军伟.2011.中国森林土壤碳储量与土壤碳过程研究进展[J].生态学报,31(19):5437-544.
    50.刘松忠,张强,赵昌杰,等.2010.果园土壤有机质对土壤特性与果实品质的影响[J].安徽农业科学,38(36):21104-21106.
    51.刘玉含,张展羽,伊德里萨,等.2007.农田秸秆覆盖技术及其发展趋势分析[J].水利经济,25(2):53-55.
    52.路克国,朱树华,张连忠.2003.有机肥对土壤理化性质和红富士苹果果实品质的影响[J].石河子大学学报,7(3):205-208.
    53.罗格平,许文强,陈曦.2005.天山北坡绿洲不同土地利用对土壤特性的影响[J].地理学报,60(5):209-212.
    54.罗明,文启凯,周抑强,等.1997.有机、无机肥料配合施用对地膜棉田土壤微生物及生化特性的影响[J].新疆农业大学学报,(4):45-48.
    55.牟春梅,李佰锋.2008.有机质含量对软土力学性质影响效应分析[J].水文地质工程地质,3:42-46.
    56.潘根兴,周萍,李恋卿,等.2007.固碳土壤学的核心科学问题与研究进展[J].土壤学报,4(2):327-337.
    57.彭文英,张科利,杨勤科.2006.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发,25(3):94-99.
    58.邱莉萍,张兴昌.2006.子午岭土地利用方式对土壤性质的影响.自然资源学报,21(6):965-971.
    59.邱凤琼,丁庆堂.1986.有机肥在控制土壤肥力中的作用-有机物对土壤腐殖质和氮素性质的影响.土壤通报,17(2):68-88.
    60.沙涛,张晓林.2000.秸杆还田对植烟土壤中微生物结构和数量的影响[J].中国烟草科学,21(3):40-42.
    61.邵丽,谷洁,张社奇,等.2012.生物复混肥对土壤微生物群落功能多样性和微生物量的影响[J].中国生态农业学报,20(6):746-751.
    62.单秀枝,魏由庆,严慧峻,等.1998.土壤有机质含量对土壤水动力学参数的影响.壤学报,35(1):1-9.
    63.盛学斌,刘云霞,孙建中.2004.近50年冀北高原土地利用变化得土壤生境效应[J].应用生态学报,15(4):589-592.
    64.宋淑亚.2011.不同覆盖方式和作物条件下农田土壤呼吸、产量形成及水分利用特征[D].西北农林科技大学.
    65.苏涛,司美茹,马宗琪.2006.土地利用方式对根际土壤微生物数量的影响[J].农业环境科学学报,25:136-139.
    66.苏永中,杨荣,杨晓,等.2012.农业管理措施对新垦荒漠沙地农田土壤有机碳及其组分的影响[J].中国农业科学,45(14):2867-2876.
    67.隋跃宇,焦晓光,高崇生,等.2009.土壤有机质含量与土壤微生物量及土壤酶活性关系的研究[J].土壤通报,40(5):1036-1039.
    68.孙花,谭长银,黄道友,等.2011.土壤有机质对土壤重金属积累、有效性及形态的影响[J].湖南师范大学自然科学学报,34(4):82-87.
    69.田明英,许淑桂,刘倩.2002.果园生产技术研究[J].中国果菜,1:20.
    70.田育军,林杉,赵笃乐.2000.长期不同施肥土壤微生物态氮作为土壤供氮指标的研究[J].甘肃农业大学学报,35(1):24.
    71.万恩梅,张永平,王彦明,等.2010.秸秆生物反应堆技术在大棚果树上的应用.陕西农业科学,6:107-109.
    72.王晖,莫江明,鲁显楷,等.2008.南亚热带森林土壤微生物量碳对氮沉降的响应[J].生态学报,28(2):470-478.
    73.王金达,张学林.2007.东北地区污染黑土中重金属与有机质的关联作用.环境科学研究,1(20):36-41.
    74.汪景宽,彭涛,张旭东,等.1997.地膜覆盖对土壤主要酶活性的影响[J].沈阳农业大学学报,28(3):210-213.
    75.汪景宽,张继宏.1990.地膜覆盖对土壤有机质转化的影响[J].土壤通报,21(4):189-192.
    76.王俊,李凤民,宋秋华,等.2003.地膜覆盖对土壤水温和春小麦产量形成的影响[J].应用生态学报,14(2):205-210.
    77.王树起,韩晓增,乔云发,等.2009.不同土地利用和施肥方式对土壤酶活性及相关肥力因子的影响[J].植物营养与肥料学报,15(6):1311-1316.
    78.王引权,Frank Schuchardt,张仁险,等.2005.葡萄枝条堆肥化过程中的生物化学变化和物质转 化特征[J].果树学报,22(2):115-120.
    79.王有宁,王荣堂,董秀荣.2004.地膜覆盖作物农田光温效应研究[J].中国生态农业学报,12(3):134-136.
    80.王育红,姚宇卿,吕军杰.2002.残茬和覆盖秸秆对黄土坡耕地水土流失的影响[J].干旱地区农业研究,20(4):109-111.
    81.魏小波,何文清,黎晓峰,等.2010.农田土壤有机碳固定机制及其影响因子研究进展[J].中国农业气象,31(4):487-494.
    82.温晓霞,韩思明.2003.早作小麦地膜覆盖生态效应研究[J].中国生态农业学报,11(2):92-95.
    83.翁伯琦,王义祥,黄毅斌,等.2011.生草栽培下果园土壤固碳潜力研究[J].生态环境学报,22(6):931-934.
    84.吴电明.2010.不同管理措施对三峡库区果园土壤肥力的影响[D].南京农业大学.
    85.吴建国,张小全,王彦辉,等.2002.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,38(4):19-29.
    86.吴建国,张小全,徐德应.2004.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,15(4):593-599.
    87.吴金水,何电源.1994.土壤有机质及其周转动力学[J].中国南方土壤肥力与栽培作物施肥.北京:科学出版社,62:28-62.
    88.席北斗,刘鸿亮,白庆中,等.2002.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,(3):19-23.
    89.夏燕飞,张文会,沈向,等.2012.有机质对苹果园土壤改良及对果实产量品质的影响[J].北方园艺,(21):177-180.
    90.徐华勤,肖润林,宋同清,等.2008.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J].生物多样性,16(2):166-174.
    91.薛萐,李占斌,李鹏,等.2011.土地利用方式对干热河谷地区土壤酶活性的影响[J].中国农业科学,44(18):3768-3777.
    92.杨长明,欧阳竹.2006.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报,26(12):4148-4155.
    93.杨景成,韩兴国,黄建辉,等.2003.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,14(8):1385-1390.
    94.杨敬天,苏智先,胡进耀,等.2010.珙桐林土壤有机质与酶活性的通径分析[J].应用与环境生物学报,16(2):164-167.
    95.杨振权,陈永星.2000.水田机械秸秆深施的养分释放及增产效果研究[J].浙江大学学报:农业与生命科学版,26(3):329-331.
    96.姚丽贤,周修冲.2005.有机肥对环境的影响及预防研究[J].中国生态农业学报,13(2):113-115.
    97.叶胜兰,徐福利,王渭玲,等.2013.不同有机肥对黄土丘陵区梨枣生长、光合特性及果实品质 的影响植物营养与肥料学报,19(2):370-378.
    98.姚胜蕊,薛炳烨.1996.果园地面管理研究进展[J].山东农业大学学报,30(2):186-192.
    99.于树,汪景宽,李双异.2008.地膜覆盖对土壤微生物群落结构的影响[J].土壤通报,39(4):904-907.
    100.宇万太,姜子绍,柳敏,赵鑫.2008.土地利用方式对土壤微生物生物量碳的影响[J].土壤通报,39(2):282-286.
    101.宇万太,马强,赵鑫,等.2007.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,26(12):2013-2016.
    102.翟胜,粱银丽.2005.地表覆盖对温室黄瓜生产及水分利用效率的影响[J].农业工程学报,1(10):129-130.
    103.张崇邦,张忠恒.2000.东北黑钙土土壤有机质与酶活性动态关系的研究[J].土壤肥料,(5):28-30.
    104.张谷雄.2003.温州蜜柑热害异常落花落果的机理和防御措施[J].长江果树,(3):7-12.
    105.张洪,傅瓦利,袁红,等.2006.三峡库区土地利用与土壤质量演化的关系研究[J].西南农业大学学报:自然科学版,28(2):240-243.
    106.张晋京.2001.有机物料分解过程中土壤腐殖质数量与特性动态变化研究(D).沈阳农业大学.
    107.张丽娟,刘树庆,李彦慧,等.2001.栗钙土有机物料的腐解特征及土壤有机质调控.土壤通报,32(5):201-205,
    108.张履勤,章明奎.2006.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J].土壤通报,37(4):662-665.
    109.张瑞花,郭登泰,张立功.2013.果园土壤有机质的作用与增加途径[J].西北园艺,08:41-42.
    110.张文,朱元姊,李光晨.2003.实用高效的果园土壤管理方法-果园生草法[J].农业新技术,(4):728.
    111.张先来,李会科,张广军,等.2005.种植不同牧草对渭北苹果园土壤水分影响的初步分析[J].西北林学院学报,20(3):56-59.
    112.张秀玲,李君剑,石福臣.2008.速生杨人工林对土壤碳氮含量及微生物生物量的影响[J].生态与农村环境学报,24(2):32-35.
    113.张旭红,朱永官,王幼珊,等.2007.不同施肥处理对从枝菌根真菌生态分布的影响[J].生态学报,26(9):3081-3087.
    114.张义,谢永生,郝明德,等.2010.地表覆盖及生理生态因子对苹果树光合特性的影响[J].水土保持通报,30(1):125-130.
    115.张于光,张小全,刘学端,等.2007.不同林型土壤微生物有机碳降解基因的多样性[J].生态学报,27(4):1412-1419.
    116.赵建民,赵锋.1995.旱地苹果园土壤管理制度的探讨[J].果树科学,12(1):32-34.
    117.赵月.2012.温度和含水量对不同作物秸秆土壤降解速率及相关指标影响的研究[D].湖南农业 大学.
    118.赵政阳,李会科.2006.黄土高原旱地苹果园生草对土壤水分的影响[J].园艺学报,33(3):481-484.
    119.郑昭佩,刘作新,魏义长,等.2002.水肥管理对半干旱丘陵区土壤有机质含量的影响[J].水土保持学报,16(4):102-104.
    120.周涛,史培军.2006.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展,21(2):138-143.
    121.朱志建,姜培坤,徐秋芳.2006.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,19(4):523-526.
    122.庄岩,吴凤芝.2008.不同农艺措施对土壤微生物的影响研究进展.东北农业大学学报,39(6):136-140.
    123.左华清,王子顺.1995.柑橘根际土壤微生物种群动态及根际效应的研究[J].生态农业研究,3(1):39-47.
    124. Anesio A M, Hollas C, Graneli W, et al.2004. Influence of humic substances on bacterial and viral dynamics in freshwaters[J]. Applied and Environmental Microbiology,70(8):4848-4854.
    125. Arnebrant K, Baath E, Soderstrom B.1990. Changes in microfungal community structure after fertilization of Scots pine forest soil with ammonium nitrate or urea[J]. Soil Biology and Biochemistry,22(3):309-312.
    126. Badis A, Ferradji F Z, Boucherit A, et al.2009. Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soils (Algeria)[J]. African Journal of Microbiology Research,3(13):997-1007.
    127. Bastian F, Bouziri L, Nicolardot B, et al.2009. Impact of wheat straw decomposition on successional patterns of soil microbial community structure[J]. Soil Biology and Biochemistry,41(2):262-275.
    128. Boehm M J, Wu T, Stone A G, et al.1997. Cross-Polarized Magic-Angle Spinning (sup13) C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot[J]. Applied and Environmental Microbiology,63(1):162-168.
    129. Bossio D A, Scow K M.1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology,35(3-4): 265-278.
    130. Bottner P, Austrui F, Cortez J, et al.1998. Decomposition of 14C-and 15N-labelled plant material, under controlled conditions, in coniferous forest soils from a north-south climatic sequence in western Europe[J]. Soil Biology and Biochemistry,30(5):597-610.
    131.Bowen P, Freyman S.1995. Ground covers affect raspberry yield, photosynthesis, and nitrogen nutrition of primocanes[J]. HortScience,30(2):238-241.
    132. Busse M D, Sanchez F G, Ratcliff A W, et al.2009. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues[J]. Soil Biology and Biochemistry, 41(2):220-227.
    133. Campbell C A, Schnitzer M.1978. Soil organic carbon, nitrogen and fertility[J]. Soil organic matter, 8:173-271.
    134. Carsoulle J.1997. Permanent grassing of vineyards, influence on the wine production[J]. Progres-Agricole-et-viticole,114(4):87-92.
    135. Carter M R, Gregorich E G, Anderson D W, et al.1997. Concepts of soil quality and their significance[J]. Developments in Soil Science,25:1-19.
    136. Chefetz B, Hadar Y, Chen Y.1998. Dissolved organic carbon fractions formed during composting of municipal solid waste:properties and significance [J]. Acta hydrochimica et hydrobiologica,26(3): 172-179.
    137. Chemidlin Prevost-Boure N, Maron P A, Ranjard L, et al.2011. Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter[J]. Applied Soil Ecology,47(1): 14-23Christensen B T.1992. Physical fractionation of soil and organic matter in primary particle size and density separates[M]. Advances in soil science. Springer New York,1-90.
    138. Cotea V, Pituc P, Zaldea G.1996. Influence of soil cultivation on the development and distribution of the root system of the BXR Kober 5 BB stock grafted with Muscadelle and Aligote[J]. Cereetari Agronornice in Moldova,2(9):225-230.
    139. Crow S E, Lajtha K, Bowden R D, et al.2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J]. Forest Ecology and Management,258(10): 2224-2232.
    140. Desotes A, Moncomble D, Perraud A, et al.1996. Comparison of several local soil management techniques implemented in champagne vineyardsfC]. Seizieme Conference du Columa.3:1161-1169.
    141. Dong H, Li W, Tang W, et al.2009. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields[J]. Field Crops Research,111(3):269-275.
    142. Doran J W, Jones A J, Arshad M A, et al.1999. Determinants of Soil Quality and Health[J]. Soil Quality and Soil Erosion,17-36.
    143. Ellert B H, Clapperton M J, Anderson D W.1997. An ecosystem perspective of soil quality[J]. Developments in Soil Science,25:115-141.
    144. Fan J, Hao M D.2003. Effects of long-term rotation and fertilization on soil microbial biomass carbon and nitrogen[J]. Res Soil Water Cons,10(10):85-87.
    145. Fan J, Zhong H, Harris W, et al.2008. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass[J]. Climatic Change,86(3-4):375-396.
    146. Fang H, Mo J, Peng S, et al.2007. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China[J]. Plant and soil,297(1-2):233-242.
    147. Fisher P D.1995. An alternative plastic mulching system for improved water management in dryland maize production[J]. Agricultural water management,27(2):155-166.
    148. Flach K W, Barnwell Jr T O, Crosson P.1997. Impacts of agriculture on atmospheric carbon dioxide[M]. CRC Press, Boca Raton,3-13.
    149. Fu B J, Liu S L, Lu Y H, et al.2003. Comparing the soil quality changes of different land uses determined by two quantitative methods[J]. Journal of Environmental Sciences,15(2):167-172.
    150. Fustec E, Chauvet E, Gas G.1989. Lignin degradation and humus formation in alluvial soils and sediments[J]. Applied and environmental microbiology,55(4):922-926.
    151. Goode J E, Hyrycz K J.1976. The effect of nitrogen on young, newly-planted, apple rootstocks in the presence and absence of grass competition[J]. Journal of Horticultural Science,51:321-327.
    152. Gonzalez J M, Laird D A.2004. Role of smectites and Al-substituted goethites in the catalytic condensation of arginine and glucose[J]. Clays and clay minerals,52(4):443-450.
    153. Guo L B, Gifford R M.2002. Soil carbon stocks and land use change:a meta analysis[J]. Global Change Biology,8(4):345-360.
    154. Hargitai L.1990. Transaction of 14th International Congress of Soil Scicncc[J]. Kyoto, Japan,2: 102-107.
    155. Haynes R J, Goh K M.1980. Some effects of orchard soil management on sward composition, levels of available nutrients in the soil, and leaf nutrient content of mature 'Golden Delicious' apple trees[J]. Scientia horticulturae,13(1):15-25.
    156. Hipps N A, Samuelson T J.1991. Effects of long-term herbicide use, irrigation and nitrogen fertiliser on soil fertility in an apple orchard[J]. Journal of the Science of Food and Agriculture,55(3): 377-387.
    157. Hogue E J, Neilsen G H.1987. Orchard floor vegetation management[J]. Horticultural Reviews,9: 377-430.
    158. Hong H N, Rumpel C, Henry des Tureaux T, et al.2011. How do earthworms influence organic matter quantity and quality in tropical soils?[J]. Soil Biology and Biochemistry,43(2):223-230.
    159. Huang Z, Clinton P W, Baisden W T, et al.2011. Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition[J]. Soil Biology and Biochemistry,43(2):302-307.
    160. Janzen H H, Campbell C A, Izaurralde R C, et al.1998. Management effects on soil C storage on the Canadian prairies[J]. Soil and Tillage Research,47(3):181-195.
    161. Jawson M D, Elliott L F, Papendick R I, et al.1989. The decomposition of 14C-labeled wheat straw and 15N-labeled microbial material[J]. Soil biology and biochemistry,21(3):417-422.
    162. Jones C, McConnell C, Coleman K, et al.2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil[J]. Global Change Biology,11(1):154-166.
    163. Lal R.1998. Soil processes and the greenhouse effect[J]. Methods for assessment of soil degradation, 199-212.
    164. Li F M, Guo A H, Wei H.1999. Effects of clear plastic film mulch on yield of spring wheat[J]. Field Crops Research,63(1):79-86.
    165. Lundquist E J, Jackson L E, Scow K M, et al.1999. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils[J]. Soil Biology and Biochemistry,31(2):221-236.
    166. Maigre D.1996. Influence of grassing down and nitrogen fertilizer on the quality of Chasselas wines[J]. Progres-Agricole-et-Viticole,114(11):255-258.
    167. Martens R.1995. Current methods for measuring microbial biomass C in soil:potentials and limitations[J]. Biology and Fertility of Soils,19(2-3):87-99.
    168. Martensson A M, Carlgren K.1994. Impact of Phosphorus fertilization on VAM diasporas in Two Swedish long-term field experiment[J]. Agrieulture, Ecosystems and Environment,47:327-334.
    169. Martin D, Lal T, Sachdev C B, et al.2010. Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains[J]. Agriculture, Ecosystems and Environment,138(1):64-73.
    170. Merila'P, Malmivaara-Lamsa M, Spetz P, et al.2010. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest[J]. Applied Soil Ecology,46(2):259-267.
    171. Merwin I A, Stiles W C.1994. Orchard groundcover management impacts on apple tree growth and yield, and nutrient availability and uptake [J]. Journal of the American Society for Horticultural Science,119(2):209-215.
    172. Mo J, Zhang W E I, Zhu W, et al.2008. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology,14(2):403-412.
    173. Nadelhoffer K, Aitkenhead J, Boone R, et al.2006. The DIRT experiment[J]. Forests in Time:The Environmental Consequences of 1,000 Years of Change in New England,300-315.
    174. Nagahashi G, Douds Jr D D, Abney G D.1996. Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation[J]. Mycorrhiza,6(5):403-408.
    175. Neilsen G H, Meheriuk M, Hogue E J.1984. The effect of orchard floor management and nitrogen fertilization on nutrient uptake and fruit quality of golden delicious apple trees[J]. HortScience,19(4): 547-550.
    176. Niu J Y, Gan Y T, Zhang J W, et al.1998. Postanthesis dry matter accumulation and redistribution in spring wheat mulched with plastic film[J]. Crop Science,38(6):1562-1568.
    177. Qi B C, Aldrich C, Lorenzen L, et al.2004. Degradation of humic acids in a microbial film consortium from landfill compost[J]. Industrial & engineering chemistry research,43(20):6309-6316.
    178. Ritchie N J, Schutter M E, Dick R P, et al.2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil[J]. Applied and environmental microbiology,66(4):1668-1675.
    179. Roscoe R, Buurman P.2003. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol[J]. Soil and Tillage Research,70(2):107-119.
    180. Ryan M H, Graham J H.2001. Is there a role for arbuscular mycorrhizal fungi in production agriculture?[J]. Plant and soil,244(1-2):263-271.
    181. Sanchez A, Ysunza F, Beltran-Garcia M J, et al.2002. Biodegradation of viticulture wastes by Pleurotus:a source of microbial and human food and its potential use in animal feeding[J]. Journal of Agricultural and food chemistry,50(9):2537-2542.
    182. Sayer E J, Powers J S, Tanner E V J.2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere[J]. PLoS One,2(12):e1299.
    183. Sharma P K, Partner D K.1998. The effect of mulching on the efficiency of phosphorus use and productivity of wheat growth on a mountain Allison in the Western Himalayas[J]. Soil Users Manage, 14(1):25-29.
    184. Shribbs J M, Skroch W A.1986. Influence of 12 ground cover systems on young Smoothee Golden Delicious apple trees. I:Growth[J]. Journal of the American Society for Horticultural Science,111(4): 525-528.
    185. Singh J S, Raghubanshi A S, Singh R S, et al.1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature,338:499-500.
    186. Smith J L, Paul E A.1990. The significance of soil microbial biomass estimations[J]. Soil Biochemistry,6:357-396.
    187. Sulzman E W, Brant J B, Bowden R D, et al.2005. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest[J]. Biogeochemistry,73(1):231-256.
    188. Tawaraya K, Saito M, Morioka M, et al.1994. Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae[J]. Soil Science and Plant Nutrition,40(4):667-673.
    189. Taylor L A, Arthur M A, Yanai R D.1998. Forest floor microbial biomass across a northern hardwood successional sequence[J]. Soil Biology and Biochemistry,31(3):431-439.
    190. Vittori Antisari L, Marinari S, Dell'Abate M T, et al.2011. Plant cover and epipedon SOM stability as factors affecting brown soil profile development and microbial activity[J]. Geoderma,161(3): 212-224.
    191. Wang E T, Van Berkum P, Sui X H, et al.1999. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov[J]. International journal of systematic bacteriology,49(1):51-65.
    192. Wang X J, Li F Y, Fan Z P, et al.2004. Change of soil organic carbon and nitrogen in forage grass fields, citrus orchard and coniferous forests [J]. Journa of Forestry Research,15(1):29-32.
    193. Wilkinson S C, Anderson J M, Scardelis S P, et al.2002. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress[J]. Soil Biology and Biochemistry,34(2): 189-200.
    194. Yan F, McBratney A B, Copeland L.2000. Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales[J]. Geoderma,96(4):321-343.
    195. Yanagi Y, Tamaki H, Otsuka H, et al.2002. Comparison of decolorization by microorganisms of humic acids with different 13C NMR properties[J]. Soil Biology and Biochemistry,34(5):729-731.
    196. Zhang W, Mo J, Yu G, et al.2008. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition [J]. Plant and Soil,306(1-2):221-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700