用户名: 密码: 验证码:
高温诱导水稻颖花不育特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对当前高温热害频发严重影响我国水稻生产这一问题,以Ⅱ优7954(热敏感品种)和Ⅱ优7号(耐热品种)为主要供试材料研究高温诱导水稻颖花不育特性。本研究首先明确水稻高温敏感期和敏感时段。其次研究高温对开花习性的影响,分析高温下颖花受精率下降的原因,探讨高温致害机理。再次研究开花前高温和开花时高温对花药开裂、花粉可染性、花粉粒直径、花粉粒萌发和花粉管延伸的影响。最后研究土壤含水量和空气湿度对高温热害的影响,探讨品种间耐热性差异产生原因以及高温胁迫条件的设置对品种耐热性筛选的影响。主要研究结果如下:
     颖花育性高温敏感期的确定。在水稻生殖生长期,以开花期最为敏感;在开花期内,以开花当天最为敏感;而在开花当天,以正在开花的时刻最为敏感。人工气候箱高温时段的设置会影响开花期内高温敏感期,当高温后移时(高温时段为11:00-16:00),敏感期为开花前一天。
     高温对水稻开花习性的影响。首先,高温下籼稻花时提前,粳稻花时后延,耐热品种比热敏感品种开花集中。其次,高温下耐热品种较热敏感品种花期缩短,开颖率高。再次,高温下颖花的开放时刻直接决定其育性。早开花有利于籼稻、粳稻提高受精率,晚开花即高温结束后开花有利于籼稻而不利于粳稻提高受精率。再次,高温时段设置直接影响开花习性和颖花受精率。高温发生晚(高温时段为11:00-16:00)比高温发生早(高温时段为9:00-14:00)时,颖花开放高峰出现在高温前,育性主要受开花前期高温影响,颖花育性敏感温度较高。最后,高温下闭颖现象对避热没有作用。
     高温对花药开裂影响。常温条件开颖花药即裂的品种,开花前高温对花药开裂没有显著影响,但是散粉性变差。花药开裂较晚的品种,开花前高温对花药开裂影响较大。开颖时高温对花药开裂影响最大,其次是开颖前高温。
     高温对花粉粒影响。高温对花粉可染性影响与高温发生时花粉正处的发育阶段紧密相关;开花前遭遇高温时花粉粒内淀粉降解较对照提前,开颖时花粉可染率显著变小,花药开裂越差淀粉降解越严重;开花时高温直接破坏花粉粒内部结构,花粉破裂,可染性降低;高温处理下花粉粒直径开花前一天开始增大,开颖前直径达到最大,开颖后花粉粒皱缩直径变小;开花时高温则是直接引起花粉粒皱缩,直径减小。
     高温对花粉粒萌发和花粉管延伸的影响。开颖前和开颖时高温影响散粉、花粉粒萌发和花粉管延伸;开颖后高温主要影响花粉管延伸;开颖后高温处理时间越早,颖花受精率受到影响越大,并且开颖40min花粉管达到珠孔时,颖花受精率不会受到高温的显著影响。除此之外,开花前期高温严重影响了花粉活力,花粉内淀粉降解严重,花粉管延伸短。
     水分胁迫和空气湿度对高温热害的影响。高温高湿下,饱和蒸汽压差(VPD)小,气孔导度小,蒸腾速率小,叶温高,花器官受害严重,散粉差,柱头萌发花粉数目少,花粉延伸差。高温干旱条件下,由于水分胁迫气孔关闭,气孔导度小也导致叶温高,伤害颖花。除此之外干旱引起的抽穗不畅,花时晚,开颖率低,花丝伸长而不开颖,高温炙烤下花丝花药萎焉,直接导致颖花不育。
     品种间耐热性差异原因。首先是耐热品种常温下开颖即裂药,开颖早散粉好;其次开花习性方面,耐热品种开花早、开花集中、开花峰值高、开花前期日开花量大、开颖率高;再次从颖花不育时段来看,以花药开裂到受精过程为顺序,耐热品种颖花不育发生阶段晚;最后从父母本来讲,品种之间的抗逆性与父母本双方都相关。
Heat stress during reproductive stage was one of the prominent factors to reduce rice yield in China.Ⅱyou7954(heat sensitive variety) and Ⅱyou7(heat tolerant variety) were used to study sterilityinduced by high temperature at reproductive stage. The sensitive stage and time from booting toanthesis to high temperature were determined. The effect of high temperature on floweringcharacteristics was studied, and the cause of spikelet sterility was clear. Then effects of hightemperature in the pre-blooming and blooming periods on anther dehiscence, pollen dyeability, pollengrains diameter, pollen germination and tube growth were studied. Effects of water stress and humidityon heat stress were studied, and heat resistance among varieties and the effect of high temperaturesetting mode on evaluation of heat resisitance in rice were discussed. The main results in this study wereas follows:
     The sensitive stage of spikelets sterility to high temperure at reproductive stage was anthesis stage.The sensitive stage of spikelets sterility to high temperure at anthesis stage was the day at blooming, andthe sensitive time of spikelets sterility to high temperure at blooming was glume opening. Hightemperature setting mode affected the sensitive stage of spikelets sterility to high temperure at anthesisstage, which was the day before blooming when exposing to11:00-16:00heat treatment.
     High temperature advanced the flowering clock of Ⅱyou7andⅡyou7954, delayed that oflianjing6. Ⅱyou7had obvious flowering peak, yet Ⅱyou7954and lianjing6had low or indistinctflowering peaks. The flowering period of heat tolerant sensitive variety was shortened and the dailynumber of spikelet flowering was more than that of heat sensitive variety. Glume opening time affectedspikelet fertility. Early flowering raised the spikelet fertility both in indica and japonica rice, andflowering after the end of heat stress raised the spikelet fertility of indica rice, not japonica rice. Hightemperature setting mode affected flowering characteristics and spikelet fertility. In contrast with hightemperature during9:00-14:00, the flowering peak of high temperature during11:00-16:00occurredbefore heat stress, then sterility was induced by high temperature before blooming not by hightemperature occurring at blooming, and the sensitive temperature was higher. High temperatureinhibited glume opening for good at anthesis stage, which didn’t take a part in avoiding heat injury.
     High temperature before blooming didn’t affected the anther dehiscence of varieties whose antherstarting splitting up just after glume opening under moderate temperature, while the pollen sheddingwas still bad, and affected anther dehiscence of varieties whose anther dehiscence was late. Hightemperature at glume opening affected anther dehiscence most seriously, and the temperature beforeglume opening affected that less.
     Pollen dyeability closely related to the developmental stages. The starch in pollen grains subjectedto high temperature before blooming began to degcompose, and became very few when glume opening.The worse the anther dehiscence, the worse the pollen dyeabilitity was. Temperature at bloomingdestroyed the internal structure of pollen grains, the pollen grains were broke, and the pollen dyeability was bad. Under high temperature, the pollen diameter at one day before blooming began to expand,became largest just before glume opening, then the pollen grains shrived after glum opening. Hightemperature at blooming made pollen shrived, then the diameter of which reduced.
     High temperature before and at glume opening affected pollen shedding, pollen germination andtube growth. High temperature after glume opening affected tube growth. The earlier the hightemperature came, the lower the spikelet fertility was, and when pollen tube entered into micropyl40min after glume opening, high temperature had no significant effect on spikelet fertility. Hightemperature before blooming affected pollen viability greatly, the starch in pollen grains degraded, andthe length of pollen tube was short.
     When relative humidity and temperature was high, the VPD was low, stomatal conductancedecreased, transpiration rate decreased, the leaf temperature was high, floral organ suffered severely,pollen shedding was bad, the germinated pollen grains on the stigma were few, and the extension ofpollen tube was bad. When blooming under water and heat stress, stomatal conductance decreased, leaftemperature was high, and floral organ suffered severely. Besides, water stress induced poor heading,late flowering clock, poor proportion of spikelets anthesing, then when the filament elongated the glumedidn’t open, which induced anther shriveled and sterility.
     The anther of heat tolerant varieties began to split up just after glume opening under moderatetemperature, then the early dehiscence led to good pollen shedding. Early flowering, obvious floweringpeak, high flowering peak, high proportion of spikelets anthesing at the earlier stages during floweringperiod, high proportion of spikelets anthesing under high temperature were found in heat tolerantvarieties. The sterility of heat tolerant varieties occurred at later stages Heat tolerance of varieties wasrelated with their male parents and female parents.
引文
[1]包文轩,刘维,高苹,等.基于两种指标的江苏省水稻高温热害发生规律的研究.见:中国气象学会.第28届中国气象学会年会—S11气象与现代农业.厦门:中国气象学会,2011.
    [2]曹立勇,赵建根,占小登,等.水稻耐热性的QTL定位及耐热性与光合速率的相关性[J].中国水稻科学,2003,17(3):223~227.
    [3]曹立勇,朱军,赵松涛,等.水稻籼粳交DH群体耐热性的QTLs定位[J].农业生物技术学报,2002,10(3):210~214.
    [4]曹云英,段骅,杨立年,等.抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J].作物学报,2009,35(3):512~521.
    [5]曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J].作物学报,2008,34(12):2134~2142.
    [6]曾晓春,黄友明.促进水稻颖花关闭的化合物及方法.中国, A01N37/42,2012101587216,2012.
    [7]曾晓春,黄友明.抑制水稻颖花关闭的化合物及方法.中国, A01N43/38,2012101590168,2012.
    [8]曾晓春,周燮.茉莉酸甲酯(MeJA)诱导水稻颖花开放[J].植物学报,1999,41(5):560~562.
    [9]曾晓春,周燮,吴晓玉.水稻颖花开放机理研究进展[J].中国农业科学,2004,37(2):188~195.
    [10]陈安和.高温影响杂交水稻花粉形态的扫描电镜观察[J].重庆工商大学学报(自然科学版),1990,(1.2):32~38.
    [11]陈庆全,余四斌,李春海,等.水稻抽穗开花期耐热性QTL的定位分析[J].中国农业科学,2008,41(2):315~321.
    [12]陈士强,关于稻麦花粉管伸长和极核受精过程的研究[陈士强硕士学位论文].扬州:扬州大学,2007.
    [13]陈蔚.高温对水稻生育特性的影响及其防御对策[J].湖北农业科学,2010,49(8):1817~1818.
    [14]陈湘涛.高温对杂交稻南优六号结实率的影响[J].中国农业气象,1982,3(4):57~60.
    [15]陈秀晨,王士梅,朱启升,等.水稻品种耐热性与相关生化指标的关联分析[J].农业环境科学学报,2010,29(9):1633~1639.
    [16]陈兆波,栗茂腾.开颖授粉水稻T168和闭颖授粉水稻CL01的花丝结构比较[J].华中农业大学学报,2002,21(4):315~320.
    [17]程向红,程林,查旭光,等.桐城单季稻高温热害调查及应对措施[J].农技服务,2009,26(8):58,60.
    [18]邓启云.广适性水稻光温敏不育系Y58S的选育[J].杂交水稻,2005,20(2):15~18.
    [19]邓运,田小海,吴晨阳,等.热害胁迫条件下水稻花药发育异常的早期特征[J].中国生态农业学报,2010,18(2):377~383.
    [20]段骅,唐琪,剧成欣,等.抽穗灌浆早期高温与干旱对不同水稻品种产量和品质的影响[J].中国农业科学,2012,45(022):4561~4573.
    [21]符冠富,宋健,廖西元,等.中国常用水稻保持系及恢复系开花灌浆期耐热性评价[J].中国水稻科学,2011,25(5):495~500.
    [22]高素华,王培娟,等.长江中下游高温热害及对水稻的影响[M].北京:气象出版社,2009.
    [23]郭晶心,曾文智,周宝津,等.开花期高温胁迫对不同水稻品种花粉萌发和结实的影响[J].华南农业大学学报,2010,31(002):50~53.
    [24]何秀英,伍时照.水稻籽粒发育和胚乳淀粉粒形成的研究[J].广东农业科学,2000,(2):8~10.
    [25]胡声博.水稻高温诱导颖花不育品种间差异及其机理研究[胡声博的硕士学位论文].北京:中国农业科学院,2013.
    [26]胡声博,张玉屏,朱德峰,等.杂交水稻耐热性评价[J].中国水稻科学,2012,26(6):751~756.
    [27]胡忠孝.中国水稻生产形势分析[J].杂交水稻,2009,(6):1~7.
    [28]黄福灯,李春寿,刘鑫,等.高温胁迫对水稻花粉活力的影响[J].浙江农业科学,2010(006):1272~1274.
    [29]黄义德,曹流俭,武立权,等.2003年安徽省中稻花期高温热害的调查与分析[J].安徽农业大学学报,2004,31(4):385~388.
    [30]姜福良,朱建东,张勤.水稻高温热害的预防及补救技术[J].安徽农业,2004,(6):044.
    [31]金志凤,杨太明,李仁忠,等.浙江省高温热害发生规律及其对早稻产量的影响[J].中国农业气象,2009,30(4):628~631.
    [32]蒯建敏,莫惠栋,惠大丰.水稻花时与气象因子的关系[J].中国水稻科学,1994,8(2):79~84.
    [33]况浩池,文绍山.泸恢17及其组合Ⅱ优7号抽穗开花期耐热性研究[J].西南农业学报,2002,15(1):106-108.
    [34]赖悦平,陈安贤,郑仑山,等.2013年益阳市夏季高温干旱对双季稻影响分析[J].现代农业科技,2014,(1):259,261.
    [35]李达模,于新民,陈慧萍.水稻开花期高温对授粉受精及胚胎发育初期影响的细胞学观察[J].湖南农业科学,1984,(2):44.
    [36]李飞,卓壮,高用明,等.水稻高温热害发生机理与耐高温遗传基础研究[J].植物遗传资源学报,2013,14(001):97~103.
    [37]李萍萍,程高峰,张佳华,等.高温对水稻抽穗扬花期生理特性的影响[J].江苏大学学报:自然科学版,2010,31(002):125~130.
    [38]李倩.昼夜高温下水稻根源激素响应特征及其与产量的关系[李倩的硕士学位论文].武汉:华中农业大学,2012.
    [39]李仁忠,刘海英,李建业,等.浙江省早稻高温热害发生规律及防御措施[J].浙江气象,2011,32(1):23~26.
    [40]李守华,田小海,黄永平,等.江汉平原近50年中稻花期危害高温发生的初步分析[J].中国农业气象,2007,28(1):5~8.
    [41]李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响[J].作物学报,2005,31(1):134~136.
    [42]李贤勇,李顺武,何永歆,等.穗层自然高温对杂交水稻结实的影响[J].西南农业学报,2008,21(001):44~47.
    [43]李训贞,梁满中,周广洽,等.水稻开花时的环境条件对花粉活力和结实的影响[J].作物学报,2002,28(3):417~420.
    [44]刘建祥.干旱诱导水稻雄性不育的生理和蛋白质组学研究[刘建祥的博士论文].杭州:浙江大学,2003.
    [45]刘伟元.水稻开花与浆片细胞程序性死亡的细胞学基础研究[刘伟元的硕士学位论文].扬州:扬州大学,2008.
    [46]罗丽华,刘国华,肖应辉,等.高温胁迫对水稻花粉和小穗育性及稻谷粒重的影响[J].湖南农业大学学报:自然科学版,2005,31(6):593~596.
    [47]罗孳孳,阳园燕,唐余学,等.气候变化背景下重庆水稻高温热害发生规律研究[J].西南农业学报,2011,24(6):2185~2189.
    [48]马均,李敏,傅泰露.水稻开花期一些生理生化特性及其与耐热性的关系[J].中国作物学会栽培专业委员会换届暨学术研讨会论文集,2007.
    [49]潘敖大,高苹,刘梅,等.基于海温的江苏省水稻高温热害预测[J].应用生态学报,2010,21(1):136~144.
    [50]潘熙曙,胡定汉,李迎征,等.水稻低温冷害和高温热害的发生特点及预防措施[J].中国稻米,2007(6).
    [51]任昌福,陈安和.高温影响杂交水稻开花结实的生理生化基础[J].西南农业大学学报,1990,12(005):440~443.
    [52]任昌福,张洪松.高温对杂交水稻开花结实的影响[J].西南农学院学报,1984,6(1):25~30.
    [53]上海植物生理所人工气候室水稻高低温组.高温与水稻开花结实[J].植物杂志,1977,(02):11~12.
    [54]上海植物生理研究所人工气候室.高温对早稻开花结实的影响及其防治:III早稻开花结实对高温伤害的敏感期[J].植物学报,1977,19(2):126~131.
    [55]上海植物生理研究所人工气候室.高温对早稻开花结实的影响及其防治:Ⅱ早稻开花期高温对开花结实的影响[J].植物学报,1976,18(4):323~329.
    [56]四川省农科院水稻所西南农学院农学系江津地区科委江津地区农科所高温课题组.高温干旱对杂交水稻开花结实影响研究简结[J].四川农业科技,1981(3):6~9.
    [57]宋建.花期高温胁迫对水稻育性的影响及生理分析[宋健的硕士学位论文].北京:中国农业科学院,2010.
    [58]宋忠华,庞冰,刘厚敖,等.灌水深度对杂交稻生产中高温危害的缓解效果初探[J].杂交水稻,2006,21(2):72~73.
    [59]苏鹏,冯慧,陈浩,等.杂交水稻在自然高温胁迫下的耐热性研究[J].西南农业学报,2013,26(4):1387~1391.
    [60]陶龙兴,谈惠娟,王熹,等.高温胁迫对国稻6号开花结实习性的影响[J].作物学报,2008,34(4):669~674.
    [61]陶龙兴,谈惠娟,王熹,等.开花和灌浆初期高温胁迫对国稻6号结实的生理影响[J].作物学报,2009,35(1):110~117.
    [62]童志婷,李守华,段维新,等.中稻花期致害高温主导的田间气象特征及其对不同杂交组合水稻结实的影响[J].中国生态农业学报,2008,16(5):1163~1166.
    [63]汪寿康,汪更文,汪又佳.2003年水稻高温热害情况的调查[J].安徽农学通报,2004,10(1):27~35.
    [64]王才林,仲维功.高温对水稻结实率的影响及其防御对策[J].江苏农业科学,2004,(1):15~18.
    [65]王华银,张骏,王志润.水稻高温热害调查分析及应对技术探讨[J].安徽农学通报,2004,10(2):24~24.
    [66]王建军,申宗坦,石守鋆.籼粳稻开花习性与遗传[J].杂交水稻,1991,(5):39~42.
    [67]王前和,潘俊辉,李晏斌,等.武汉地区中稻大面积空壳形成的原因及防止途径[J].湖北农业科学,2004,(1):27~30.
    [68]王胜华,陈放.水稻花粉的离体萌发[J].作物学报,2000,26(005):609~612.
    [69]王忠,高煜珠.不育系稻穗开颖不整齐原因的探讨[J].中国农业科学,1988,(5):33~38.
    [70]王忠,顾蕴洁水稻开闭颖过程及其影响因素.中国科技论文在线,2012.
    [71]王忠,顾蕴洁,高煜珠.水稻开颖机理的探讨Ⅲ.浆片的结构及其在开颖过程中内含物的变化[J].作物学报,1991,17(2):96~101.
    [72]王忠,李宏业,顾蕴洁.套袋对水稻结实和籽粒发育影响的原因探讨[J].杂交水稻,1993(6):33~35.
    [73]王忠,卢从明,顾蕴洁,等.水稻开颖机理的探讨Ⅰ.温度对水稻开颖及花粉生活力的影响[J].作物学报,1988,14(01):14~21.
    [74]王忠,顾蕴洁,高煜珠.水稻开颖机理的探讨—Ⅱ. CO2对水稻开颖的效应[J].作物学报,1989,15(01):59~66.
    [75]夏如兵,纪元.中国近代的水稻杂交育种研究[J].中国农学通报,2011,27(01):11~16.
    [76]谢晓金,李秉柏,李映雪,等.抽穗朝高温胁迫对水稻产量构成要素和品质的影响[J].中国农业气象,2010,31(3):411~415.
    [77]谢晓金,李秉柏,申双和,等.抽穗期高温胁迫对水稻花粉活力与结实率的影响[J].江苏农业学报,2009,25(002):238~241.
    [78]谢晓金,李秉柏,王琳,等.长江中下游地区高温时空分布及水稻花期的避害对策[J].中国农业气象,2010,31(1):144~150.
    [79]徐海波,王光明,隗溟,等.高温胁迫下水稻花粉粒性状与结实率的相关分析[J].西南农业大学学报,2001,23(3):205~207.
    [80]许传桢,元生朝,蔡士玉.高温对杂交水稻结实率的影响[J].华中农业大学学报,1982,2(3):37~43.
    [81]许祥明,王忠.某些酸类物质对水稻开颖的效应[J].植物生理学报,1998,24(2):124~130.
    [82]闫川.水稻穗叶体温和颖花育性及其影响因子研究[闫川的博士学位论文].南京:南京农业大学,2009.
    [83]杨成明,吴孝波,刘勇强,等.气温对杂交水稻Ⅱ优718结实率的影响分析[J].西南农业学报,2009,21(6):1519~1526.
    [84]杨纯明,谢国禄.短期高温对水稻生长发育和产量的影响[J].国外作物育种,1994,(2):4~5.
    [85]杨惠成,黄仲青,蒋之埙.2003年安徽早中稻花期热害及防御技术[J].安徽农业科学,2004,32(1):3~4.
    [86]杨梅.水稻叶温与气象条件水分状况及产量结构关系的研究[J].中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集,2007.
    [87]杨太明,陈金华.江淮之间夏季高温热害对水稻生长的影响[J].安徽农业科学,2007,35(27):8530~8531.
    [88]杨永杰,符冠富,熊杰,等.高温对水稻的影响及水稻耐热性测评方法研究[J].中国稻米,2012,18(1):39~40.
    [89]余培军,石亚丽,孙丹平.豫南水稻高温热害的预防措施[J].农家参谋,2011(4):9.
    [90]詹文莲,徐玲玲.泾县水稻高温热害的发生特点及防御对策[J].现代农业科技,2011(001):198~198.
    [91]张彬,芮雯奕,郑建初,等.水稻开花期花粉活力和结实率对高温的响应特征[J].作物学报,2007,33(7):1177~1181.
    [92]张彬,郑建初,黄山,等.抽穗期不同灌水深度下水稻群体与大气的温度差异[J].应用生态学报,2008,9(1):87~92.
    [93]张桂莲.两个早稻品种耐热性生理及分子遗传基础的研究[张桂莲的博士学位论文].长沙:湖南农业大学,2006.
    [94]张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展[J].杂交水稻,2005,20(1):1~5.
    [95]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花器官和产量构成要素及稻米品质的影响[J].湖南农业大学学报:自然科学版,2007,33(2):132~136.
    [96]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花粉粒性状及花药显微结构的影响[J].生态学报,2008,28(3):1089~1097.
    [97]张桂莲,刘思言,张顺堂,等.抽穗开花期不同高温处理对水稻开花习性和结实率的影响[J].中国农学通报,2012,28(30):116~120.
    [98]张桂莲,张顺堂,肖浪涛,等.花期高温胁迫对水稻花药生理特性及花粉性状的影响[J].作物学报,2013,39(1):177~183.
    [99]张桂莲,张顺堂,萧浪涛,等.水稻花药对高温胁迫的生理响应[J].植物生理学报,2013,49(9):923~928.
    [100]张荣萍,马均,蔡光泽,等.开花期低温胁迫对四川攀西稻区水稻开花结实的影响[J].作物学报,2012,38(9):1734~1742.
    [101]张涛,杨莉,蒋开锋,等.水稻抽穗扬花期耐热性的QTL分析[J].分子植物育种,2008,6(5):867~873.
    [102]张养才,何维勋,李世奎,等.中国农业气象灾害概论[M].北京:气象出版社,1991.
    [103]张祖建,王晴晴,郎有忠,等.水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J].作物学报,2014:40(2):273~282.0
    [104]赵海燕,姚凤梅,张勇,等.长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析[J].中国农业科学,2002,39(9):1765~1771.
    [105]赵决建.氮钾施用量及比例对水稻抗高温热害能力的影响[J].土壤肥料,2006,(5):13~16.
    [106]赵万兵.2010年信阳市水稻高温热害调查分析[J].河南农业,2011,(19):21.
    [107]赵志刚,江玲,肖应辉,等.水稻孕穗期耐热性QTLs分析[J].作物学报,2006,32(5):640~644.
    [108]郑建初,盛婧,汤日圣,等.南京和安庆地区高温发生规律及高温对水稻结实率的影响[J].江苏农业学报,2007,23(1):1~4.
    [109]周建霞,胡声博,张玉屏,朱德峰,林贤青,向镜.早稻花期高温鉴定初探[J].中国稻米,2013,19(4):28-29.
    [110]周伟辉,薛大伟,张国平.高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异[J].作物学报,2011,37(5):820~831.
    [111]朱昌兰,肖应辉,王春明,等.水稻灌浆期耐热害的数量性状基因位点分析[J].中国水稻科学,2005,19(2):117~121.
    [112]朱李阳.播期和昼夜高温对水稻产量和稻米品质的影响及其生理机制[朱李阳的硕士学位论文].武汉:华中农业大学,2011.
    [113]朱奇,张祥,曹洪.2006年中籼稻高温热害情况调研[J].麦类文摘种业导报,2006(10):25.
    [114]朱兴明.高温干旱对杂交籼稻开花结实的影响研究初报(续)—Ⅱ.高温下不同土壤水分条件对杂交籼稻结实的影响[J].今日种业,1980,1:006.
    [115]朱雪梅,柯永培,邵继荣,等.高温胁迫对重穗型水稻品种叶片活性氧代谢的影响[J].种子,2005,24(3):25~27.
    [116] Abeysiriwardena D, Ohba K. A. Maruyama. Influence of temperature and relative humidity ongrain sterility in rice [J]. Journal of the National Science Foundation of Sri Lanka,2002,30(1-2):33-41.
    [117] Agarie S, Hanaoka N, Ueno O, et al. Effects of silicon on tolerance to water deficit and heatstress in rice plants (Oryza sativa L.) monitored by electrolyte leakage[J]. Plant ProductionScience,1998,1(2):96-103.
    [118] Han F, Chen H, Li X, et al. A comparative proteomic analysis of rice seedlings under varioushigh-temperature stresses [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2009,1794(11):1625-1634.
    [119] Horie T, Matsui T, Nakagawa H, et al. Effects of elevated CO2and global climate change on riceyield in Japan, in Climate Change and Plants in EastAsia[M].1996:39-56.
    [120] IRRI, Annual Report. Manila: IRRI,1977.
    [121] Jagadish S, Craufurd P, Wheeler T. High temperature stress and spikelet fertility in rice (Oryzasativa L.)[J]. Journal of Experimental Botany,2007,58(7):1627-1635.
    [122] Jagadish S, Muthurajan R, Oane R, et al. Physiological and proteomic approaches to address heattolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2010,61(1):143-156.
    [123] Keijzer C. The high temperature of processes of anther dehiscence and pollen dispersal [J]. NewPhytologist,1987,105(3):487-498.
    [124] Kobayashi K, Matsui T, Murata Y, et al. Percentage of dehisced thecae and length of dehiscencecontrol pollination stability of rice cultivars at high temperatures [J]. Plant Production Science,2011,14(2):89-95.
    [125] Kobayasi K, Masui H, Atsuta Y, et al. Flower Opening Time in rice[J]. Cultivar Difference andEffect of Weather Factors.2009:1-7.
    [126] Kobayasi K, Matsui T, Yoshimoto M, et al. Effects of temperature, solar radiation, andvapor-pressure deficit on flower opening time in rice [J]. Plant Production Science,2010,13(1):21-28.
    [127] Lee D G, Ahsan N, Lee S H, et al. A proteomic approach in analyzing heat‐responsive proteinsin rice leaves[J]. Proteomics,2007,7(18):3369-3383.
    [128] Linden P J, v d., Dai X, Maskell K, Johnson C A. Climate Change2001: The Scientific Basis. In:A Contribution of Working Group I to the Third Assessment Report of the intergovernmentalPanel of Climate Change. Cambridge:2001,881.
    [129] Liu J, Liao D, Oane R, et al. Genetic variation in the sensitivity of anther dehiscence to droughtstress in rice [J]. Field Crops Research,2006,97(1):87-100.
    [130] Mackill D, Coffman W, Rutger J. Pollen shedding and combining ability for high temperaturetolerance in rice [J]. Crop Science,1982,22(4):730-733.
    [131] Matsui T, Kagata H. Gas exchange through the slit between the lemma and the palea in the rice(Oryza sativa L.) floret before anthesis [J]. Plant Production Science,2003,6(4):262-264.
    [132] Matsui T, Namuco O S, Ziska L H, et al. Effects of high temperature and CO2concentration onspikelet sterility in indica rice [J]. Field Crops Research,1997,51(3):213-219.
    [133] Matsui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering:anther characteristics [J]. Annals of Botany,2002,89(6):683-687.
    [134] Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during theflowering period among japonica-rice varieties [J]. Plant Production Science,2001,4(2):90-93.
    [135] Matsui T, Omasa K, Horie T. High temperature-induced spikelet sterility of Japonica rice atflowering in relation to air temperature, humidity and wind velocity conditions [J]. JapaneseJournal of Crop Science,1997,66(3):449-455.
    [136] Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, adriving force for thecae dehiscence in rice (Oryza sativa L.)[J]. Plant Production Science,2000,3(4):430-434.
    [137] Matsui T, Omasa K, Horie T. Mechanism of anther dehiscence in rice (Oryza sativa L.)[J]. Annalsof Botany,1999,84(4):501-506.
    [138] Matsui T, O K, Horie T. Comparison between anthers of two rice (Oryza sativa L.) cultivars withtolerance to high temperature at flowering or susceptibility [J]. Plant Production Science2001(4):36-40.
    [139] Matsushima S, Ikewada H, Maeda A, et al. Studies on rice cultivation in the tropics,1: Yieldingand ripening responses of the rice plant to the extremely hot and dry climate in Sudan [J].Japanese Journal of Tropical Agriculture,1982,26:19-25.
    [140] Mohammed A R, Tarpley L. Impact of high nighttime temperature on respiration, membranestability, antioxidant capacity, and yield of rice plants [J]. Crop Science,2009,49(1):313-322.
    [141] Nakagawa H, Horie T, Matsui T, et al. Effects of climate change on rice production and adaptivetechnologies. In: Cheng S. H., eds. Rice science: innovations and impact for livelihood.Proceedings of the International Rice Research Conference, Beijing, China,2002:16-19.
    [142] Nishiyama I, Blanco L. Artificial control of flower opening time during the day in rice plants.1:Preliminary experiments [J]. Japanese Journal of Crop Science,1981,50:59-60.
    [143] Nishiyama I, Blanco L. Avoidance of high-temperature sterility by flower opening in the earlymorning. Tropical Agriculture Res Centr Ministry of Agriculture forestry and Fisheries Yatabe, T.1980:116-117.
    [144] Peng S B, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature fromglobal warming [J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101(27):9971-9975.
    [145] Prasad P, Boote K, Allen L, et al. Species, ecotype and cultivar differences in spikelet fertility andharvest index of rice in response to high temperature stress [J]. Field Crops Research,2006,95(2):398-411.
    [146] Rang Z, Jagadish S, Zhou Q, et al. Effect of high temperature and water stress on pollengermination and spikelet fertility in rice [J]. Environmental and Experimental Botany,2011,70(1):58-65.
    [147] Satake T, Yoshida S. Critical-temperature and duration for high temperature-induced sterility inindica rice [J]. Jarq-JapanAgricultural Research Quarterly,1977,11(3):190-191.
    [148] Satake T, Yoshida S. High temperature-induced sterility in indica rices at flowering [J]. CropScience,1978,47(1):6-17.
    [149] Shah F, Huang J, Cui K, et al. Impact of high-temperature stress on rice plant and its traits relatedto tolerance [J]. Journal ofAgriculture Science,2011,149:545-556.
    [150] She K C, Kusano H, Yaeshima M, et al. Reduced rice grain production under high-temperaturestress closely correlates with ATP shortage during seed development[J]. Plant Biotechnology,2010,27(1):67-73.
    [151] Song Z, Lu B, Chen J. A study of pollen viability and longevity in Oryza rufipogon, O. sativa,and their hybrids [J]. International Rice Research Notes,2001,26(2).
    [152] Tanner C. Plant temperatures [J].Agronomy Journal,1963,55(2):210-211.
    [153] Tewari A K, Tripathy B C. Temperature-stress-induced impairment of chlorophyll biosyntheticreactions in cucumber and wheat [J]. Plant Physiology,1998,117(3):851-858.
    [154] Tian X, Matsui T, Li S, et al. Heat-induced floret sterility of hybrid rice (Oryza sativa L.)cultivars under humid and low wind conditions in the field of Jianghan Basin, China [J]. PlantProduction Science,2010,13(3):243-251.
    [155] Tsuboi Y. Ecological studies on rice plants with regard to damages caused by wind [J]. Bulletin ofthe National Institute ofAgricultural Science,1961:1-156.
    [156] Turner N C,'Toole J C O, Cruz R, et al. Responses of seven diverse rice cultivars to waterdeficits I. Stress development, canopy temperature, leaf rolling and growth [J]. Field CropsResearch,1986,13:257-271.
    [157] Vu J, Allen L, Boote K, et al. Effects of elevated CO2and temperature on photosynthesis andRubisco in rice and soybean [J]. Plant, Cell and Environment,2008,20(1):68-76.
    [158] Wassmann R, Jagadish S, Heuer S, et al. Climate change affecting rice production: thephysiological and agronomic basis for possible adaptation strategies [J]. Advances in Agronomy,2009,101:59-122.
    [159] Weerakoon W, Maruyama A, Ohba K. Impact of Humidity on Temperature‐Induced GrainSterility in Rice (Oryza sativa L)[J]. Journal of Agronomy and Crop Science,2008,194(2):135-140.
    [160] Yan C, Ding Y F, Liu Z H, et al. Temperature difference between the air and organs of rice plantand its relation to spikelet fertility [J]. Agricultural Sciences in China,2008,7(6):678-685.
    [161] Yan C, Ding Y, Wang Q, et al. The impact of relative humidity, genotypes and fertilizerapplication rates on panicle, leaf temperature, fertility and seed setting of rice [J]. The Journal ofAgricultural Science,2010,148(03):329-339.
    [162] Yoshida S. Fundamentals of rice crop science[M]. Philippinges: The international rice researchinstitute,1981.
    [163] Zhang J, Yao F, Li B, et al. Progress in monitoring high-temperature damage to rice throughsatellite and ground-based optical remote sensing [J]. Science China Earth Sciences,2011,54(12):1801-1811.
    [164] Zhang W Z, Han Y D, Du H J. Relationship between canopy temperature at flowering stage andsoil water content, yield components in rice [J]. Rice Science,2007,14(1):67-70.
    [165] Ziska LH, Manalo P A, Ordonez R A. Intraspecific variation in the response of rice (Oryza sativaL.) to increased CO2and temperature: growth and yield response of17cultivars [J]. Journal ofExperimental Botany,1996,47(9):1353-1359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700