用户名: 密码: 验证码:
人工选择压力下麦类作物株型塑性及其逆境适应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早地麦类作物的株型演变及其对逆境的适应策略一直是最重要的基础科学问题之一。以人工选择为主导的麦类作物驯化主要包括长期驯化和相对短暂驯化两种类型,其中小麦和大麦经历了长期驯化历史,燕麦和小黑麦经历了相对短暂人工驯化历史。本文以达尔文进化论、瓦维洛夫同源变异法则和生物代谢理论为基础,以进化上有亲缘关系、不同驯化程度的小麦和燕麦品种为试验材料,实验验证与Meta分析相结合,测定干旱、高温弱光和密度等胁迫条件下株型变化、水分利用、产量形成、渗透调节和气体交换参数等指标,揭示人工选择压力下麦类作物的株型演变特征、株型塑造方向及对逆境的适应策略,为旱地麦类作物的栽培管理和育种实践提供新的理论潜力。主要得出如下结果:
     1.田间试验结果表明,旱地小麦叶型经历了从二倍体紧凑型的空间姿态到四倍体松散型、再到六倍体紧凑型的方向演变,且单叶形态逐渐变短变宽。田间试验观测了二倍体MO1和M04、四倍体DM22和DM31、古老六倍体和尚头和现代六倍体陇春8275的上三叶型态变化,结果发现三个不同倍体的叶夹角、叶开角和叶弯曲度分别介于22.1°-34.6°、30.0°-66.0°和19.0°-36.4°之间,其中四倍体最高,六倍体的叶开角大于二倍体,但其叶夹角和弯曲度小于二倍体。另外,叶长宽比介于13.7-26.5之间,并随着倍体增高呈现逐渐降低趋势。
     2.田间试验进一步表明,长期人工选择压力下,旱地小麦上三叶叶重、各节节重、总叶重、叶鞘重、茎重等从二倍体到四倍体均显著升高,但从四倍体到六倍体变化不显著,穗重随着染色体倍数的增加呈显著增加趋势,粒叶比从二倍体到四倍体未发生变化,但是从四倍体到六倍体显著增加。上述结果揭示出旱地小麦源库关系演化经历了“先增源、后扩库”的过程。随着倍体增加,根生物量逐渐减小,总生物量、籽粒产量和收获指数逐渐增加,但净光合速率并未改善。从二倍体到四倍体光合速率显著减少,从四倍体到六倍体光合速率显著增加。
     3.盆栽控水试验表明,随着倍体增加,生物量分配呈现从根到穗的“由下向上”迁移特征,总分蘖减少但有效分蘖比例增大,水分利用效率显著提升。在盆栽控制50%田间持水量的干旱胁迫条件下,三个不同倍体总生物量仍呈显著性增加趋势,根、茎、叶和穗所占总生物量百分比分别为43.2%、19.2%、12.4%和26.7%(二倍体)、21%、33.9%、16.2%和28.7%(四倍体)和14%、33.6%、14.5%和37.8%(六倍体),呈现明显的自下而上转移的分配格局,根冠比显著下降且粒叶比显著增加;籽粒产量从二倍体的0.48g/株上升到0.96g/株再上升到1.34g/株,千粒重显著增加。随着倍体增加,各器官生物量与总生物量的异速生长指数呈降低趋势,表明在不同倍体小麦的漫长演化过程中这种异速生长关系被人工驯化削弱,人工种群的性质得到强化。
     4. Meta分析结果表明,旱地小麦株型向“高产节水”演变的同时,干旱适应策略表现为耐旱能力增强,避旱能力削弱。研究中搜集了国内外与旱地小麦干旱适应性研究相关的800篇文献,其中包含300个野生品种、古老品种和现代品种。对株型、生理指标对比表明,干旱胁迫下不同年代早地小麦地上生物量、株高、分蘖数和叶面积等生长指标保持率显著降低,但现代小麦品种降低最少,古老小麦品种次之,野生品种最多。叶片渗透势差异性明显,现代品种最低,野生品种最高;水分利用效率则表现为现代品种中最高,野生品种最低。这些变化表明,随着人工驯化程度提高,旱地小麦耐旱能力显著提升。然而,干旱胁迫下野生品种和古老品种根系生物量均显著增加,现代品种则显著减少,表明人工选择使避旱能力一定程度上被忽略。
     5.盆栽试验验证了Meta分析结果。同时采用盆栽控水的试验方法,研究了6个不同倍体小麦品种干旱适应机制。结果发现,二倍体和四倍体小麦品种在干旱胁迫下根冠比显著增加,叶面积、分蘖数以及株高显著减少,叶角度显著增加;六倍体小麦中脯氨酸和可溶性糖含量显著增加,渗透调节能力在三个倍体中最强。试验结果与Meta分析结果相互印证,一定程度上印证了小麦在长期驯化过程中,野生品种和古老品种采取避旱和耐旱协同进化策略,而现代品种侧重强化耐旱策略。人工选择压力下强化了旱地小麦的耐旱能力,从而提高产量和水分利用效率,并忽略了对避旱能力的协同管理。
     6.人工选择压力下早地麦类作物株型对高温弱光胁迫耐逆性具有增强趋势,驯化强度越大,耐逆性越强,但避逆性有弱化趋势。选择不同驯化程度的近10年育成的2个燕麦品种和6个不同倍体小麦品种在高温弱光胁迫条件下进行管栽试验。结果发现,单株籽粒产量为二倍体小麦为零,四倍体小麦DM22和DM31分别为0.09和0.04g/株,六倍体燕麦品种OA1256和OA128分别为0.12和0.14g/株,六倍体小麦品种和尚头和陇春8275最高,分别为0.21和0.28g/株;高温弱光胁迫下籽粒产量保持率与产量呈现同样趋势。另外,驯化程度高的品种叶片具有较高的脯氨酸和可溶性糖含量、相对含水量和绿叶面积;高温弱光胁迫下二倍体和四倍体小麦通过叶片大面积卷曲和起白霜等避逆方式来适应高温逆境环境,表明耐逆能力随着驯化程度提高有增强趋势,而避逆性状有弱化趋势。
     7.两种株型燕麦密度梯度对照试验结果表明,燕麦松散型株型品种Oa1316-1密度胁迫下适应性较好,表现出相对互利的株型特征,具有较高的产量、叶面积和有效分蘖率。两个燕麦品种的产量、地上生物量、叶面积、叶绿素含量、株高和茎粗随着密度的增加均显著性降低,但根系生物量分配比例均增加。两个燕麦品种采取不同的适应策略。直立叶型品种Manotick在高密度种植环境下叶面积显著减少,叶绿素含量降低,根比重增加3-10%,同时产生50%的无效分蘖来提高自身的竞争力维持自身的生存;松散叶型品种Oa1316-1减少了对根系的分配和无效分蘖数的形成,分配到繁殖器官的生物量增加,这种策略有利于产量的维持,更适宜高密度种植环境。
     总之,人工选择压力下旱地麦类作物的株型演变朝向“高产高效、耐逆性不断增强但避逆性趋弱、且适合密植”的方向演变,将来的努力可放在对叶型的塑造、提高光合效率、不断减少生长冗余、同时考虑提高避逆能力和强化株型的互利性特征,从而达到“开源节流、群体产量最优”的目标。本研究旨在揭示主要麦类作物的株型进化及对典型逆境因子的适应机制,为达尔文进化论在栽培作物育种和栽培管理上的应用和创新认识起到抛砖引玉的作用,在材料选择和逆境因子的全面性等方面尚存不足,有待将来更进一步努力。
Evolvement of plant type in dryland Triticeae crops and its adaptation to adversity is one of the most important fundamental scientific issues. Domestication of Triticeae crops is mostly due to the result of artificial selection, and it is briefly categorized into two types including strong domestication type (mainly refers to as wheat and barley) and weak domestication type (mainly refers to as oat and triticale). In this paper, a group of studies were conducted on the basis of Darwin's theory of evolution, Vavilov's homologous variation law and biological metabolism theory using wheats and oats as representative crops. The test materials were chosen from Triticeae crops with genetically evolutionary relationship and various domestication gradients in the combination of experimental verification and meta-analysis methods. A series of eco-physiological and agronomic data were measured and recorded including the parameters of the variation in plant type, water use, yield formation, osmotic adjustment and gas exchange and so on, under adverse stresses including drought, high temperature&low light and high population density. The objectives of this study are to reveal the evolutionary characteristics of crop plant type, reconstruction direction of plant architecture, and the strategies of adaptation to adversity under the pressure of artificial selection. The results would provide new theoretical potential for cultivation management and breeding practice of dryland Triticeae crops. Major results were achieved as follows:
     1. The results from field experiments showed that plant architecture was evolved towards the tendency from a compact type in diploid wheats to an incompact type in tetraploid wheats, and further to more compact type in hexaploid wheats. Leaf morphological traits tend to become wider and shorter. Field experiment was designed to determine morphological changes in the upper three leaves in three different ploidy wheat species (two diploid MO1and MO4, two tetraploid DM22and DM31, and two hexaploid L8275and Monkhead). The results showed that basal angle, opening angle and cambering angle of three ploidy wheats ranged from22.1°to34.6°,30.0°to66.0°and19.0°to36.4°, respectively. In three ploidy wheats, tetraploid wheats had the highest values among these parameters. The opening angles of hexaploid wheats are greater than diploid wheats, but their basal angles and the cambering angles are lower than those of diploid wheats. Moreover, leaf length-width ratios of leaf, ranged from13.7to26.5, and they increased along with the rise in chromosome sets.
     2. Field experiments further suggested that source-sink relationship in the evolvement of dryland wheats from wild to modern varieties has undergone two important phases. The first phase was to enhance source dimension, and the second one was to strengthen sink dimension. Yet, leaf net photosynthetic rate has not been improved. With the similarity as the above results, the biomass of leaf, stem, sheath and aboveground biomass all increased significantly from diploid to tetraploid, but there were not significant difference in the transition from tetraploid to hexaploid. From diploid to tetraploid and hexaploid, population yield and harvest index increased, although root biomass decreased gradually. In addition, diploid wheats had the largest net photosynthetic rate, tetraploid wheat was at second place, and hexaploid had the lowest net photosynthetic rate.
     3. Pot-culture experiment illustrated that biomass allocation pattern experienced an upward shift "from down to up". Upward shift of biomass allocation was observed in three wheat species, in which the dry weight percentages of root, stem, leaf and ear in total biomass were43%,20%,10%and27%in diploid species,21%,34%,16%and29%in tetraploid species and14%,34%,14%and38%in hexaploid species respectively. The number of tiller was significantly greater in diploid species than that of either tetraploid or hexaploid species. Yield was increased from diploid to hexaploid (0.48to0.96g/plant); thousand seed weight was also increased from diploid to hexaploid. Allometric analysis of biomass allocation and water use with other parameters indicated that body-size scaling exponents of total biomass vs ear weight, stem weight, leaf weight, sheath weight and root weight were generally greater in wild relatives than those of hexaploidy wheats. The results verified that this allometry was weakened by artificial selection while characteristics of artificial populations had been enhanced.
     4. Results of meta-analysis indicated that plant type evolvement of dryland wheats was endowed with high-yield and water-saving characteristics, in which drought tolerance strategy was enhanced during the process of domestication of dryland wheat. A meta-analysis was made through collecting about800papers of drought adaptability in wheats which had been published over past decades. In meta-analysis, indexes of plant type including leaf area, plant height, tiller number and root length, decreased significantly for wild, old, and modern wheat genotypes under drought stress. In comparison with wild and old cultivars, modern wheat cultivars had the lowest reduction. Root biomass of modern wheats decreased under drought stress, but increased in wild and old wheats. Root to shoot ratio increased for all three species, and the old cultivars showed the highest value. Osmotic potential decreased significantly in three species, with the largest decline in modern wheats. WUE were both decreased for wild and old genotypes. In contrast, WUE for modern wheat cultivars increased under drought stress. Results illustrated that drought avoidance strategy become weakened during the process of domestication.
     5. Pot-culture experiment using different ploidy wheats was conducted to verify the results of meta-analysis. The results indicated that diploid and tetraploid wheats tended to take an adaptive strategy to avoid drought using increasing their root to shoot ratio (RSR), changing their leaf orientation (leaf angle) and decreasing leaf area. In contrast, modern hexaploid cultivars tended to improve their drought tolerance mainly through increasing osmotic adjustments and maintaining higher WUE and lower RSR, as well as higher photosynthetic capacity. Grain yield of modern cultivars has been improved remarkably during the domestication of dryland wheat. Under the pressure of artificial selection, the character of drought avoidance was gradually weakened, while drought tolerance ability was strengthened considerably.
     6. Tolerance ability was gradually enhanced during the process of artificial selection. In this study, we selected eight Triticeae varieties of different evolutionary gradients, and the plant material was imposed by high temperature and low light intensity. The results suggested that diploid and tetraploid crops had worse adaptability for abiotic stresses and also lower final yield. Yields of two diploid wheats MO1and MO4were0g/plant, and tetraploid wheats DM22and DM31were0.09and0.04g/plant respectively. Diploid and tetraploid cultivars were observed to reduce tiller number, and allocate more biomass to vegetative organs, so maintained individual survival through leaf rolling and leaf glaucous to avoid high temperature and low light intensity stresses. As a result of artificial selection, modern hexaploid crops and oats acquired better tolerance abilities to adapt high temperature and low intensity and keep higher maintenance ratio of final yield. Proline and soluble sugar contents of leaf were greater in these cultivars than those of other cultivars under stress conditions. Overall, highly-domesticated Triticeae cultivars displayed better adaptability to high temperature and low light conditions and maintained larger green leaf area and better water conservation status.
     7. Oats cultivars with different plant type responded to density stress in different adaptive mechanism. Two oat genotypes, Manotick with erect leaf type and Oa1316-1with prostrate leaf, were applied in four planting densities in a factorial experimental design with4replicates. Our data showed that yield, leaf area, chlorophyll content, plant height and stem diameter of both genotypes decreased significantly with increasing plant density. Biomass allocated to aboveground organs decreased while the biomass allocated to roots increased at higher density. Under high density stress (8and16plants per pots) conditions, compared to solid treatment, Manotick allocated 3-10%more biomass to the root system, produced50%more tillers, leading to higher number of non-productive tillers, and resulted in lower harvest index under the alternative arrangement. In contrast, the prostrate type Oa1316-1allocated proportionally more biomass to the panicles and stems, and less to roots. Consequently, fewer tillers produced in Oa1361-1. Our data indicates that yield differences between the two types of oats resulted from diverse life history strategies. With increasing plant density and strengthening plant-to-plant competition, Manotick reduced aboveground biomass allocation, which led to lower yield, while Oa1316-1decreased biomass allocation to the root, but increased biomass allocation to the stems and panicles under increasingly competitive environment. These adjustments in prostrate type genotypes maintained high and strong stems, ensured biomass allocation to reproductive components and achieved high final yield.
     To sum up, plant type domestication of Triticeae crop is evolved towards the high-yielding and high-efficiency direction with enhancing stress tolerance ability but weakening stress avoidance ability, and being apt to close planting circumstances. Future efforts would be focused on spatial reconstruction of leaf type, exertion of leaf photosynthetic rate and reducing growth redundancy. Due to high complexity of plant type evolvement and its adaptive mechanism for Triticeae crop, further work will be needed to improve stress avoidance ability and strengthen mutual advantages of plant type, finally to satisfy the pursuit of high yield and high population superiority in the future.
引文
1. 陈集贤,赵绪兰.高产稳产优质广适应性小麦育种基础[M].北京:北京科学出版社.2000.
    2. 陈培元,吴相钰.作物对干旱逆境的反应和适应[J].植物生理补充教材.1996,40.
    3. 董珑丽,魏茶花等.春小麦竞争能力与产量的关系[J].生态学报.2007,27(10):4203-4208.
    4. 董世魁,浦小朋等.甘肃天祝高寒地区燕麦品种生产性能评价[J].草地学报.2001,9(1):44-49.
    5. 傅兆麟.小麦超高产基因型的株型结构问题[J].云南农业大学学报.2007,22(1):17-22.
    6. 傅兆麟.小麦超高产基因型产量因素、株型和冠层结构特征的研究[博士论文].北京:中国农业大学博士论文.2001.
    7. 郭继勋,王若丹,王娓.松嫩草原拂子茅种群热值、生物量和能量动态的研究[J].植物学报.2001,43(8),852-856.
    8. 郭天财.小麦及其亲缘的分类[J].河南农业大学学报.1985,19(3):208-230.
    9. 郭天财,王之杰等.不同穗型小麦品种群体光合特性及产量性状的研究[J].作物学报.2001,27(5):633-639.
    10.郭文善,严六零等.小麦源库协调栽培途径的研究[J].江苏农学院学报.1995,16(3):33-37.
    11.黄明丽,邓西平等.二倍体、四倍体和六倍体小麦产量及水分利用效率[J].2007,27(3):1113-1121.
    12.黄中文,赵团结,盖钧镒.大豆不同水平生物量积累与分配的动态分析[J].作物学报,2009,35(8):1483-1490.
    13.贾慎修,草地学[M].北京:农业出版社,1995.
    14.李成龙.水分胁迫对小麦碳同化物分配及穗部显微结构的影响[硕士论文].杨凌:西北农林科技大学硕士论文.2007.
    15.李凤霞,颜亮东.青海环湖地区天然牧草群体生长动态数值模拟[J].草业科学.1997,14(2):44-46.
    16.李朴芳.干旱胁迫下不同倍体小麦株型的演化与生态适应性研究[硕士论文].兰州:兰州大学.2010.
    17.李建民,周殿玺等.冬小麦水肥高效利用栽培技术原理[M].北京:中国农业大学出版社.2000.
    18.刘建辉,孙建云等.不同小麦进化材料生育后期光合特性和产量[J].植物生态学报.2007,31(1):138-144.
    19.刘颖慧,贾海坤,高琼.植物同化物分配及其模型研究综述[J].生态学报.2006,26(6):1982-1992.
    20.苗果园,潘幸来等.黄土高原旱地冬小麦根系生长规律的研究[J].作物学报.1989,15(2):104-115.
    21.慕美财,韩守良等.小麦稳叶控株增穗高产新途径的理论与实践[J].吉林农业科学.2004,29(3):11-15.
    22.潘晓云,王永芳等.覆膜栽培下春小麦种群的生长冗余与体大小不整齐性的关系[J].植物生态学报.2002,26(2):177-184.
    23.庞红喜,何蓓如.穗重型小麦的源库特征研究[J].麦类作物学报.2005,25(3):135-137.
    24.彭永欣,封超年等.小麦栽培与生理[M].南京:东南大学出版社.1992.
    25.祁适雨.小麦育种与远缘杂交[J].世界农业.1983.
    26.盛承师.小麦冠层形态结构与籽粒产量的关系(三)理想株型的设计[J].国外农学-麦类作物.1987,1:35-39.
    27.史竹叶,刘文兆等.中连川小河流域土壤水分物理特征及其与地形条件的关系[J].干旱地区农业研究.2003,21(4):101-104.
    28.王志敏,张英华等.麦类作物穗器官的光合性能研究进展[J].麦类作物学报.2004,24(4):136-139.
    29.王柳英.燕麦品种性状变异的研究[J].草业科学.1998,15(3):19-22.
    30.魏爱丽,王志敏.小麦不同光合器官对穗粒重的作用及基因型差异研究[J].麦类作物学报.2001,21(2):57-61.
    31.魏燮中,吴兆苏.小麦植株高度的结构分析[J].南京农学院学报.1983,1:14-21.
    32.吴永成,周顺利等.节水高产小麦理想全株型探讨[J].干旱地区农业研究.2005,2(3):126-130.
    33.吴学明,袁正甲.青海省莜麦资源及利用途径[J].青海师范大学学报.1987,4:56-62.
    34.行翠平,张哲夫.冬小麦丰稳性分析及其育种目标探讨[J].小麦研究.1999,20(2):29-32.
    35.杨文雄.早地小麦株型指标与产量形成的关系研究[J].干旱地区农业研究.2006 24(1):43-46.
    36.杨力军,赵志刚等.几种燕麦引种栽培及品种比较试验研究[J].青海草业.2002,11(2):1-4.
    37.杨兆生,阎素红.不同类型小麦根系生长发育及分布规律的研究[J].麦类作物学报.2000,20(1):47-50.
    38.杨永梅.春小麦高产超高产源库关系及其机理的研究[硕士论文].呼和浩特:内蒙古农业大学硕士论文.2003.
    39.殷毓芬,张存良等.冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究[J].作物学报.1995,21(5):561-567.
    40.殷宏章.稻麦群体研究论文集[M].上海:上海科学技术出版社.1962.
    41.余波澜,黄朝峰等.小麦A,B和D基因组同源DNA序列在进化过程中的演变[J].遗传学报.2001,28(7):635-639.
    42.岳寿松,于振文,余松烈.不同生育时期施氮对冬小麦旗叶衰老和粒重的影响[J].中国农业科学.1997,30(2):42-46.
    43.张大勇,姜新华等.半干旱区作物根系生长冗余的生态学分析[J].西北植物学报.1995,15(5):110-114.
    44.张大勇.植物生活史进化与繁殖生态学[M].北京:科学出版社.2004.
    45.张荣,孙国钧.干旱,半干旱地区作物育种的困惑与出路[J].西北植物学报.2000,20(6):930-935.
    46.张岁岐,山仑等.小麦进化中水分利用效率的变化及其与根系生长的关系[J].科学通报.2002,47(17):1326-1331.
    47.赵松岭,李风民等.作物生产是一个种群过程[J].生态学报.1997,17(1):100-106.
    48.庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社.2003.
    49. Abrahamson, W.G., Caswell, H. On the comparative allocations of biomass, energy, and nutrients in plants [J]. Ecology.1982:982-991.
    50. Aerts, R., Berendse, F., Caluwe, H. et al. Competition in heathland along an experimental gradient of nutrient availability [J]. Oikos.1990,57(3):310-318.
    51. Aerts, R. Nutrient use efficiency in evergreen and deciduous species from heathlands [J]. Oecologia.1990,84(3):391-397.
    52. Ainsworth, E.A., Davey, P.A., Bernacchi, C.J. et al. A meta-analysis of elevated [C02] effects on soybean(Glycine max)physiology. growth and yield [J]. Global Change Biology. 2002,8:695-709.
    53. Al-Khatib, K., Paulsen, G.M. Mode of high temperature injury to wheat during grain development [J]. Physiologia Plantarum.1984,61(3):363-368.
    54. Aliard, R.W., Frankel, O.H., Bennett, E. Population structure and sampling methods [J]. Genetic resources in plants-their exploration and conservation,1970:97-107.
    55. Apse, M.P., Blumwald, E. Engineering salt tolerance in plants [J]. Current Opinion in Biotechnology.2002,13(2):146-150.
    56. Araus, J.L., Slafer, G.A., Reynolds, M.P. et al. Plant breeding and drought in C3 cereals:what should we breed for? [J]. Annals of Botany.2002,89(7):925-940.
    57. Ares, A., Fownes, J.H., Sun, W. Genetic Differentiation of Intrinsic Water-Use Efficiency in the Hawaiian Native Acacia koa [J]. International Journal of Plant Sciences.2000,161(6): 909-915.
    58. Austin, R.B., Morgan, C.L., Ford, M. A. et al. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species[J]. Annals of Botany.1982,49(2):177-189.
    59. Austin, R.B., Bingham, J. Blackwell, R.D. et al. Genetic improvements in winter wheat yields since 1900 and associated physiological changes [J]. The Journal of Agricultural Science.1980,94(03):675-689.
    60. Balyan, H.S., Singh, T. The usefulness of biparental matings and geno-phenotypic selection for yield improvement in wheat (Triticum aestivum L.) [J]. The Indian Journal of Genetics and Plant Breeding.1997,57(4):401-410.
    61. Bates, L.S., Waldren, R.P, Teare, I.D. Rapid determination of free proline for water-stress studies [J]. Plant and soil.1973,39(1):205-207.
    62. Bidel, L.P.R., Pages, L., Riviere, L.M. et al. Mass Flow Dyn I:a carbon transport and partitioning model for root system architecture [J]. Annals of Botany.2000,85(6):869-886.
    63. Bloom, A.J., Chapin, F.S., Mooney, H.A. Resource limitation in plants-an economic analogy [J]. Annual review of Ecology and Systematics.1985:363-392.
    64. Blum, A. Plant breeding for stress environments [M]. CRC Press, Inc.1988.
    65. Blum, A., Ramaiah, S., Kanemasu, E.T. et al. Wheat recovery from drought stress at the tillering stage of development [J]. Field Crops Research.1990,24(1):67-85.
    66. Borrell, A.K., Hammer, G.L. Nitrogen dynamics and the physiological basis of stay-green in sorghum [J]. Crop science.2000,40(5):1295-1307.
    67. Boyer, J.B., MePherson, H.G. Physiology of water deficits in cereal crops [J]. Advances in agronomy.1975,27(1):1-23.
    68. Brooks, T.J., Wall, G.W., Pinter, P.J. et al. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes.3. Canopy architecture and gas exchange [J]. Photosynthesis research.2000,66(1-2):97-108.
    69. Caldwell, M.M., Richards, J.H., Givnish, T.J. Competing root systems:morphology and models of absorption[C]. On the economy of plant form and function. Cambridge University Press.1986:251-273.
    70. Canevara, M.G., Romani, M., Corbellini, M. et al. Evolutionary trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since 1900 [J]. European Journal of Agronomy (France).1994.
    71. Cattivelli, L., Rizza, F., Badeck, F.W. et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomic [J]. Field Crops Research.2008,105(1):1-14.
    72. Chapin, F.S. The mineral nutrition of wild plants [J]. Annual review of ecology and systematic.1980:233-260.
    73. Chaves, M.M., Maroco, J.P., Pereira, J.S. Understanding plant responses to drought-from genes to the whole plant [J]. Functional Plant Biology.2003,30(3):239-264.
    74. Chetti, M.B., Hattali, S.R., Konda, C.R. et al. Influence of soil moisture deficits on biophysical parameters and their relationship with yield in wheat genotypes [J]. Crop Resarch Hisar 1997,13:455-462.
    75. Cipollini, D.F., Bergelson, J. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus [J]. Journal of chemical ecology.2001,27(3):593-610.
    76. Cisse, N., Thiaw, S., Ndiaye, M. Guide de production de Niebe [J]. ISRA Fiches Tech.1996, 16:1-11.
    77. Clarke, J.M., Richards, R.A, Condon, A.G. Effect of drought stress on residual transpiration and its relationship with water use of wheat J]. Canadian Journal of Plant Science.1991, 71(3):695-702.
    78. Clarke, K.R., Green, R.H. Statistical design and analysis for a" biological effects" study [J]. Marine ecology progress series.1988,46(1):213-226.
    79. Copeland, P.J., Crookston, R.K. Visible Indicators of Phsiological Maturity Barley [J]. Crop science.1985,25(5):843-847.
    80. Condon, A.G., Richards, R.A, Rebetzke, G.J. et al. Breeding for high water-use efficiency [J]. Journal of Experimental Botany.2004,55(407):2447-2460.
    81. Craine, J.M. Competition for nutrients and optimal root allocation [J]. Plant and Soil.2006, 285(1-2):171-185.
    82. Darwin, C. The variation of animals and plants under domestication [M]. John Murray,1868.
    83. Darwin, C. Charles Darwin's natural selection; Stauffer RC [J].1856.
    84. Darwinkel, A. Patterns of tillering and grain production of winter wheat at a wide range of plant densities[J]. Netherlands Journal of Agricultural Science.1978,26:383-398.
    85. Reynolds, M., Dreccer, F., Trethowan, R. Drought-adaptive traits derived from wheat wild relatives and landraces[J]. Journal of experimental botany.2007,58(2):177-186.
    86. Deng, X.P., Shan, L., Inanaga, S. et al. Water-saving approaches for improving wheat production [J]. Journal of the Science of Food and Agriculture.2005,85(8):1379-1388.
    87. Deng, J., Zuo, W., Wang, Z. et al. Insights into plant size-density relationships from models and agricultural crops [J]. Proceedings of the National Academy of Sciences.2012,109(22): 8600-8605.
    88. Dewey, W.G., Albrechtsen, R.S. Tillering relationships between spaced and densely sown populations of spring and winter wheat [J]. Crop Science.1985,25(2):245-249.
    89. Djanaguiraman, M., Prasad, P.V.V., Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system [J]. Plant Physiology and Biochemistry.2010,48(12):999-1007.
    90. Dobra, J., Vankova, R., Havlovd, M. et al. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery [J]. Journal of plant physiology.2011,168(13):1588-1597.
    91. Donald, C.M. The breeding of crop ideotypes [J]. Euphytica.1968,17(3):385-403.
    92. Donald, C.M. Competitive plant, communal plants, and yield in wheat crops. In Wheat Science-Today and Tomorrow [M]. Cambridge University Press.1981.
    93. Dubcovsky, J., Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication [J]. Science.2007,316(5833):1862-1866.
    94. Dubois, M., Gilles, K.A., Hamilton, J.K. et al. Colorimetric method for determination of sugars and related substances [J]. Analytical chemistry.1956,28(3):350-356.
    95. Dvorak, J., Luo, M.C., Yang, Z.L. et al. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat [J]. Theoretical and Applied Genetics.1998,97(4): 657-670.
    96. Engledow, F.L., Wadham, S.M. Investigations on yield in the cereals. I[J]. The Journal of Agricultural Science.1923,13(04):390-439.
    97. Evans, L.T., Dunstone, R.L. Some physiological aspects of evolution in wheat [J]. Australian Journal of Biological Sciences.1970,23(4):725-742.
    98. Evans, L.T., Peacock, W.J., Donald, C.M.1981. Competitive plants, communal plants, and yield in wheat crops. Wheat Science-Today& Tomorrow [M]. Cambridge, Cambridge University Press.1981,223-247.
    99. Falster, D.S., Westoby, M. Leaf size and angle vary widely across species:what consequences for light interception?[J]. New Phytologist.2003,158(3):509-525.
    100. Fang, Y., Xu, B., Turner,.NC. et al. Does root pruning increase yield and water-use efficiency of winter wheat? [J]. Crop and Pasture Science.2010,61(11):899-910.
    101. Feldman, M., Sears, E.R. The wild gene resources of wheat [J]. Scientific American.1981, 244:102-112.
    102. Ferris, R., Ellis, R.H., Wheeler, T.R. et al. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat [J]. Annals of Botany.1998,82(5): 631-639.
    103. Festa-Bianchet, M., Jorgenson, J.T. Selfish mothers:reproductive expenditure and resource availability in bighorn ewes[J]. Behavioral Ecology.1998,9(2):144-150.
    104. Fischer, R.A. Understanding the physiological basis of yield potential in wheat [J]. Journal of Agricultural Science-Cambridge.2007,145(2):99.
    105. Fischer, R.A. The importance of grain or kernel number in wheat:A reply to Sinclair and Jamieson [J]. Field Crops Research.2008,105(1):15-21.
    106. Fischer, R.A., Wood, J.T. Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits [J]. Crop and Pasture Science.1979,30(6): 1001-1020.
    107. Fischlin, A., Midgley, G.F., Price, J.T. et al. Ecosystems, their properties, goods and services. Climate Change 2007:Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, Eds., Cambridge University Press, Cambridge.2007.211-272.
    108. Fleury, D., Jefferies, S., Kuchel, H. et al. Genetic and genomic tools to improve drought tolerance in wheat[J]. Journal of Experimental Botany.2010,61(12):3211-3222.
    109. Fuller, D.Q. Contrasting patterns in crop domestication and domestication rates:recent archaeobotanical insights from the Old World [J]. Annals of Botany.2007,100(5):903-924.
    110. Gallagher, J.N., Biscoe, P.V., Hunter, B. Effects of drought on grain growth [J]. Nature.1976, 264:541-542.
    111. Gastal, F., Lemaire, G. N uptake and distribution in crops:an agronomical and ecophysiological perspective [J]. Journal of Experimental Botany.2002,53(370):789-799.
    112. Gaudet, C.L., Keddy, P.A. A comparative approach to predicting competitive ability from plant traits [J]. Nature.1988,334:242-243.
    113. Geber, M.A., Dawson, T.E. Genetic variation in and covariation between leaf gas exchange, morphology, and development in Polygonum arenastrum, an annual plant [J]. Oecologia. 1990,85(2):153-158.
    114. Gebeyehou, G., Knott, D.R., Baker, R.J. Relationships among durations of vegetative and grain filling phases, yield components, and grain yield in durum wheat cultivars [J]. Crop Science.1982,22(2):287-290.
    115. Geiger, D.R., Koch, K.E., Shieh, W.J. Effect of environmental factors on whole plant assimilate partitioning and associated gene expression [J]. Journal of Experimental Botany. 1996,47(Special Issue):1229-1238.
    116. Gelang, J., Sellden, G., Younis, S. et al. Effects of ozone on biomass, non-structural carbohydrates and nitrogen in spring wheat with artificially manipulated source/sink ratio [J]. Environmental and experimental botany.2001,46(2):155-169.
    117. Gersani, M. O'Brien, E.E., Maina, G.M. et al. Tragedy of the commons as a result of root competition [J]. Journal of Ecology.2001,89(4):660-669.
    118. Gibson, S.I. Plant sugar-response pathways. Part of a complex regulatory web [J]. Plant Physiology.2000,124(4):1532-1539.
    119. Gobron, N., Pinty, B., Melin, F. et al. The state of vegetation in Europe following the 2003 drought [J]. International Journal of Remote Sensing.2005,26(9):2013-2020.
    120. Gourdji, S.M., Mathews, K.L., Reynolds, M. et al. An assessment of wheat yield sensitivity and breeding gains in hot environments [J]. Proceedings of the Royal Society B:Biological Sciences.2013,280(1752).
    121. Grasses Under Elevated Atmospheric CO2 and Water Stress [J]. Annals of Botany.1998, 81(4):489-501.
    122. Grime, J.P. Plant strategies, vegetation processes, and ecosystem properties[M]. John Wiley & Sons.2006.
    123. Grime, J.P., Wiley, J. Sons, L. Plant strategies and vegetation processes [J].Biologia Plantarum.1979,23:254.
    124. Grime, J.P. The role of plasticity in exploiting environmental heterogeneity. In:exploitation of Environmental Heterogeneity by Plants:Ecophysiological Processes Aboveand Belowground[M]. Academic Press, New York.1994, pp.1-20.
    125. Guo, W., Li, B., Zhang, X. et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress [J]. Journal of Arid Environments.2007,69(3):385-399.
    126. Guo, W, Wang, R., Zhou, S. et al. Genetic diversity and clonal structure of Phragmites australis in the Yellow River delta of China [J]. Biochemical Systematics and Ecology.2003, 31(10):1093-1109.
    127. Hare, P.D., Cress, W.A., Van Staden, J. Dissecting the roles of osmolyte accumulation during stress [J]. Plant, Cell & Environment.1998,21(6):535-553.
    128. Harlan, J.R. Comparative evolution of cereals [J]. Evolution.1973,27:311-325.
    129. Harlan, J.R., Zohary, D. Distribution of wild wheats and barley [J]. Science.1966,153(3740): 1074-1080.
    130. Harlan, J.R., Wet, J.M.J.D., Price, E.G. Comparative evolution of cereals [J]. Comparative Evolution of Cereals.1973,27:311-325.
    131. Harper, J.L. Population biology of plants [J]. Population biology of plants.1977.
    132. Havaux, M., Tardy, F. Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley landraces to high-light and heat stress [J]. Functional Plant Biology.1999,26(6):569-578.
    133. Hermans, C., Hammond, J.P., White, P.J. et al. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends in plant science.2006,11(12):610-617.
    134. Holand,0., Mysterud, A., R(?)ed, K.H. et al. Adaptive adjustment of offspring sex ratio and maternal reproductive effort in an iteroparous mammal[J]. Proceedings of the Royal Society B:Biological Sciences.2006,273(1584):293-299.
    135. Hsiao, T.C. Plant responses to water stress [J]. Annual review of plant physiology.1973, 24(1):519-570.
    136. Hurd, E.A. Growth of roots of seven varieties of spring wheat at high and low moisture levels [J]. Agronomy Journal.1968,60(2):201-205.
    137. Hurd, E.A. Phenotype and drought tolerance in wheat [J]. Agricultural Meteorology.1974, 14(1):39-55.
    138. Hunt, H.W., Morgan, J.A., Read, J.J. Simulating Growth and Root-shoot Partitioning in Prairie Grasses Under Elevated Atmospheric CO2and Water Stress [J]. Annals of Botany. 1998,81(4):489-501.
    139. Iwasa, Y, Roughgarden, J. Shoot/root balance of plants:optimal growth of a system with many vegetative organs [J]. Theoretical Population Biology.1984,25(1):78-105.
    140. Izanloo, A., Condon, A.G., Langridge, P. et al. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars [J]. Journal of Experimental Botany.2008,59(12):3327-3346.
    141. Jackson, R.B., Sperry, J.S., Dawson, T.E. Root water uptake and transport:using physiological processes in global predictions [J]. Trends in plant science.2000,5(11): 482-488.
    142. Jastrow, J.D., Miller, R.M. Neighbor influences on root morphology and mycorrhizal fungus colonization in tallgrass prairie plants [J]. Ecology.1993,74(2):561-569.
    143. Jiang, G.M., Hao, N.B., Bai, K.Z. et al. Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars [J]. Photosynthetica.2000,38(2): 227-232.
    144. Jorgea,C.A., Fernando, R., Rosa, R. et al. Effect of source to sink ratio on partitioning of dry matter and 14C photo-assimilates in wheat during grain filling [J]. Annals of Botany.1999,83: 655-665.
    145. Jones, MM., Turner, N.C., Osmond, C.B. Mechanisms of drought resistance [J]. The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney,1981: 15-37.
    146. Karamanos, A.J., Papatheohari, A.Y. Assessment of drought resistance of crop genotypes by means of the water potential index [J]. Crop science.1999,39(6):1792-1797.
    147. Kawahara, T. Morphological and isozyme variation in genebank accessionsof Aegilops umbellulata Zhuk., a wild relative of wheat [J]. Genetic Resources and Crop Evolution.2002, 49(1):89-94.
    148. Khan, I.A., Hassan, G., Marwat, K.B. Interaction of wild oats (Avena fatua L.) with spring wheat (Triticum aestivum L.) seeded at different rates[J]. Pakistan Journal of Botany.2008, 40(3):1163-1167.
    149. Kihara, H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare[J]. Agric Hortic.1944,19:13-14.
    150. Kishor, P.B.K., Sangam, S., Amrutha, R.N. et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance [J]. Curr Sci.2005,88(3):424-438.
    151. Kirby, E.J.M., Faris, D.G. The effect of plant density on tiller growth and morphology in barley[J]. The Journal of Agricultural Science.1972,78(02):281-288.
    152. Koshkin, E.I., Tararina, V.V. Yield and source/sink relations of spring wheat cultivars [J]. Field Crops Research.1989,22(4):297-306.
    153. Kozlowski, TT, Pallardy, S.G. Physiology of wood plants [M]. Adademic Press.1997.
    154. Kramer, P.J. Plant and soil water relationships:a modern synthesis [J]. McGraw-Hill, New York, NY.1969.
    155. Krasensky, J., Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks [J]. Journal of experimental botany.2012,63(4): 1593-1608.
    156. Kulmatiski, A., Beard, K.H., Stevens, J.R.et al. Plant-soil feedbacks:a meta-analytical review[J]. Ecology Letters.2008,11:980-992.
    157. Lambers, H., Atkin, O.K., Millenaar, F.F. Respiratory patterns in roots in relation to their functioning [J]. Plant roots:the hidden half Ed. Y Waisel, A Eshel and U Kafkafi.1996: 323-362.
    158. Levitt, J. Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses [M]. Academic Press.1980.
    159. Levitt, J. Stress terminology [J]. Adaptation of plants to water and high temperature stress. New York:Wiley.1980:473-439.
    160. Li, L., Sun, J., Zhang, F. et al. Wheat/maize or wheat/soybean strip intercropping:I.. Yield advantage and interspecific interactions on nutrients [J]. Field Crops Research.2001,71(2): 123-137.
    161.Ludlow, M.M., Fisher, M.J., Wilson, J.R. Stomatal adjustment to water deficits in three tropical grasses and a tropical legume grown in controlled conditions and in the field [J]. Functional Plant Biology.1985,12(2):131-149.
    162. Ludlow, M.M., Muchow, R.C. A critical evaluation of traits for improving crop yields in water-limited environments [J]. Advances in agronomy.1990,43:107-153.
    163. Mahmoud, A., Grime, J.P. An analysis of competitive ability in three perennial grasses[J]. New Phytologist.1976,77(2):431-435.
    164. Ma, S.C., Li F.M., Xu, B.C. et al. Effects of root pruning on the growth and water use efficiency of winter wheat [J]. Plant growth regulation.2009,57(3):233-241.
    165. Ma, S.C., Li, F.M., Xu, B.C. et al. Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat [J]. Field crops research.2010,115(2): 158-164.
    166. Ma, S.C., Xu, B.C., Li, F.M. et al. Effects of root pruning on competitive ability and water use efficiency in winter wheat [J]. Field crops research.2008,105(1):56-63.
    167. McCarthy, M.C., Enquist, B.J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation [J]. Functional Ecology. 2007,21(4):713-720.
    168. McCarthy, M.C., Enquist, B.J., Kerkhoff, A.J. Organ partitioning and distribution across the seed plants:assessing the relative importance of phylogeny and function [J]. International Journal of Plant Sciences.2007,168(5):751-761.
    169. McConnaughay, K.D.M, Coleman, J.S. Biomass allocation in plants:ontogeny or optimality? A test along three resource gradients [J]. Ecology.1999,80(8):2581-2593.
    170. McCree, K.J. Measuring the whole-plant daily carbon balance [J]. Photosynthetica.1986, 82-93.
    171. McIntyre, B.D., Riha, S.J., Ong, C.K. Light interception and evapotranspiration in hedgerow agroforestry systems [J]. Agricultural and forest meteorology.1996,81(1):31-40.
    172. Meier, I.C., Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests:competing effects of precipitation, temperature, and nitrogen availability[J]. Ecosystems.2008,11(5): 655-669.
    173. Metcalf, J.C., Rose, K.E., Rees, M. Evolutionary demography of monocarpic perennials [J]. Trends in Ecology & Evolution.2003,18(9):471-480.
    174. Metcalf, C.J.E., Rees, M., Alexander, J.M. et al. Growth-survival trade-offs and allometries in rosette-forming perennials [J]. Functional Ecology.2006,20(2):217-225.
    175. Monneveux, P., Belhassen, E. The diversity of drought powadaptation in the wide [J]. Plant Growth Regulation.1996,20:85-92.
    176. Morgan, J.M. Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology.1984,35(1):299-319.
    177. Morgan, J.M. Osmotic components and properties associated with genotypic differences in osmoregulation in wheat [J]. Functional Plant Biology.1992,19(1):67-76.
    178. Morgan, J.M., Hare, R.A., Fletcher, R.J. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments [J]. Crop and Pasture Science.1986,37(5):449-457.
    179. Munns, R. Why measure osmotic adjustment? [J]. Functional Plant Biology.1988,15(6): 717-726.
    180. Munns, R., Brady, C.J., Barlow, E.W.R. Solute accumulation in the apex and leaves of wheat during water stress [J]. Functional Plant Biology.1979,6(3):379-389.
    181. Narasimhamoorthy, B. Breeding behaviour and genetic analysis of wheat synthetic hexaploids [J]. Section B of Dissertation Abstracts Inter.2003,64:58-67.
    182. Nativ, R., Ephrath, J.E., Berliner, P.R. et al. Drought resistance and water use efficiency in Acacia saligna [J]. Australian journal of botany.1999,47(4):577-586.
    183.Nevo, E., Chen, G. Drought and salt tolerances in wild relatives for wheat and barley improvement [J]. Plant, cell & environment.2010,33(4):670-685.
    184. Nielsen, K.L., Lynch, J.P., Jablokow, A.G. et al. Carbon cost of root systems:an architectural approach [M]. Belowground Responses to Rising Atmospheric CO2:Implications for Plants, Soil Biota, and Ecosystem Processes. Springer Netherlands.1995:161-169.
    185. Niklas, K.J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories [J]. New Phytologist.2006,171(1):27-40.
    186. Niinemets,U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs [J]. Ecology.2001,82(2):453-469.
    187. Ogbonnaya, F.C., Halloran, G.M., Lagudah, E.S. D genome of wheat-60 years on from Kihara, Sears and McFadden [J]. Frontiers of wheat bioscience, the 100th memorial issue of wheat information service. Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama.2005:205-220.
    188. Olesen, J.E., Hansen, P.K., Berntsen, J. et al. Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties [J]. Field crops research.2004,89(2):263-280.
    189. Olivares-Villegas, J.J., Reynolds, M.P., McDonald, G.K. Drought-adaptive attributes in the Seri/Babax hexaploid wheat population [J]. Functional Plant Biology.2007,34(3):189-203.
    190. Osone, Y., Tateno, M. Effects of stem fraction on the optimization of biomass allocation and maximum photosynthetic capacity [J]. Functional Ecology.2003,17(5):627-636.
    191.O'Toole, J.C., Cruz, R.T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress [J]. Plant physiology.1980,65(3):428-432.
    192. Outoukarte, I., Belaqziz, M., Price, A. et al. Durum wheat root distribution and agronomical performance as influenced by soil properties [J]. Crop science.2010,50(3):803-807.
    193. Palta, J.A., Chen, X., Milroy, S.P. et al. Large root systems:are they useful in adapting wheat to dry environments? [J]. Functional Plant Biology.2011,38(5):347-354.
    194. Palta, J.A., Filler,y I.R.P, Rebetzke, G.J. Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake [J]. Field crops research.2007,104(1):52-59.
    195. Passioura, J.B. The interaction between the physiology and the breeding of wheat [M]. Wheat science today and tomorrow. Cambridge University Press, Cambridge, UK.1981:191-201.
    196. Passioura, J.B. Roots and drought resistance [J]. Agricultural water management.1983,7(1): 265-280.
    197. Qin, X.L.,Weiner, J., Qi, L. et al. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum) [J]. Field crop research.2013, 144:162-166.
    198. Quarrie, S.. Improving drought resistance in cereals:should in be the top-down or the bottomup approach [J]. Plant Physiol.1999,118:1-9.
    199. Rajaram, S.M. wheat breeding at CIMMYT:A global perspective. One of the CIMMYT publication.1991,37-39.
    200. Rajaram, S. Prospects and promise of wheat breeding in the 21st century [J]. Euphytica.2001 119:3-15.
    201. Reif, J.C., Zhang, P., Dreisigacker, S. Wheat genetic diversity trends during domestication and breeding [J]. Theoretical and Applied Genetics.2005,110(5):859-864.
    202. Reynolds, M., Tuberosa, R. Translational research impacting on crop productivity in drought-prone environments [J]. Current opinion in plant biology.2008,11(2):171-179.
    203. Reynolds, M.P., Van Ginkel, M., Ribaut, J.M. Avenues for genetic modification of radiation use efficiency in wheat [J]. Journal of Experimental Botany.2000,51(suppl 1):459-473.
    204. Ribaut, J.M., Banziger, M., Setter, T. et al. Genetic dissection of drought tolerance in maize:a case study [J]. Physiology and biotechnology integration for plant breeding.2004,15: 571-609.
    205. Richards, R.A. Selectable traits to increase crop photosynthesis and yield of grain crops [J]. Journal of Experimental Botany.2000,51 (suppl 1):447-458.
    206. Richards, R.A., Rawson, H.M., Johnson, D.A. Glaucousness in Wheat:Its Development and Effect on Water-use Efficiency, Gas Exchange and Photosynthetic Tissue Temperatures[J]. Functional Plant Biology.1986,13(4):465-473.
    207. Richards, R.A., Rebetzke, G.J., Condon, A.G. et al. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals[J]. Crop Science.2002,42(1): 111-121.
    208. Ritchie, M.E., Olff, H. Spatial scaling laws yield a synthetic theory of biodiversity [J]. Nature. 1999,400(6744):557-560.
    209. Rizza, F., Ghashghaie, J.s Meyer, S. et al. Constitutive differences in water use efficiency between two durum wheat cultivars [J]. Field Crops Research.2012,125:49-60.
    210. Robertson, B.M., Waines, J.G., Gill, B.S. Genetic variability for seedling root numbers in wild and domesticated wheats [J]. Crop Science.1979,19(6):843-847.
    211. Rosenberg, M.S., Adams, D.C., Gurevitch, J. Metawin:statistical software for meta-analysis [J]. Version 2. Sunderland:Sinauer Associates.2000.
    212. Salamini, F., Ozkan, H., Brandolini, A. et al. Genetics and geography of wild cereal domestication in the Near East [J]. Nature Reviews Genetics.2002,3(6):429-441.
    213. Salekdeh, G.H., Reynolds, M., Bennett, J. et al. Conceptual framework for drought phenotyping during molecular breeding [J]. Trends in plant science.2009,14(9):488-496.
    214. Sandana, P., Pinochet, D. Ecophysiological determinants of biomass and grain yield of wheat under P deficiency [J]. Field crops research.2011,120(2):311-319.
    215.
    216. Sharma, S.S., Dietz, K.J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress [J]. Journal of Experimental Botany. 2006,57(4):711-726.
    217. Shearman, V.J., Sylvester-Bradley, R., Scott, R.K. et al. Physiological processes associated with wheat yield progress in the UK [J]. Crop Science.2005,45(1):175-185.
    218. Siddique, K.H.M., Belford, R.K., Tennant, D. Root:shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment[J]. Plant and soil.1990,121(1):89-98.
    219. Siddique, K.H.M., Tennant, D., Perry, M.W. et al. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment [J]. Crop and Pasture Science.1990,41(3):431-447.
    220. Singh, N.B., Ahmad, Z., Singh, D.N. et al. High temperature tolerance in wheat cultivars [J]. Advances in Agricultural Research in India.1997,7:119-124.
    221. Sinha, S.K. Drought resistance in crop plants:a critical physiological and biochemical assessment[J]. Drought tolerance in winter cereals,1987:349-364.
    222. Skirycz, A., Vandenbroucke, K., Clauw, P. et al. Survival and growth of Arabidopsis plants given limited water are not equal [J]. Nature biotechnology.2011,29(3):212-214.
    223. Slafer, G.A., Calderini, D.F., Miralles, D.J. et al. Preanthesis shading effects on the number of grains of three bread wheat cultivars of different potential number of grains [J]. Field Crops Research.1994,36(1):31-39.
    224. Slafer, G.A. Genetic basis of yield as viewed from a crop physiologist's perspective [J]. Annals of Applied Biology.2003,142(2):117-128.
    225. Slafer, G.A., Araus, J.L., Royo, C. et al. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments[J]. Annals of Applied Biology. 2005,146(1):61-70.
    226. Slafer, G.A., Kantolic, A.G., Appendino, M.L., Miralles, D.J., Savin, R. (2009) Crop development:genetic control, environmental modulation and relevance for genetic improvement of crop yield. In:Sadras, V.O., Calderini, D.F. (Eds.), Crop Physiology: Applications for Genetic Improvement and Agronomy, vol.19. Elsevier, The Netherlands, pp. 277-308.
    227. Smith, J.B., Schneider, S.H., Oppenheimer, M. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC)"reasons for concern" [J]. Proceedings of the National Academy of Sciences.2009,106(11):4133-4137.
    228. Solomon, S., Qin, D.H. Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC [M]. Cambridge University Press. 2007.
    229. Song, Y., Birch, C., Hanan, J. Analysis of maize canopy development under water stress and incorporation into the ADEL-Maize model [J]. Functional Plant Biology.2008,35(10): 925-935.
    230. Sprugel, D.G. Correcting for bias in log-transformed allometric equations [J]. Ecology.1983, 64(1):209-210.
    231. Spehn, E.M., Joshi, J., Schmid, B. et al. Above-ground resource use increases with plant species richness in experimental grassland ecosystems[J]. Functional Ecology.2000,14(3): 326-337.
    232. Stearns, S.C. The evolution of life histories[M]. Oxford:Oxford University Press,1992.
    233. Stone, P.J., Nicolas, M.E. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress [J]. Functional Plant Biology.1994,21(6): 887-900.
    234. Sultan, S.E. Phenotypic plasticity for plant development, function and life history [J]. Trends in plant science.2000,5(12):537-542.
    235. Su, J., Wu, R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis [J]. Plant Science.2004,166(4): 941-948.
    236. Tanno, K., Willcox, G. How fast was wild wheat domesticated? [J]. Science.2006, 311(5769):1886-1886.
    237. Tardieu, F. Drought perception by plants Do cells of draughted plants experience water stress? [J]. Plant growth regulation.1996,20(2):93-104.
    238. Tardieu, F. Plant tolerance to water deficit:physical limits and possibilities for progress [J]. Comptes Rendus Geoscience.2005,337(1):57-67.
    239. Taiz, L., Zeiger, E. Cell walls:structure, biogenesis and expansion [J]. Plant Physiology. Sinauer Associates, Sunderland, MA.1998:409-443.
    240. Teulat, B., Rekika, D., Nachit, M.M. et al. Comparative osmotic adjustments in barley and tetraploid wheats [J]. Plant Breeding.1997,116(6):519-523.
    241. Tian, Z., Jing, Q., Dai, T. et al. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China [J]. Field Crops Research.2011,124(3):417-425.
    242. Tilman, D. Plant strategies and the dynamics and structure of plant communities [M]. Princeton University Press,1988.
    243. Tilman, D. Dynamics and structure of plant communities [J]. Monographs in population biology.1988,26.
    244. Turner, N.C., Jones, M.M. Turgor maintenance by osmotic adjustment:a review and evaluation [J]. Adaptation of Plants to Water and High Temperature Stress (NC Turner and PJ Kramer, Editors).1980:.87-103.
    245. Trethowan, R.M., Ginkel, M.V., Rajaram, S. Progress in Breeding Wheat for Yield and Adaptation in Global Drought Affected Environments. Crop science [J].2002,42(5): 1441-1446.
    246. Tripathy, B.C., Brown, C.S. Root-shoot interaction in the greening of wheat seedlings grown under red light [J]. Plant physiology.1995,107(2):407-411.
    247. Turner, N.C. Techniques and experimental approaches for the measurement of plant water status [J]. Plant and Soil.1981,58(1-3):339-366.
    248. Turner, N.C. Adaptation to water deficits:a changing perspective [J]. Functional Plant Biology.1986,13(1):175-190.
    249. Tyslenko, A.M. Effect of root number on yield in spring wheat [J]. Byulleten Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov.1981,114:15-17.
    250. Valkama, E., Lyytinen, S., Koricheva, J. The impact of reed management on wildlife:A meta-analytical review of European studies [J]. Biological Conservation.2008,141(2): 364-374.
    251. Valkoun, J. Wheat pre-breeding using wild progenitors [J]. Euphytical.2001,19:699-707.
    252. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S. et al. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status [J]. The Plant Journal.2006,45(4):523-539.
    253. Voetberg, G.S., Sharp, R.E. Growth of the maize primary root at low water potentials IE. Role of increased proline deposition in osmotic adjustment [J]. Plant Physiology.1991,96(4): 1125-1130.
    254. Waines, J.G., Barnhart, D.. Biosystematic research in Aegilops and Triticum [J], Hereditas. 1992,116(3):207-212.
    255. Wall, G.W., Adam, N.R, Brooks, T.J. et al. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes.2. Net assimilation and stomatal conductance of leaves [J]. Photosynthesis research.2000,66(1-2): 79-95.
    256. Wardlaw, I.F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment [J]. Annals of Botany.2002,90(4):469-476.
    257. Weiner, J. Plant population ecology in agriculture. In:Ronald-Carrol, C. (Ed.), Agroecology [M]. McCraw-Hill Publishing Company, New York.1990.
    258. Weiner, J, Thomas, S.C. Competition and allometry in three species of annual plants [J]. Ecology.1992:648-656.
    259. Weiner, J. Allocation, plasticity and allometry in plants [J]. Perspectives in Plant Ecology, Evolution and Systematics.2004,6(4):207-215.
    260. Weinig, C. Differing selection in alternative competitive environments:shade-avoidance responses and germination timing [J]. Evolution.2000,54(1):124-136.
    261. Wesley, S.V., Helliwell, C.A., Smith, N.A., et al. Construct design for efficient, effective and high-throughput gene silencing in plants [J]. The Plant Journal.2001,27(6):581-590.
    262. Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme [J]. Plant and soil. 1998,199(2):213-227.
    263. Westoby, M., Falster, D.S., Moles, A.T. et al. Plant ecological strategies:some leading dimensions of variation between species [J]. Annual review of ecology and systematic.2002, 33(1):125-159.
    264. Westoby, M., Wright, I.J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology & Evolution.2006,21(5):261-268.
    265. Whaley, J.M., Sparkes, D.L., Foulkes, M.J. et al. The physiological response of winter wheat to reductions in plant density[J]. Annals of Applied Biology.2000,137(2):165-177.
    266. Wheeler, T.R., Hong, T.D., Ellis, R.H. et al. The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2 [J]. Journal of Experimental Botany.1996,47(5):623-630.
    267. Willey, R.W., Heath, S.B. The quantitative relationships between plant population and crop yield[J]. Advances in Agronomy.1969,21:281-321.
    268. Willey, R.W., Holliday, R. Plant population, shading and thinning studies in wheat[J].The Journal of Agricultural Science.1971,77(03):453-461.
    269. Wych, R.D., Rasmusson, D.C. Genetic improvement in malting barley cultivars since 1920 [J]. Crop Science.1983,23(6):1037-1040.
    270. Xiong, Y.C., Li, F.M., Zhang, T. Performance of wheat crops with different chromosome ploidy:root-sourced signals, drought tolerance, and yield performance [J]. Planta.2006, 224(3):710-718.
    271. Xiong, Y.C., Li, F.M., Zhang, T. et al. Evolution mechanism of non-hydraulic root-to-shoot signal during the anti-drought genetic breeding of spring wheat [J]. Environmental and experimental botany.2007,59(2):193-205.
    272. Xoconostle-Cazares, B., Ramirez-Ortega, F.A., Flores-Elenes, L, et al. Drought tolerance in crop plants[J]. American Journal of plant physiology.2010,5(5):241-256.
    273. Xu, Z.Z., Zhou, G.S. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis [J]. Physiologia Plantarum.2005,123(3):272-280.
    274. Yagbasanlar, T., Oezkan, H., Gene, I. Relationships of growth periods, harvest index and grain yield in common wheat under Mediterranean climatic conditions [J]. Cereal Research Commun.1995,23(1-2):59-62.
    275. Yan, W. GGEbiplot-A Windows application for graphical analysis of multienvironment trial data and other types of two-way data[J]. Agronomy Journal.2001,93(5):1111-1118.
    276. Yang, D., Niklas, K.J., Xiang, S. et al. Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization [J]. Annals of botany.2010,105(1):71-77.
    277. Zaharieva, M., Gaulin, E., Havaux, M. et al. Drought and Heat Responses in the Wild Wheat Relative Roth,[J]. Crop Science.2001,41(4):1321-1329.
    278. Zar, J.H. Biostatistical Analysis, fourth ed. Prentice Hall, New Jersey.1999, p.663.
    279. Zhang, D.Y., Sun, G.J., Jiang, X.H. Donald's ideotype and growth redundancy:a game theoretical analysis [J]. Field Crops Research.1999,61(2):179-187.
    280. Zhou, Y., Zhu, H.Z., Cai, S.B. et al. Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000 [J]. Euphytica.2007,157(3): 465-473.
    281. Zhu, B., Su, J., Chang, M. et al. Overexpression of D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice [J]. Plant Science. 1998,139(1):41-48.
    282. Zohary, D., Hopf, M., Weiss. E. Domestication of Plants in the Old World:The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin [M]. Oxford University Press.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700