用户名: 密码: 验证码:
盘锦双台子河口湿地芦苇主产区适宜灌溉模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是分布于陆生生态系统和水生生态系统之间具有独特水文、土壤、植被与生物特征的生态系统,湿地在调节气候、涵养水源、蓄洪防旱、控制土壤侵蚀、促淤造陆、净化环境、维持生物多样性和生态平衡等方而均具有十分重要的作用,有“自然之肾”之称。本文通过对盘锦双台子河口湿地芦苇生产区4年的试验,围绕芦苇与水的关系,研究芦苇充分灌溉、非充分灌溉、微咸水灌溉、含氮污水灌溉模式下,对芦苇生长的影响,揭示不同灌溉模式下芦苇生长特征,力求改变现阶段芦苇传统的大水漫灌生产模式,向芦苇节水灌溉生产转变。对节约湿地生态用水具有重要意义。
     1.对控制性间歇灌溉模式下芦苇节水潜力分析表明:在充分灌溉和节水灌溉模式下,芦苇生理需水的减少没有显著变化,控制苇田土壤表层的水分变化情况对影响芦苇棵间蒸发效果明显。苇田水分渗漏是失水的主要途径,减少苇田水分渗漏具有明显的节水效果。试验采取的间歇灌溉可以获得较高的水分利用率,芦苇在产量没有明显减产的情况下显著的减少了用水量。
     2.对不同晒田程度对芦苇生长特征表明:芦苇泡田时间过长,抑制芦苇出芽,而出芽率是提高芦苇产量的一项重要指标。芦苇是喜湿植物,常年在无水层或干燥的地方生存,晒田时间过长,会降低土壤中水分含量,不足以满足芦苇的生长需要。浅湿干灌溉恰好能为芦苇创造这种适宜的土壤水分状况,改变和协调了芦苇生长土壤的水分能量状态。
     3.对芦苇水分生产函数的试验表明,作物水分生产函数适用对湿地芦苇产量的估算和最优水量分配灌溉模式,芦苇静态水分生产函数模型为:
     4.依据旱作物动态产量模型,运用分阶段线性函数形式构造了水分亏缺影响函数并对参数进行了拟合,建立了盘锦双台子河口湿地芦苇生产区芦苇水分生产函数动态产量模型。
     5.浅层地下水埋深有促进芦苇芽期分蘖的作用,浅层地下水位也同样促进了芦苇苗期的植株生长,但随着水位的逐渐下降,芦苇植株也呈现下降的趋势,可见,适度的控水可以有效地促进芦苇植株生长,而水位的加深明显抑制了芦苇茎秆的伸长。
     6.分析了芦苇在不同灌溉水盐度、水层深度条件下芦苇主要生物量(株高,基茎粗)和产量之间的差异。在不对芦苇地上生物量造成不良影响的前提下,可以考虑用含盐量范围在0.3%~0.6%的微咸水进行灌溉生产。研究发现芦苇适宜水深范围应为20cm~25cm。用含盐在范围0.3%~0.9%,保持水层深度范围在20cm~25cm的咸水灌溉模式可以达到芦苇节水,增产的目的。
     7.不同浓度氮溶液灌溉处理的芦苇,株高随着生育期的延长而增加,而且增加趋势基本相似。氮溶液的浓度因素能够影响芦苇的株高。不同浓度灌溉处理的芦苇,叶面积的累计过程基本一致,不同浓度溶液灌溉处理的芦苇,茎粗随着生育期的延长而增加,且在整个生育期内都呈增长趋势,前期生长速度较快,后期增长缓慢,渐渐趋于平缓。不同浓度溶液灌溉对芦苇茎粗的影响并没有产生显著差异;在生殖生长后期,高浓度灌溉对芦苇茎粗的增加有影响作用。在整个生育期内,5-8月份增长快速,9-10月份增长缓慢。高浓度的污水灌溉能够抑制芦苇穗和茎的生长,促进叶片的生长。7月份芦苇叶和茎中的氮素部分向穗中转移,在10月份芦苇成熟期,芦苇植株地上部分氮素会向地下部分转移,以供给芦苇第二年的发芽对氮素的需求。污水灌溉能够提高芦苇的单株产量。最能发挥其生长效应的是Ⅰ处理(20mg/L)。
Wetlands are distributed between terrestrial ecosystems and aquatic ecosystems has a unique hydrology, soil, vegetation and biological characteristics of the ecosystem, wetlands in the regulation of climate, water conservation, the flood and drought prevention and control of soil erosion, siltation epeirogenic, purificationenvironment, maintain biodiversity and ecological balance and have a very important role,"natural kidney," said. In this paper, on the the Liaohe Delta Shuangtaizihekou wetland reed production4-year trial, around the reeds relationship with the water, research reeds full irrigation, deficit irrigation, micro-irrigation with saline water, nitrogen-containing wastewater irrigation mode, reed growth to reveal the the reed growth characteristics under different irrigation patterns, and strive to change this stage reed traditional flood irrigation mode of production, production shift to the reed water-saving irrigation. Conservation of wetland ecological water is important.
     Analysis showed that the the reed water saving potential in controlling intermittent irrigation mode:full irrigation and water-saving irrigation mode, reed physiological reduction in water demand did not change significantly, control the reed field soil surface moisture changes affecting reed Evaporation effect obvious. The reed field water leakage is the main way of the water loss, reduce the reed field water leakage has significant water-saving effect. Test taken intermittent irrigation can obtain a higher water use efficiency, reed production is not significantly cut significantly reduce water consumption.
     Sunbaked extent of the growth characteristics of the reed:reed bubble fields long time, inhibition of reeds sprouting, budding rate is an important indicator of reed production. The reed is like wet plants, perennial survive in anhydrous layer or a dry place, the sunbaked long time, will reduce the moisture content of the soil is insufficient to meet the growth needs of the reed. Shallow wet-dry irrigation just to create reed this suitable soil moisture conditions change and coordination of the energy state of the reed growth and soil moisture.
     Reed water production function tests showed that water production function for wetland reeds production estimates and the optimal amount of water allocated irrigation mode, reed static water production function:
     Based on the dry crops dynamic yield model, the use of phased linear function is constructed in the form of water deficit affect the function and parameter fitting, Panjin wetland reed Shuangtaizihekou, production of reed water production function of the dynamic yield model.
     Shallow Groundwater Depth to promote the reed shoots Tiller role, shallow groundwater levels also promote the reed seedling plant growth, but with the gradual decline of the water level, the reed plants also shown a downward trend, visible, moderate control The water can be effective in promoting the reed plant growth, deepening of the water level was significantly suppressed reed stem elongation.
     Reeds in the reed biomass of different irrigation water salinity, water depth conditions (the difference between the height, basal stem diameter) and yield. The wrong reed aboveground biomass adversely affect the premise can be considered with the salt content in the range of0.3%to0.6%of brackish water for irrigation production. Found that reed appropriate water depth should range from20cm to25cm. Salinity in the range of0.3%to0.9%, to maintain water depth range up to20cm to25cm saline water irrigation mode reeds and water conservation, the purpose of increasing production.
     Different concentrations of nitrogen solution irrigation treatment reed, plant height with the extension of the growth period increased, and an increasing trend similar. Nitrogen concentration of the solution factors can affect the reed plant height. Reeds of different concentrations of irrigation treatments, the cumulative process of leaf area is basically the same, solutions of different concentrations irrigation reed, stem diameter increased with the extension of the growth period, and growth trend in the whole growth period were tested early growth faster, late slow growth, gradually leveling off. Solutions of different concentrations irrigation reed stem diameter did not produce significant differences; late reproductive growth, high concentrations of irrigation on the reed stem diameter increasing influential role. Wastewater irrigation can increase yield per plant of the reed. Play its best growth effect is I treatment (20mg/L).
引文
1.曹秋玉.2006.北固山湿地芦苇和荫草生长规律及其生态功能的研究.江苏大学硕士学位论文.
    2.崔保山,刘兴土.1999.湿地生态恢复研究综述,地球科学进展,14(4):358-364.
    3.陈晓远,罗远培,李韵珠.1999.拔节期复水对苗期受旱冬小麦的激发效应.中国农业大学学报,4(3):23-28.
    4.陈晓远,罗远培.2001.开花期复水对受旱冬小麦的补偿效应研究.作物学报,27(4):513-516.
    5.陈亚新.2004.21世纪灌溉原理与实践学科前沿关注的问题.灌溉排水学报,21(1):66-68.
    6.陈欲.2005.北固山湿地优势植物的光合作用特性及人工修复技术研究.江苏大学硕士学位论文.
    7.段晓男,王效科.2004.乌梁素海野生芦苇光合和蒸腾特性研究.干旱区地理,27(4):637-641.
    8.段晓男,王效科.2004.乌梁素海野生芦苇群落生物量及其影响因子分析.植物生态学报,28(2):246-251.
    9.冯广龙,罗远培,刘建创,等.1997.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究,15(2):73-79.
    10.冯广龙,罗远培,杨培岭,等.1998.土壤水分对冬小麦初生根和次生根生长发育的影响.华北农学报,13(2):11-17.
    11.盖平,鲍智娟,张结军,等.2002.环境因素对芦苇地上部生物量影响的灰色分析.东北师大学报自然科学版,34(3):87-91.
    12.关义新,戴俊英,徐世吕,等.1997.玉米花期干旱及复水对植株补偿生长及产量的影响.作物学报,23(6):740-745.
    13.郭晓云,杨允菲.2003.松嫩平原不同旱地生境芦苇的光合特性研究.草业学报,12(3):16-21.
    14.李风民,郭安红.1999.试论麦类作物非水力根信号与生活史对策.生态学报,20(3): 217-221.
    15.梁宗锁,康绍忠.1997.控制性分根交替灌溉和节水效益与玉米生长.农业工程学报,13(4):58-63.
    16.刘洋,鲁奇.2001.中国湿地保护初探.生态经济,(12): 30-34.
    17.吕晓平.1996.中国水禽湿地保护区的保护与发展.湿地保护与合理利用—中国湿地保护研讨会文集.中国林业出版社,350-354.
    18.任东涛,张承烈,陈国昌,等.1994.芦苇生态型划分指标的主分量及模糊聚类分析.生态学报,14(3):265-272.
    19.孙刚,祝延成.1999.芦苇光合与蒸腾作用的日进程.生物学杂志,16(3):24-26.
    20.山仑,徐萌.1991.节水农业及其生理生态基础.应用生态学报,2(1):70-76.
    21.沈荣开,张瑜芳,黄冠华,等.1995作物水分生产函数与农田非充分灌溉研究述评,水科学进展,6(3):248-253.
    22.石培泽,杨秀革.1998.春小麦适度亏缺灌溉的节人培养效应.干旱地区农业研究,16(2):80-83.
    23.苏佩,山仑.1995.拔节期复水对玉米苗期受旱胁迫的补偿效应.植物生理学通讯,31(5):341-344.
    24.曲耀光.2001.“南水北调”西线工程与中国西北开发和生态环境的改善.干旱区资源与环境,15(1):.1-10.
    25.王祝华,沈允钢.1994.芦苇生物生产力及其对大气CO2加浓的响应.生态学报,14(4):397-400.
    26.王洪亮,涨承烈.1993.河西走廊不同生态型芦苇质膜特性的比较.植物学报,7(2): 537-540.
    27.夏国军,阎耀礼,程水明.2001.旱地冬小麦水分亏缺补偿效应研究.干旱地区农业研究,19(1):79-82.
    28.徐中儒.1998.回归分析与试验设计.北京:中国农业出版社.
    29.徐震,田丽梅,江应松,等.1999.大津市污灌区农田环境质量现状分析.天津农林科技,152(6):26-28.
    30.谢成章,张友德,徐冠军.1993.荻和芦的生物学.北京:科学出版社.21-93.
    31.许振柱,于振文,李晖,等.1997.限量灌水对冬小麦光合性能和水分利用的影.华北农学报,12(2):65-70.
    32.杨飞,蒋丽娟.2000.浅议污水灌溉带来的问题及对策.节水灌溉,(2):23-25,41.
    33.杨淑英,张增强.1997.我国水资源面临的问题与对策.环境保护,6-8,15.
    34.杨允菲,郎惠卿.1998.不同生态条件下芦苇无性系种群调节分析.草业学报,7(2):1-9.
    35.杨允非,李建东.2003.松嫩平原不同生境芦苇种群分株的生物量分配与生长分析.应用生态学报,14(1):30-34.
    36.余晓鹤,朱培立,黄尔迈.1991.土壤表层管理对稻田土壤矿化势、固氮强度及铵态氮的影响.中国农业科学,24(2):73-79.
    37.袁保惠,昌志远,徐冰,等.2004.污水灌溉的发展与利用.内蒙古水利,(4):40-41,62.
    38.袁耀武,张伟,李英军,等.2003.污水灌溉对土壤中不同微生物类群数量的影响.节水灌溉(6):15-17
    39.宰松梅,王朝辉,庞鸿宾.2006.污水灌溉的现状与展望土壤,38(6):805-813.
    40.曾令芳,吴小亮.2002.国外污水灌溉新技术.节水灌溉,(3):34-42.
    41.曾德付,朱维斌.2004.我国污水灌溉存在问题和对策探讨.干旱地区农业研究,22(4):221-224.
    42.许春华,周琪,宋乐平.2001.人工湿地在农业非点源污染控制方面的应用[J].重庆环境科学23(6):70-72.
    43.杨飞,蒋丽娟.2000.浅议污水灌溉带来的问题及对策[J].节水灌溉,(2):23-25,41.
    44.余晓鹤,朱培立,黄东迈.1991.土壤表层管理对稻田土壤矿化势、固氮强度及铵态氮的影响[J].中国农业科学,24(2):73-79.
    45.宰松梅,王朝辉,庞鸿宾.2006.污水灌溉的现状与展望.土壤,38(6): 805-813.
    46.曾德付,朱维斌.2004.我国污水灌溉存在问题和对策探讨.干旱地区农业研究,22(4): 221-224.
    47.翟金良,何岩,邓伟.2001.向海洪泛湿地土壤全氮、全磷和有机质含量及相关性分析.环境科学研究,14(6):40-43.
    48.赵可夫,范梅,宋杰等.2000.芦苇湿地在处理污水中的作用及其机理的探讨.中国科学,4:8-11.水利学会等.
    49.赵先丽,周广胜,周莉,等.2007.盘锦芦苇湿地土壤微生物初步研究.气象与环境学报,23(1)30-33.
    50.张乃明,陈建军,常晓冰.2002.污灌区土壤重金属累积影响因素研究.土壤,(2):90-93.
    51.张寿金,黄巍.1999.中国水资源的可持续利用研究.中国人口、资源与环境,9(2):21-25.
    52.章文波,陈红艳.2006.实用数据统计分析及SPSS 12.0应用.北京:人民邮电出版社.
    53.张展羽、吕祝乌.2004.污水灌溉农业技术探讨.人民黄河,26(6): 21-22, 30.
    54.张乃明,陈建军,常晓冰.2002.污灌区土壤重金属累积影响因素研究.土壤,(2):90-93.
    55.张寿金,黄巍.1999.中国水资源的可持续利用研究.中国人口、资源与环境,9(2):21-25.
    56.章文波,陈红艳.2006.实用数据统计分析及SPSS 12.0应用.北京:人民邮电出版社.
    57.张岳.1998.中国水资源与可持续发展.中国农村水利水电,(5);3-4.
    58.张展羽、吕祝乌.2004.污水灌溉农业技术探讨.人民黄河,26(6): 21-22,30.
    59.中华人民共和国水利部.2007.2006年中国水资源公报.
    60.中华人民共和国水利部.2004.2003年中国水利统计公报.
    61.中华人民共和国水利部农水司.1998.水土资源评价与节水灌溉规划[M].北京:中国水利水电出版社.
    62.中华人民共和国水利部水文司,中国水利学会.1998.中国水环境问题研讨会论文集[M].北京:中国科学出版社;229-233.
    63.钟凌.2007.污水灌溉对作物和土壤的影响研究.西北农林科技大学.
    64.周纪侃,席玉英,宋良汉,等.1997.污水灌溉对蔬菜中N, Fe, Zn, Mn含量的影响,山西农业科学,25(4):55-58.
    65.朱兆良.1992.中国土壤氮素.南京:江苏科学技术出版社,20(2):66-68;
    66. Aclevedo E.,Hsiao T.C.,Henderson D.W.1971.Lmmediat and subsequent growth response of maize leaves to changes in water stress.Plant Physiol,48:631-636.
    67. Clevering O.A.2009.An investigation into the effects of nitrogen on growth and morpho logy of stable and dieback populations of Phragrnites australis.Aquatic Botnay,60:11-25.
    68. DeLaune,R.D.,Smith, et al.1989.The effect of sediment redox potential on nitrogen uptake,anaerobic root respiration and growth of Spartina altemiflora.Aquat.Bot.,(8):223-230.
    69. Dinka M.1986.The effect of mineral nutrient enrichment of Lake Balaton on the common reed (Phragmites australis).Folia Geobot Phytotaxon,21:65-84.
    70. Fogli S.,Marchesini R.,Gerdol R.1997.Effects of salinity on the growth of Phragmites australis.Aquatic Botnay,55:247-260.
    71. Fogli S.,Marchesini R.,Gerdol R.2002.Reed(Phragmites australis)decline in a brachish wetland in Italy.Marine Environmental Research.53:465-479.
    72. Gorham E.,Pearsall W.H.1956.Production ecology.Shoot production in Phragmites in relation to habitat.Oikos,7:206-214.
    73. Graneli.1984.Reed Pragmites ausrtalis(Cav.)Trin.ex Steudel as an energy in Sweden. Biomass, (4):183-208.
    74. Hamblin A.,Tennant D.,Perry M.W.1990.The cost of stress:dry matter partitioning chance s with season a supply of water and nitrogen to dryland wheat.Plant and Soil,122:47-58.
    75. Haslam S.M.1972.Biological flora of the British Isles Phragmites communis Trinius. Ecology,60:585-610.
    76. Jackson,M.B.,Drew, et al.1994.Effects of flooding on growth and metabolism of herbaceous plants.In: Kozlowski T.T.(Ed.),Flooding and Plant Growth.Academic Press,Orlando,Florida,USA.47-128.
    77. Ksenofontova T.1988.Morphology,production waterbodies of the Estonian SSR.Folia and mineral contents in Phragmites australis in different Geobot totaxon. Aquatic Botnay,23:17-43.
    78. Lessen J P M,Menting B J,van der Putten W H.1999.Effect of sedment type and water level on biomass produetion of wetland plnats species. Aquatic Botany,64:151-165.
    79. Mauchamp A,S Blanch,P Grillas.2001.Effect of submergence on the growth of Phragmite. sau.strialis seeding. Aquatic Botnay,69:147-164.
    80. Rodewald-Rodescu.1974.Das Schilfrohr Phragmites communis Trinius.DieBinneng ewass er,33:25-31.
    81. Rolletschek H,Hartzendorf T.2000.Effects of salinity and connective rhizome ventilation on amino acid and carbohydrate pattern Phragmites austrialis populations in the Neusiedler Sea region of Ausrtia and Hungary.New Phytologist,146:95-106.
    82. RolletschekH,Rolletschek A,Kuhl H,et al.1999.Clone specific differences in a Phragmites austrialis stand 2.seasonal development of morphological and pBiological characteristics at the natural site and after transplantation. Aquatic Botnay,64:247-260.
    83. Ruttkay A.,Tilesch S.,Veszpremi B.1964.Reed management. Mezogazdasagi Kiadonagy, Budapest,34:66-75.
    84. Yang J.,Zhang J.,Wang Z.,et al.2001.Remobilization of carbon reserves in response to wat er deficit during grain filling of ricer.Field Crops Research,71:47-55.
    85. Wenkert W.,Lemon E.R., Sinclair T.R.1978.Leaf Elongation and Turgor Pressure in field-grown soybean. Agronomy Journal,20:761-764.
    86. White S.D.,Ganf G.G..2002.A comparison of the morphology,gas space anatomy and potential of internal aeration in Phragmites australis under variable and static water regimes.Aquatic Botnay, 73:115-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700