用户名: 密码: 验证码:
小麦TaASR1基因克隆及抗逆功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上最重要的粮食作物之一,也是我国的第二大粮食作物,为全球35%以上的人口提供每日所需的蛋白质和热量。非生物逆境胁迫是指由复杂的环境因素所导致的多种胁迫,主要包括强光照、紫外线、低温、冰冻、干旱、盐碱、重金属和低氧胁迫等。非生物逆境胁迫严重影响植物的生长发育,最终会影响作物产量和品质。其中干旱胁迫严重影响着我国多个麦区小麦的生产。所以,研究小麦对干旱胁迫的耐受机制对于小麦抗性遗传改良具有重要意义。近年来,脱落酸-胁迫-成熟响应蛋白(Abscisic acid ABA-, stress-, and ripening-inducedproteins, ASR)基因已经在多个物种中有报道,已经被证明能够增加植物对非生物逆境胁迫的耐受性。但是,ASR基因赋予植物对非生物胁迫的耐受性的相关机制还不清楚。在小麦中ASR基因的研究还未见报道。本研究旨在探索小麦ASR基因是否能够赋予植物对非生物逆境胁迫的耐受性,以及小麦ASR基因赋予植物对非生物胁迫的耐受性的生理和分子机制。所以,本研究首先分析了小麦模式品种中国春(Triticumaestivum L. cv. Chinese Spring)中ASR基因家族与渗透胁迫的关系,克隆了其中一个候选基因TaASR1;进一步利用遗传学、生理学及生物化学和分子生物学的方法研究了TaASR1在非生物胁迫中的功能和作用机制,取得的主要研究结果如下:
     1)小麦ASR基因家族EST序列与渗透胁迫的关系
     从DFCI小麦数据库中共获得了16个小麦ASR基因的EST序列,表达分析结果表明BE414974(group1),TC418737I(group2),CJ554788(group3)和CK154393(group6)被聚乙二醇(PEG)处理诱导。而且,BE414974(group1)在正常条件下表达量比其它ASR基因的EST序列表达量高,在PEG胁迫处理条件下能够被显著诱导。所以,我们以group1ASR基因作为候选基因进行进一步功能分析。
     2) TaASR1基因的克隆及生物信息学分析
     利用RACE技术获得了group1ASR基因TaASR1的全长cDNA序列,该基因的ORF为414bp,编码一个由137个氨基酸组成的蛋白质。TaASR1所编码蛋白具有ASR家族蛋白所具有的保守结构域及活性区域。进化分析表明,TaASR1与水稻和玉米ASR基因具有较近的进化关系。
     3) TaASR1基因的表达分析
     器官差异表达分析表明,TaASR1在营养器官根、茎、叶中表达量较高,在生殖器官雌蕊、雄蕊中表达量则较低。TaASR1基因的表达能够显著受到渗透胁迫、脱落酸(Abscisic acid,ABA)和双氧水诱导。茉莉酸甲酯(Methyl jasmonate,MeJA)、水杨酸(Salicylic acid,SA)和生长素能够轻微的诱导TaASR1上调表达。而且,ABA和双氧水信号可能参与PEG诱导TaASR1基因的上调表达。
     4) TaASR1转基因烟草对干旱胁迫的耐受性分析
     将TaASR1基因克隆到pCAMBIA1304植物表达载体,利用农杆菌转化方法成功获得了T2代转基因烟草株系。表型分析结果表明,过表达TaASR1能够增强转基因烟草对干旱胁迫的耐受能力。生理分析结果表明,在干旱胁迫处理条件下,与野生型相比较转TaASR1基因烟草植株具有较高的相对水含量(Relative water content,RWC)、超氧化物歧化酶(Superoxide dismutase,SOD)活力和过氧化氢酶(Catalase,CAT)活力;较低的离子渗漏(Ion leakage,IL)、丙二醛(Malondialdehyde,MDA)含量和双氧水含量。这些结果表明,过表达TaASR1能够显著增强植株抗氧化酶的活力从而使转基因植物能够更好的对抗干旱胁迫所导致的氧化损伤。
     5) TaASR1转基因烟草对渗透胁迫的耐受性分析
     在高渗培养基上进行种子发芽率分析和根长测定的结果表明,过表达TaASR1能够有效地降低渗透胁迫对烟草发芽和根长的抑制。二氨基联苯胺(Diaminobenzidine,DAB)和氯化硝基四氮唑蓝液(Nitrobluetetrazolium,Nitrotetrazolium blue chloride,NBT)染色、双氧水含量及抗氧化酶活测定结果表明,在渗透处理条件下过表达TaASR1能够降低烟草中活性氧(Reactive oxygen species,ROS)的积累,增加抗氧化酶活性。胁迫相关基因表达分析表明,在正常生长条件下,NtERD10C、NtERD10D和NtNCED1基因的表达量在转TaASR1基因烟草植株中显著高于野生型;在渗透胁迫处理条件下,NtERD10C、NtERD10D、NtNCED1、NtSOD、NtCAT、NtLEA5、NtLTP1、NtDREB3和TobLTP1基因的表达量在转TaASR1基因烟草植株中显著高于野生型。
     6) TaASR1转基因烟草对氧化胁迫的耐受性分析
     表型分析结果表明,在氧化胁迫处理条件下,转TaASR1烟草植株比野生型植株表现出较少的叶片黄化。而且,转TaASR1烟草植株比野生型烟草植株具有较高的叶绿素含量、较低的双氧水含量、较高的超氧化物歧化酶活力和过氧化物酶活力和表达。
     7) TaASR1转录激活分析
     我们将TaASR1、TaASR1-N和TaASR1-C克隆到酵母表达载体pGBKT7。结果表明,转pGBKT7-TaASR1和转pGBKT7-TaASR1-N的酵母菌能够在组氨酸缺陷型SD培养基上生长。而且,在组氨酸缺陷型SD培养基上加入5-溴-4-氯-3-吲哚基-β-D-吡喃半乳糖苷(5-bromo-4-chloro-3-indolyl-β-D-galacto-pyranoside,X-gal)后,转pGBKT7-TaASR1和转pGBKT7-TaASR1-N的酵母菌能够显示蓝色。
     8) TaASR1亚细胞定位分析
     将TaASR1转入洋葱表皮细胞中表明,TaASR1定位在细胞核中。转基因烟草根系切片观察也表明TaASR1定位在细胞核中。
     9) TaASR1转化小麦
     利用基因枪法将TaASR1基因导入小麦中,获得了T0代转基因阳性植株。
     综合以上结果,本研究的主要结论是从小麦中克隆了一个脱落酸-胁迫-成熟响应蛋白基因TaASR1,证明TaASR1作为一个转录因子通过调控抗氧化系统和胁迫防御相关基因的表达赋予植物对渗透、干旱及氧化胁迫的耐受性。
Wheat (Triticum aestivum L.) is the foremost staple food crop in the world whichprovides both calories and proteins to over35%of the human population. Wheat is thesecond most important staple crops in China. The term abiotic stress‘includes numerousstresses caused by complex environmental conditions, e.g. strong light, UV, high and lowtemperatures, freezing, drought, salinity, heavy metals and hypoxia. Abiotic stresses leadto serious damage for plants, especially for crop yield and quality. Therefore,understanding the molecular mechanisms of abiotic stress responses is necessary forgenetic improvement of stress resistance in wheat. Recently, Abscisic acid ABA-, stress-,and ripening-induced proteins (ASR) have been reported to increase tolerance to abioticstresses in various species. However, the mechanisms for its action remain unclear and noresearch on ASR in wheat has been reported. The perpose of present study is to investigatewhether wheat ASR genes can confer drought stress tolerance and if so what ismechanisms underlying the tolerance? Firstly, we analysed the relationship between ASRfamily gene and osmotic stress in model wheat variety Chinese Spring and cloned acandidate gene TaASR1. Furthermore, we characterized the function of TaASR1in abioticstresses by using genetic, physiological and biochemical and molecular approavhes. Themain results are as follows.
     1. The relationship between the ESTs of ASR gene family and osmotic stress
     From the DFCI wheat gene index database,16ASR EST sequences were acquired.RT-PCR analysis showed that expression of BE414974(group1), TC418737I (group2),CJ554788(group3) and CK154393(group6) was induced by PEG treatment. Notably,group1exhibited higher expression in normal conditions and was strongly up-regulatedafter PEG treatment. Therefore group1was selected as a candidate for further functionalcharacterization.
     2. TaASR1cloning and bioinformatics analysis
     Employing RACE-PCR the full-length cDNA of ASR gene, designated as TaASR1,was cloned using mRNA extracted from the leaves of wheat seedlings as template.TaASR1cDNA comprised of544bp with a414bp open reading frame (ORF). The deduced TaASR1protein contained137amino acid residues. Based on amino acidsequence alignment, two highly conserved regions were observed in TaASR1.Phylogenetic analysis indicated that16ASR proteins branched out into separate monocotand dicotyledon groups with TaASR1very close to OsASR and ZmASR2in monocotgroup.
     3. The expression analysis of TaASR1
     TaASR1was expressed in all tissues including root, stem, leaf, stamen, pistil andlemma with higher expression in root, stem, leaf and lemma. TaASR1was induced byosmotic stress, ABA and H2O2. TaASR1transcript induction by MeJA, SA and auxin wasmarginal and occurred much later. Moreover, the upregulation of TaASR1by PEGpossibly involves ABA and H2O2signaling.
     4. Analysis of drought stress tolerance in TaASR1-overexpressing tobacco andWT plants
     To further investigate the role of TaASR1in drought/osmotic stress tolerance,transgenic tobacco plants over-expressing TaASR1under the control of CaMV35Spromoter were generated. Over-expression of TaASR1in tobacco resulted in increaseddrought/osmotic tolerance, which was demonstrated that transgenic lines had lessermalondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higherrelative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT)activities than wild type (WT) under drought stress.
     5. Analysis of osmotic stress tolerance in TaASR1-overexpressing tobacco andWT plants
     Seeds germination rate and root length were higher and longer in transgenic linesthan in WT and Vector Control (VC) treated with150or300mM mannitol.Over-expression of TaASR1reduced ROS accumulation by enhancing the SOD and CATactivities under osmotic stress. Stress related genes selected include NtSOD, NtCAT andNtPOX involved in ROS detoxifcation, NtNCED1involved in ABA biosynthesis,NtERD10C, NtERD10D and NtLEA5related to stress defense, the regulatory geneNtDREB3and lipid-transfer protein genes NtLTP1and TobLTP1. Under normal conditions,expression of NtERD10C, NtERD10D and NtNCED1were higher in OE12than in WT.Although expression levels of all tested genes were up-regulated by osmotic stress, they were higher in transgenic plants than in WT except for the NtPOX under osmotic stress.
     6. Analysis of oxidative stress tolerance in TaASR1-overexpressing tobacco andWT plants
     Tobacco plants were subjected to30μM methyl viologen treatment. This resulted insevere cotyledon bleaching or chlorosis in WT and VC plants than transgenic plants. Inaddition, transgenic lines displayed higher chlorophyll, lower H2O2contents and higheractivity and expression of SOD and CAT than WT and VC.
     7. Transcriptional activity of TaASR1
     Yeast strain AH109was transformed with the fusion plasmids pGBKT7-TaASR1,pGBKT7-TaASR1-N, pGBKT7-TaASR1-C and pGBKT7(Control)(Fig.12A) and thegrowth status of transformants was evaluated. Yeast cells containing pGBKT7-TaASR1and pGBKT7-TaASR1-N grew well in SD medium lacking histidine. Moreover, in thepresence of X-gal, yeast cells that grew well on the SD medium without histidine turnedblue.
     8. Subcellular location of TaASR1
     Fluorescence of the35S::TaASR1-GFP chimera was associated with cellular nucleusin onion epidermal cells, suggesting a nuclear localization. In the root cells of plantstransformed with TaASR1-GFP, fuorescence was also observed in the nuclei.
     9. Overexpression of TaASR1in wheat
     The positive transgenic wheat plants were aquired by using gene gun method.
     In conclusion, the fndings of this study demonstrated that TaASR1function as atranscription factor in abiotic stress tolerance. TaASR1conferred drought, osmotic andoxdidative stress tolerance through regulating the expression of stress-, anddefense-associated genes and enhancing the antioxidant system, thus preventing plantsfrom oxidative damage.
引文
[1] Lister R., Gregory B.D. and Ecker J.R.(2009) Next is now: new technologies forsequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol.12,107–118.
    [2] Kuromori T., Takahashi S., Kondou Y. et al.(2009) Phenome analysis in plantspecies using loss-of-function and gain-of-function mutants. Plant Cell Physiol.50,1215–1231.
    [3] Bartels D. and Sunkar R.(2005) Drought and salt tolerance in plants. Crit Rev PlantSci.24,23–58.
    [4] Umezawa T., Fujita M., Fujita Y. et al.(2006) Engineering drought tolerance inplants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol.17,113–122.
    [5] Yamaguchi-Shinozaki K. and Shinozaki K.(2006) Transcriptional regulatorynetworks in cellular responses and tolerance to dehydration and cold stresses. AnnuRev Plant Biol.57,781–803.
    [6] Thomashow M.F.(2001) So what‘s new in the feld of plant cold acclimation? Lots!Plant Physiol.125,89–93.
    [7] Shinozaki K. and Yamaguchi-Shinozaki K.(2007) Gene networks involved indrought stress response and tolerance. J Exp Bot.58,221–227.
    [8] Chinnusamy V., Stevenson B., Lee B. et al.(2002) Screening for gene regulationmutants by bioluminescence imaging. Sci STKE.2002, pl10.
    [9] Hirayama T. and Shinozaki K.(2010) Research on plant abiotic stress responses inthe post-genome era: past, present and future. Plant J.61,1041–1052.
    [10] Chinnusamy V., Ohta M., Kanrar S. et al.(2003) ICE1: a regulator of cold-inducedtranscriptome and freezing tolerance in Arabidopsis. Genes Dev.17,1043–1054.
    [11] Doherty C.J., Van Buskirk H.A., Myers S.J. et al.(2009) Roles for ArabidopsisCAMTA transcription factors in cold-regulated gene expression and freezingtolerance. Plant Cell.21,972–984.
    [12] Kanaoka M.M., Pillitteri L.J., Fujii H. et al.(2008) SCREAM/ICE1and SCREAM2specify three cell-state transitional steps leading to Arabidopsis stomataldifferentiation. Plant Cell.20,1775–1785.
    [13] Vogel J.T., Zarka D.G., Van Buskirk H.A. et al.(2005) Roles of the CBF2andZATI2transcription factors in confguring the low temperature transcriptome ofArabidopsis. Plant J.41,195–211.
    [14] Tran L.P., Nakashima K., Sakuma Y. et al.(2004) Isolation and functional analysisof Arabidopsis stress-inducible NAC transcription factors that bind to adrought-responsive cis-element in the early response to dehydration stress1promoter. Plant Cell.16,2481–2498.
    [15] Tran L.P., Nakashima K., Sakuma Y. et al.(2006) Co-expression of thestress-inducible zinc fnger homeodomain ZFHD1and NAC transcription factorsenhances expression of the ERD1gene in Arabidopsis. Plant J.49,46–63.
    [16] Choi H., Hong J., Ha J. et al.(2000) ABFs, a family of ABA-responsive elementbinding factors. J Biol Chem.275,1723–1730.
    [17] Uno Y., Furihata T., Abe H. et al.(2000) Arabidopsis basic leucine zippertranscription factors involved in an abscisic acid-dependent signal transductionpathway under drought and high-salinity conditions. Proc Natl Acad Sci USA.97,11632–11637.
    [18] Abe H., Urao T., Ito T. et al.(2003) Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell.15,63–78.
    [19] Vierstra R.D.(2009) The ubiquitin–26S proteasome system at the nexus of plantbiology. Nat Rev Mol Cell Biol.10,385–397.
    [20] Qin F., Sakuma Y., Tran L.P. et al.(2008) Arabidopsis DREB2A-interacting proteinsfunction as RING E3ligases and negatively regulate plant drought stress-responsivegene expression. Plant Cell.20,1693–1707.
    [21] Dong C., Agarwal M., Zhang Y. et al.(2006) The negative regulator of plant coldresponses, HOS1, is a RING E3ligase that mediates the ubiquitination anddegradation of ICE1. Proc Natl Acad Sci USA.103,8281–8286.
    [22] Miura K., Jin J.B. and Hasegawa P.M.(2007) Sumoylation, a post-translationalregulatory process in plants. Curr Opin Plant Biol.10,495–502.
    [23] Kobayashi Y., Murata M., Minami H. et al.(2005) Abscisic acid-activated SNRK2protein kinases function in the gene-regulation pathway of ABA signal transductionby phosphorylating ABA response element-binding factors. Plant J.44,939–949.
    [24] Furihata T., Maruyama K., Fujita Y. et al.(2006) Abscisic acid-dependent multisitephosphorylation regulates the activity of a transcription activator AREB1. Proc.Natl Acad Sci USA.103,1988–1993.
    [25] Choi H.i., Park H.J., Park J.H. et al.(2005) Arabidopsis calcium-dependent proteinkinase AtCPK32interacts with ABF4, a transcriptional regulator of abscisicacid-responsive gene expression, and modulates its activity. Plant Physiol.139,1750–1761.
    [26] Kaplan B., Davydov O., Knight H. et al.(2006) Rapid transcriptome changesinduced by cytosolic Ca2+transients reveal ABRE-related sequences asCa2+-responsive cis elements in Arabidopsis. Plant Cell.18,2733–2748.
    [27] Zhu S., Yu X.,Wang X. et al.(2007) Two calcium-dependent protein kinases, CPK4and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell.19,3019–3036.
    [28] Boudsocq M., Barbier-Brygoo H. and Lauriere C.(2004) Identifcation of ninesucrose nonfermenting1-related protein kinases2activated by hyperosmotic andsaline stresses in Arabidopsis thaliana. J Biol Chem.279.41758–41766.
    [29] Harper J., Breton G. and Harmon A.(2004) Decoding Ca2+signals through plantprotein kinases. Annu Rev Plant Biol.55,263–288.
    [30] Houseley J. and Tollervey D.(2009) Themany pathways of RNA degradation. Cell.136,763–776.
    [31] Fedoroff N.V.(2002) RNA-binding proteins in plants: the tip of an iceberg? CurrOpin Plant Biol.5,452–459.
    [32] Kuhn J.M. and Schroeder J.I.(2003) Impacts of altered RNA metabolism onabscisic acid signaling. Curr Opin Plant Biol.6,463–469.
    [33] Hirayama, T. and Shinozaki, K.(2007) Perception and transduction of abscisic acidsignals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci.12,343–351.
    [34] Owttrim G.W.(2006) RNA helicases and abiotic stress. Nucleic Acids Res.34,3220–3230.
    [35] Iida K., Seki M., Sakurai T. et al.(2004) Genome-wide analysis of alternativepre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences.Nucleic Acids Res.32,5096–5103.
    [36] Reddy A.S.N.(2007) Alternative splicing of pre-messenger RNAs in plants in thegenomic era. Annu Rev Plant Biol.58,267–294.
    [37] Wang B.B. and Brendel V.(2006) Genomewide comparative analysis of alternativesplicing in plants. Proc Natl Acad Sci USA.103,7175–7180.
    [38] Siomi H. and Siomi C.(2009) On the road to reading the RNA-interference code.Nature.457,396–404.
    [39] Brodersen P. and Voinnet O.(2006) The diversity of RNA silencing pathways inplants. Trends Genet.22,268–280.
    [40] Jones-Rhoades M.W., Bartel D.P. and Bartel B.(2006) MicroRNAs and theirregulatory roles in plants. Annu Rev Plant Biol.57,19–53.
    [41] Sunkar R. and Zhu J.K.(2004) Novel and stress-regulated microRNAs and othersmall RNA from Arabidopsis. Plant Cell.16,2001–2019.
    [42] Yamada K., Lim J., Dale J.M. et al.(2003) Empirical analysis of transcriptionalactivity in the Arabidopsis genome. Science.302,842–846.
    [43] Matsui A., Ishida J., Morosawa T. et al.(2008) Arabidopsis transcriptome analysisunder drought, cold, high-salinity and ABA treatment conditions using a tiling array.Plant Cell Physiol.49,1135–1149.
    [44] Matzke M., Kanno T., Huettel B. et al.(2007) Targets of RNA-directed DNAmethylation. Curr Opin Plant Biol.10,512–519.
    [45] Zeller G., Henz S.R., Widmer C.K. et al.(2009) Stress-induced changes in theArabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays.Plant J.58,1068–1082.
    [46] Borsani O., Zhu, J., Verslues, P.E. et al.(2005) Endogenous siRNAs derived from apair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell.123,1279–1291.
    [47] Ichimura K., Shinozaki, K., Tena, G. et al.(2002) Mitogen-activated protein kinasecascades in plants: a new nomenclature. Trends Plant Sci.7,301–308.
    [48] Teige M., Scheikl E., Eulgem T. et al.(2004) The MKK2pathway mediates coldand salt stress signaling in Arabidopsis. Mol Cell.15,141–152.
    [49] Baena-Gonzalez E., Rolland F., Thevelein J.M. et al.(2007) A central intergrator oftranscription networks in plant stress and energy signalling. Nature.448,938–942.
    [50] Boudsocq M., Barbier-Brygoo H. and Lauriere C.(2004) Identifcation of ninesucrose nonfermenting1-related protein kinases2activated by hyperosmotic andsaline stresses in Arabidopsis thaliana. J Biol Chem.279,41758–41766.
    [51] Fujii H. and Zhu J.K.(2009) Arabidopsis mutant deficient in3abscisicacid-activated protein kinases reveals critical roles in growth, reproduction, andstress. Proc Natl Acad Sci USA.106,8380–8385.
    [52] Nakashima K., Fujita Y., Kanamori N. et al.(2009) Three Arabidopsis SnRK2protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1and SRK2I/SnRK2.3,involved in ABA signaling are essential for the control of seed development anddormancy. Plant Cell Physiol.50,1345–1363.
    [53] Umezawa T., Sugiyama N., Mizoguchi M. et al.(2009) Type2C proteinphosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis.Proc Natl Acad Sci USA.41,17588–17593.
    [54] Harper J., Breton G. and Harmon A.(2004) Decoding Ca2+signals through plantprotein kinases. Annu Rev Plant Biol.55,263–288.
    [55] Ludwig A.A., Romeis T. and Jones J.D.G.(2004) CDPK-mediated signalingpathways: specif city and cross-talk. J Exp Bot.55,181–188.
    [56] Nakagawa Y., Katagiri T., Shinozaki K. et al.(2007) Arabidopsis plasma membraneprotein crucial for Ca2+influx and touch sensing in roots. Proc Natl Acad Sci USA.104,3639–3644.
    [57] Hrabak E.M., Chan C.W., Gribskov M. et al.(2003) The Arabidopsis CDPK–SnRK superfamily of protein kinases. Plant Physiol.132,666–680.
    [58] Mahajan S., Pandey G.K. and Tuteja N.(2008) Calcium-and salt-stress signaling inplants: shedding light on SOS pathway. Arch Biochem Biophys.471,146–158.
    [59] Luan S.(2009) The CBL–CIPK network in plant calciumsignaling. Trends PlantSci.14,37–42.
    [60] Hrabak E.M., Chan C.W., Gribskov M. et al.(2003) The Arabidopsis CDPK–SnRK superfamily of protein kinases. Plant Physiol.132,666–680.
    [61] Mori I.C., Murata Y., Yang Y. et al.(2006) CDPKs CPK6and CPK3function inABA regulation of guard cell S-type anion-and Ca2+-permeable channels andstomatal closure. PLoS Biol.4, e327.
    [62] Choi H.-i., Park H.-J., Park J.H. et al.(2005) Arabidopsis calcium-dependentprotein kinase AtCPK32interacts with ABF4, a transcriptional regulator of abscisicacid-responsive gene expression, and modulates its activity. Plant Physiol.139,1750–1761.
    [63] Zhu S., Yu X., Wang X. et al.(2007) Two calcium-dependent protein kinases, CPK4and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell.19,3019–3036.
    [64] Nambara, E. and Marion-Poll, A.(2005) Abscisic acid biosynthesis and catabolism.Annu Rev Plant Biol.56,165–185.
    [65] Umezawa T., Okamoto M., Kushiro T. et al.(2006) CYP707A3, a major ABA8-hydroxylase involved in dehydration and rehydration response in Arabidopsisthaliana. Plant J.46,171–182.
    [66] Lee K., Piao H., Kim H. et al.(2006) Activation of glucosidase via stress-inducedpolymerization rapidly increases active pools of abscisic acid. Cell.126,1109–1120.
    [67] Hirayama T. and Shinozaki K.(2007) Perception and transduction of abscisic acidsignals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci.12,343–351.
    [68] Wasilewska A., Vlad F., Sirichandra C. et al.(2008) An update on abscisic acidsignaling in plants and more. Mol Plant.1,198–217.
    [69] Santner A. and Estelle M.(2009) Recent advances and emerging trends in planthormone signaling. Nature.459,1071–1078.
    [70] Umezawa T., Sugiyama N., Mizoguchi M. et al.(2009) Type2C proteinphosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis.Proc Natl Acad Sci USA.41,17588–17593.
    [71] Pandey S., Nelson D.C. and Assmann S.M.(2009) Two novel GPCR-type Gproteins are abscisic acid receptors in Arabidopsis. Cell.136,136–148.
    [72] Fedoroff N.V.(2002) Cross-talk in abscisic acid signaling. Sci STKE.2002, RE10.
    [73] Fujita M., Fujita Y., Noutoshi Y. et al.(2006) Crosstalk between abiotic and bioticstress responses: a current view from the points of convergence in the stresssignaling networks. Curr Opin Plant Biol.9,436–442.
    [74] Grant M.R. and Jones J.D.G.(2009) Hormone (dis) harmony molds plant health anddisease. Science.324,750–752.
    [75] Pieterse C.M.J., Leon-Reyes A., Van der Ent S. et al.(2009) Networking bysmall-molecule hormones in plant immunity. Nat Chem Biol.5,308–316.
    [76] Lorenzo O. and Solano R.(2005)Molecular players regulating the jasmonatesignaling network. Curr Opin Plant Biol.8,532–540.
    [77] Gazzarrini S. and McCourt P.(2003) Cross-talk in plant hormone signaling: whatArabidopsis mutants are telling us. Ann Bot.91,605–612.
    [78] Asselbergh B., De Vleesschauwer D. and Hofte M.(2008) Global switches andfine-tuning ABA modulates plant pathogen defense. Mol Plant-Microbe Interact.21,709–719.
    [79] Ton J., Flors V. and Mauch-Mani B.(2009) The multifaceted role of ABA in diseaseresistance. Trends Plant Sci.14,310–317.
    [80] Melotto M., Underwood W., Koczan J. et al.(2006) Plant stomata function in innateimmunity against bacterial invasion. Cell.126,969–980.
    [81] de Torres-Zabala M., Truman W., Bennett M.H. et al.(2007) Pseudomonas syringaepv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease.EMBO J.26,1434–1443.
    [82] Fan J., Hill L., Crooks C. et al.(2009) Abscisic acid has a key role in modulatingdiverse plant–pathogen interactions. Plant Physiol.150,1750–1761.
    [83] Flowers T.J. and Colmer T.D.(2008) Salinity tolerance in halophytes. New Phytol.179,945–963.
    [84] Inan G., Zhang Q., Li P. et al.(2004) Salt cress. A halophyte and cryophyteArabidopsis relative model system and its applicability to molecular geneticanalyses of growth and development of extremophiles. Plant Physiol.135,1718–1737.
    [85] Taji T., Seki M., Satou M. et al.(2004) Comparative genomics in salt tolerancebetween Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsismicroarray. Plant Physiol.135,1697–1709.
    [86] Gong Q., Li P., Ma S. et al.(2005) Salinity stress adaptation competence in theextremophile Thellungiella halophila in comparison with its relative Arabidopsisthaliana. Plant J.44,826–839.
    [87] Larkindale J., Hall J.D., Knight M.R. et al.(2005) Heat stress phenotypes ofArabidopsis mutants implicate multiple signaling pathways in the acquisition ofthermotolerance. Plant Physiol.138,882–897.
    [88] Mittler R.(2006) Abiotic stress, the field environment and stress combination.Trends Plant Sci.11,15–19.
    [89] Iusem N.D., Bartholomew D.M., Hitz W.D. et al.(1993) Tomato (Lycopersiconesculentum) transcript induced by water deficit and ripening. Plant Physiol.102,1353–1354.
    [90] Rossi M. and Iusem N.D.(1995) Sequence of Asr2, a member of a gene familyfrom Lycopersicon esculentum encoding chromosomal proteins: homology to anintron of the polygalacturonase gene.Mitochondr DNA.5,225–227.
    [91] Yang C.Y., Wu C.H., Jauh G.Y. et al.(2008) The LLA23protein translocates intonuclei shortly before desiccation in developing pollen grains and regulates geneexpression in Arabidopsis. Protoplasma.233,241–254.
    [92] Hong S.H., Kim I.J., Yang D.C. et al.(2002) Characterization of an abscisicacid responsive gene homologue from Cucumis melo. J Exp Bot.53,2271–2272.
    [93] Chen J.Y., Liu D.J, Jiang Y.M. et al.(2011) Molecular characterization of astrawberry FaASR gene in relation to fruit ripening. PLoS One.6, e24649.
    [94] Virlouvet L., Jacquemot M.P., Gerentes D. et al.(2011) The ZmASR1proteininfluences branched-chain amino acid biosynthesis and maintains kernel yield inmaize under water-limited conditions. Plant Physiol.157,917–936.
    [95] Cakir B., Agasse A., Gaillard C. et al.(2003) A grape ASR protein involved in sugarand abscisic acid signaling. Plant Cell.15,2165–2180.
    [96] Frankel N., Nunes-Nesi A., Balbo I. et al.(2007) ci21A/Asr1expression influencesglucose accumulation in potato tubers. Plant Mol Biol.63,719–730.
    [97] Silhavy D., Hutvágner G., Barta E. et al.(1995) Isolation and characterization of awater-stress-inducible cDNA clone from Solanum chacoense. Plant Mol Biol.27,587–595.
    [98] Kalifa Y., Perlson E., Gilad A. et al.(2004) Over-expression of the water and saltstress-regulated Asr1gene confers an increased salt tolerance. Plant Cell Environ.27,1459–1468.
    [99] Maskin L., Frankel N., Gudesblat G. et al.(2007) Dimerization and DNA-binding ofASR1, a small hydrophilic protein abundant in plant tissues suffering from waterloss. Biochem Biophys Res Commun.352,831–835.
    [100] Vaidyanathan R., Kuruvilla S., and Thomas G (1998) Characterization andexpression pattern of an abscisic acid and osmotic stress responsive gene from rice.Plant Sci.140,21–30.
    [101] Kim I.S., Kim Y.S. and Yoon H.S.(2012) Rice ASR1protein with reactive oxygenspecies scavenging and chaperone-like activities enhances acquired tolerance toabiotic stresses in saccharomyces cerevisiae. Mol Cells.33,285–293.
    [102] Dóczi R., Kondrák M., Kovács G. et al.(2005) Conservation of the drought-inducible DS2genes and divergences from their ASR paralogues in solanaceousspecies. Plant Physiol Biochem.43,269–276.
    [103] Schneider A., Salamini F. and Gebhardt C.(1997) Expression patterns and promoteractivity of the cold-regulated gene ci27A of potato. Plant Physiol.113,335–345.
    [104] Wang C.S., Liau Y.E., Huang J.C. et al.(1998) Characterization of a desiccation-related protein in Lily pollen during development and stress. Plant Cell Physiol.39,1307–1314.
    [105] Hsu Y.F., Yu S.C., Yang C.Y. et al.(2012) Lily ASR protein-conferred cold andfreezing resistance in Arabidopsis. Plant Physiol Biochem.49,937–945.
    [106] Liu H.Y., Dai J.R., Feng D.R. et al.(2010) Characterization of a novel plantain Asrgene, MpAsr,that is regulated in response to infection of fusarium oxysporum f. sp.cubense and abiotic stresses. J Integr Plant Biol.52,315–323.
    [107] Dai J.R., Liu B., Feng D.R. et al.(2011) MpAsr encodes an intrinsicallyunstructured protein and enhances osmotic tolerance in transgenic Arabidopsis.Plant Cell Rep.30,1219–1230.
    [108] Padmanabhan V., Dias D.M. and Newton R.J.(1997) Expression analysis of a genefamily in loblolly pine (Pinus taeda L.) induced by water deficent stress. Plant MolBiol.35,801–807.
    [109] Wang J.T., Gould J.H., Padmanabhan V. et al.(2003) Analysis and localization ofthe water-deficit stress-induced gene (lp3). J Plant Growth Regul.21,469–478.
    [110] Shen G., Pang Y., Wu W. et al.(2005) Molecular cloning, characterization andexpression of a novel Asr gene from Ginkgo biloba. Plant Physiol Biochem.43,836–843.
    [111] Sugiharto B., Ermawati N., Mori H. et al.(2002) Identification and characterizationof a gene encoding drought-inducible. Plant Cell Physiol.43,350–354.
    [112] Jeanneau M., Gerentes D., Foueillassar X. et al.(2002) Improvement of droughttolerance in maize: towards the functional validation of the Zm-Asr1gene andincrease of water use efficiency by over-expressing C4-PEPC. Biochimie.84,1127–1135.
    [113] Henry I.M., Carpentier S.C., Pampurova S. et al.(2011) Structure and regulation ofthe Asr gene family in banana. Planta.234,785–798.
    [114] Jha B., Lal S., Tiwari V. et al.(2012) The SbASR-1gene cloned from an extremehalophyte salicornia brachiata enhances salt tolerance in transgenic tobacco. MarBiotechnol (NY).14,782–792.
    [115] Urtasun N., Correa García S., Iusem N.D. et al.(2010) Predominantly cytoplasmiclocalization in Yeast of ASR1, a non-receptor transcription factor from plants. OpenBiochem J.20,68–71.
    [116] Ricardi M.M., Guaimas F.F., González R.M. et al.(2012) Nuclear import anddimerization of tomato ASR1, a water stress-inducible protein exclusive to plants.PLoS One.7, e41008.
    [117] Kalifa Y., Gilad A., Konrad Z. et al.(2004) The water-and salt-stress-regulatedAsr1(abscisic acid stress ripening) gene encodes a zinc-dependent DNA-bindingprotein. Biochem J.381,373–378.
    [118] Shkolnik D. and Bar-Zvi D.(2008) Tomato ASR1abrogates the response to abscisicacid and glucose in Arabidopsis by competing with ABI4for DNA binding. PlantBiotechnol J.6,368–378.
    [119] Saumonneau A., Agasse A., Bidoyen M.T. et al.(2008) Interaction of grape ASRproteins with a DREB transcription factor in the nucleus. FEBS Lett.582,3281–3287.
    [120] Barrs H.D. and Weatherley P.E.(1962) A reexamination of the relative turgiditytechnique for estimating water deficit in leaves. Aust J Biol Sci.15,413–428.
    [121] Jiang M.Y. and Zhang J.H.(2001) Effect of abscisic acid on active oxygen species,antioxidative defence system and oxidative damage in leaves of maize seedlings.Plant Cell Physiol.42,1265–1273.
    [122] Heath R.L. and Packer L.(1968) Photoperoxidation in isolated chloroplasts. I.Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys.125,189–198.
    [123] Kim S.J., Lee S.C., Hong S.K. et al.(2009) Ectopic expression of a cold-responsiveOsAsr1cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cells.27,449–458.
    [124] Moore K. and Roberts L.J. II.(1998) Measurement of lipid peroxidation. FreeRadical Res.28,659–671.
    [125] Huang X.S., Liu J.H. and Chen X.J.(2010) Overexpression of PtrABF gene, a bZIPtranscription factor isolated from Poncirus trifoliata, enhances dehydration anddrought tolerance in tobacco via scavenging ROS and modulating expression ofstress-responsive genes. BMC plant Biol.10,230.
    [126] Jaleel C.A., Riadh K., Gopi R. et al.(2009) Antioxidant defense response:physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant.31,427–436.
    [127] Miller G., Suzuki N., Ciftci-Yilmaz S. et al.(2010) Reactive oxygen specieshomeostasis and signaling during drought and salinity stresses. Plant Cell Environ.33,453–457.
    [128] Blokhina O., Virolainen E. and Fagerstedt K.V.(2003) Antioxidants, oxidativedamage and oxygen deprivation stress: a review. Ann Bot.91,179–194.
    [129] Arenhart R.A., Lima1J.C. Pedron M. et al.(2013) Involvement of ASR genes inaluminum tolerance mechanisms in rice. Plant Cell Environ.32,52–67.
    [130] Livak K.J. and Schmittgen T.D.(2001) Analysis of relative gene expression datausing real-time Quantitative PCR and the2–ΔΔCtmethod. Methods.25,402–408.
    [131] Hu H.H., Dai M.Q., Yao J.L. et al.(2006) Overexpressing a NAM, ATAF, andCUC (NAC) transcription factor enhances drought resistance and salt tolerance inrice. Proc Natl Acad Sci U S A.103,12987–12992.
    [132] Singh K., Foley R.C. and Onate-Sanchez L.(2002) Transcription factors in plantdefense and stress responses. Curr Opin Plant Biol.5,430–436.
    [133] Zhu J.K.(2002) Salt and drought stress signal transduction in plants. Annu RevPlant Biol.53,247–273.
    [134] Hundertmark M. and Hincha D.K.(2008) LEA (Late Embryogenesis Abundant)proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics.9,118.
    [135] Liu X., Wang Z., Wang L. et al.(2009) LEA4group genes from the resurrectionplant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. PlantSci.176,90–98.
    [136] Yang C.Y., Chen Y.C., Jauh G.Y. et al.(2005) A lily ASR protein involves abscisicacid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol.139,836–846.
    [137] Qin X. and Zeevaart J.A.D.(1999) The9-cis-epoxycarotenoid cleavage reaction isthe key regulatory step of abscisic acid biosynthesis in water-stressed bean. ProcNatl Acad Sci U S A.96,15354–15361.
    [138] Dunn M.A., Hughes M.A., Zhang L. et al.(1991) Nucleotide sequence andmolecular analysis of the low temperature induced cereal gene. BLT4. Mol GenGenet.229,389–394.
    [139] Ouvrard O., Cellier F., Ferrare K. et al.(1996) Identifcation and expression ofwater stress-and abscisic acid-regulated genes in a drought-tolerant sunfowergenotype. Plant Mol Biol.31,819–829.
    [140] Torres-Schumann S., Godoy J.A. and Pintor-Toro J.A.(1992) A probable lipidtransfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol.18,749–757.
    [141] Trevino M.B. and OConnell M.A.(1998) Three drought-responsive members of thenonspecific lipid-transfer protein gene family in Lycopersicon pennellii showdifferent developmental patterns of expression. Plant Physiol.116,1461–1468.
    [142] Zhang X., Zhang Z., Chen J. et al.(2005) Expressing TERF1in tobacco enhancesdrought tolerance and abscisic acid sensitivity during seedling development. Planta.222,494–501.
    [143] Kim T.H., Park J.H., Kim M.C. et al.(2008) Cutin monomer induces expression ofthe rice OsLTP5lipid transfer protein gene. J Plant Physiol.165,345–349.
    [144] Rom S., Gilad A., Kalifa Y. et al.(2006) Mapping the DNA-and zinc-bindingdomains of ASR1(abscisic acid stress ripening), an abiotic-stress regulated plantspecific protein. Biochimie.88,621–628.
    [145] Goldgur Y., Rom S., Ghirlando R. et al.(2007) Desiccation and zinc binding inducetransition of tomato abscisic acid stress ripening1, a water stress-and saltstress-regulated plant-specifc protein, from unfolded to folded state. Plant Physiol.143,617–628.
    [146] Barro F., Cannell ME., Lazzeri PA. et al.(1998) The influence of auxins ontransformation of wheat and tritordeum and analysis of transgene integrationpatterns in transformants. Theor Appl Genet.97,684–695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700