用户名: 密码: 验证码:
松材线虫择偶对策及择偶偏向的转录组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球化进程的加快和人类干扰导致生态系统完整性的破坏,生物入侵的风险不断加大,入侵种的扩散和暴发趋势严重,给入侵地的生态系统和国土安全造成巨大的灾害性损失。松材线虫是国际上公认的检疫性有害生物,给包括中国在内的很多国家造成了极为严重的经济、生态和社会损失。松材线虫侵染松树后,能在松树体内短时间内大量繁殖,并引起松树快速死亡。繁殖的生物学和生态学特征探讨,对掌握其高繁殖力机制、生态适应机制,及在机制探讨基础上提出基于繁殖控制的特异性、针对性的松材线虫的防治思路与技术,均具有重要意义,也可为松材线虫的致病机理和入侵机制的研究提供理论基础。本研究重点开展了松材线虫的择偶行为及其生态机制,并针对其择偶偏向开展了转录组学分析。主要结果如下:
     通过长时间的显微观察和录像回放的方法,研究了松材线虫的交配过程,并将松材线虫的交配过程定义和划分为搜寻、接触、交尾和逗留四个阶段,不同阶段的持续时长不同,四个阶段的时长分别为21.8±2.0min,28.0±1.9min,23.6±0.7min和7.2±0.5min。在交配过程中存在着具有典型特征化的动作,分别将其明确和定义为:逡巡、靠近、相遇、触摸、卷曲、定位、固定、射精、解尾、静止和徘徊等系列分步行为;松材线虫在交配过程中存在着明显的性吸引特征,存在着明显的同性内的竞争行为和异性间的选择行为,但雌性间的竞争行为相对较弱,而雄性间竞争的竞争强度明显大,雌性对配偶的选择行为典型而明显,但雄性的选择行为不明显。
     研究了一雌一雄(1♀+1♂)、多雌一雄(3♀+1♂)、一雌多雄(1♀+3♂)和多雌多雄(3♀+3♂)体系下松材线虫的择偶特征,发现不同体系下松材线虫总交配过程、各个交配阶段的时长、择偶时长、身体接触次数、首次接触交配成功率等都存在着明显的差异。四种体系下的交配效率测定实验结果表明,多雌一雄体系下的交配效率为189.6±2.1,显著的高于一雌多雄体系下的交配效率(110.0±0.8),同时多雌一雄体系下第一代后代的性比和成幼比分别为3.56±0.06和0.53±0.01显著的高于其他几种体系下的性比和成幼比,后代的交配效率更高。通过模拟交配效率曲线可知在雌雄比为3.4:1时,松材线虫的交配效率最高,并且偏雌性比下的交配效率要高于偏雄性比下的交配效率。松材线虫的交配对策符合状态制约选择理论,即偏雌性比下,线虫采用Y交配对策,交配效率高,后代的性比和成幼比较高,种群繁殖快,偏雄性比下,线虫采用X交配对策,交配效率低,后代的性比和成幼比较低,种群繁殖慢。研究结果还表明,松材线虫的雄性能够通过调整竞争强度来适应雌性的选择强度。
     开展了处女雌虫、处子雄虫、已婚雌虫和已婚雄虫的择偶偏向实验及交配效率测定,结果表明处女雌虫和已婚雌虫都会优先选择与处子雄虫进行交配,而处子雄虫、已婚雄虫对处女雌虫和已婚雌虫的择偶偏向性不明显。交配效率测定结果表明无论是处女雌虫还是已婚雌虫与处子雄虫交配效率(153.2±3.9、139.8±2.8)要显著的高于与已婚雄虫的交配效率(122.8±3.2、98.8±3.6),并且与处子雄虫交配的交配效率分别提高了24.8%和41.5%。同时雌虫与处子雄虫交配后获得的后代的性比(3.2±0.07、2.6±0.05)和成幼比(0.45±0.01、0.41±0.01)要显著高于与已婚雄虫交配的后代性比(2.7±0.04、2.2±0.04)和成幼比(0.32±0.01、0.31±0.01),因此与处子雄虫交配的后代的交配效率更高。
     开展了处女雌虫在面对潜在配偶时的转录组测序分析,结果表明,处女雌虫在面对潜在配偶时单独表达的基因有849个,与处女雌虫单独存在时相比,差异表达的基因有575个,这些差异表达的基因功能主要与运动、刺激响应、生长、发育、死亡、生殖、繁殖、代谢、定位、转录调控、翻译调控、抗氧化、细胞器等相关。发现了其它线虫上已知的69个与择偶交配相关的基因。通过对差异基因功能GO注释进一步筛选了与松材线虫刺激响应、繁殖、定位和运动相关的基因26个。这些都将为研究该类基因及其pathway途径对线虫择偶的影响,从而最终从分子水平上阐释松材线虫雌虫的择偶机制奠定了基础。
With the acceleration of globalization and human disturbance in the ecological integrity ofthe system destruction, a large number of existing invasive species diffusion and outbreak ofserious risk of biological invasion has caused great disaster losses to the ecological system andhomeland security. Pine wood nematode (Bursaphelenchus xylophilus), as an agent of pine wiltdisease and the important quarantine target of many countries around the world, has beencaused many countries including china extremely serious economic, ecological and social loss.After infected a new tree, the PWN is propagated quickly in a short time within the stem ofpine trees and eventually death. The exploring of reproduction biology and ecologycharacterristics had important meaning for studing the high fecundity, ecology adaptationmechanism and providing a novel method to control pine wilt disease in future. It also couldprovide the theoretical basis of pathogesis and invasion mechanism.The study of mating choicebehavior of pine wood nematode, ecological mechanism and transcriptome sequencing ofmating preference were carried out. The main results are as follows.
     The mating behavior features of B. xylophilus by long-time microscope video andrepeated observation in one male and one female system. The mating behavior of B. xylophiluscould be decomposed into a series of sub-behaviors, including cruising, approaching,encountering, touching, hooping, locating, fixing, ejaculating, unfixing, quiescence androaming in sequence. According to the process of mating behavior, it could be divided into4different stages, i.e. searching, contacting, copulating and lingering stage. Time for differentstage varied significantly with21.8±2.0min,28.0±1.9min,23.6±0.7min and7.2±0.5min forfour mentioned stages respectively on average. Attraction between different sexes wasobviously observed, indicating that sexual pheromone might be involved in mating behavior ofB. xylophilus. In addition, mating choice of female to male was clearly observed. When onefemale was mixed with three males, male-male competition was obvious, which might be caused by the mating-choice pressure from female. Furthermore, intra-sexual competition offemale was also observed, but not obviously.
     Study on the choice characteristic of pine wood nematode in one male and one femalesystem (1♀+1♂), multiple females and one male system (3♀+1♂), one female and multiplemales system (1♀+3♂), multiple females and multiple males system (3♀+3♂). There weresignificantly differences in the whole mating process, the duration of different stages, durationof mating choice, contacting times and mating success rate for the first contact. The results ofmating efficiency of four systems showed that the mating efficiency in multiple females andone male system was189.6±2.1, significantly higher than that of one female and multiplemales system (110±0.8). Meanwhile, the sex ratio of offspring and ratio of adult to offspring inmultiple female and one male system were all higher than those of other systems. The offspringhad higher mating efficiency and may be more conducive to the breeding of the population.According to simulating the mating efficiency curves, the mating efficiency of pine woodnematode is the highest when the sexual ratio (female and male) is3.4:1, and the matingefficiency of female biased is higher than that of male biased. Mating strategy of pine woodnematode is accordance with status-dependent selection theory (SDS). In female biased system,Y mating strategy is used, the mating efficiency is high, sex ratio of offspring and ratio of adultto offspring is relatively high, the population is conducive to propagate quickly. In male biasedsystem, X mating strategy is used, the mating efficiency is low, sex ratio of offspring and ratioof adult to offspring is relatively low, the population is not conducive to propagate quickly.The results also showed that males adapted the intensity of competition according to thefemale’s selection intensity.
     Mating selection bias experiment and mating efficiency of virgin female, virgin male,mated female and mated male were determined. The results showed virgin female and matedfemale would preferred to mate with virgin male, but the mate preference of virgin male andmated male were not obvious. The results of mating efficiency determination showed themating efficiency of virgin or mated female when mated with virgin male were obviouslyhigher than that of mated with mated male and they increased24.8%and41.5%separately when the virgin female and mated female mated with virgin male. Meanwhile, the sex ratio ofoffspring and ratio of adult to offspring were significantly higher than those of mating withmated male. The mating efficiency of offspring was higher and more conducive to the breedingof population.
     Transcriptome sequencing was conducted when one virgin female encountered apotentialmate. The results showed that849genes were expressed individually when virgin female facedpotential mate,575genes were differentially expressed compared with virgin female existedalone. These functions of differentially expressed gene mainly included movement, stimulationresponse, reproduction, growth, development, death, metabolism, positioning, regulationl oftranscriptionand translation, antioxidant and organelles. Besides,69genes related to mating inother worms were selected.26genes were screened by gene function GO annotation whichrelated to stimulus response, breeding, positioning, and sports. The female mating choicemechanism will be elucidated by studying the influence of these genes and pathways on themating selection at the molecular level.
引文
Andrea C, Tatsuji C, Steppan H et al. Sex-specific mating pheromones in the nematode Panagrellusredivivus. Proceedings of the National Academy of Sciences of the United States of America,2012,109:20949-20954
    Andersson MB. Sexual selection. Princeton, N J Princeton University Press:1994,379-395
    Anonymius EC. Pinewood nematode survey protocol2000. European Commission, Directorate GeneralHealth and Consumer Protection, Directorate E-Public, animal and plant health. Unit E1. Legislationrelating to crop products and animal nutrition.2000
    Aragón P, López P, Martín J. Seasonal changes in activity and spatial and social relationships of the Iberianrock lizard, Lacerta monticola. Canadian Journal of Zoology,2001,79(11):1965-1971
    Aragón P, López P, Martín J. The ontogeny of spatio-temporal tactics and social relationships of adult maleIberian rock lizards, Lacerta monticola. Ethology,2004,110:1001-1019
    Barker DM. Copulatory plugs and paternity assurance in the nematode Caenorhabditis elegans. Anim.Behav,1994,48:147-156
    Barr MM, DeModena J, Braun D et al. The Caenorhabditis elegans autosomal dominant polycystic kidneydisease gene homologs lov-1and pkd-2act in the same pathway.Curr. Biol,2001,11:1341-1346
    Barr MM, Sternberg PW. Signals for C. elegans male mating behavior: A cellular and genetic approach toLov (location of vulva).1998West Coast Worm Meeting
    Barr MM, Sternberg PW. A polycystic kidney-disease gene homologue required for male mating behaviourin C. elegans. Nature,1999,401:386-389
    Barr MM. Garcia LR. Male mating behavior. Wormbook, ed. The C. elegans Research Community,Wormbook.2006, doi/10.1895/wormbook.1.78.1, http://www.wormbook.org
    Baujard P. Trois nouvells especes de Bursaphelenchus (Nematoda. Tylenchida) et remarques sur le genre.Revue Nematol,1980,3:167-177
    Belosevic M. Dick TA. Chemical attraction in the genus Trichinella. The Journal of Parasitology,1980,66:88-93
    Bergdahl, D.R. Impact of pinewood nematode in North America: present and future. Journal of Nematology,1988,20(2):260-265
    Bleay C, Comendant T, Sinervo B. An experimental test of frequency-dependent selection on male matingstrategy in the field. Proceedings of the Royal Society B-Biological Sciences,2007,274(1621):2019-2025
    Bloch N, Irschick DJ. An analysis of inter-population divergence in visual display behavior of the greenanole lizard (Anolis carolinensis). Ethology,2006,112(4):370-378
    Blumenthal D. Ecology-interrelated causes of plant invasion. Science,2005,310,243-244
    Bone LW, Shorey HH. Gaston LK. Sexual attraction and pheromonal dosage response of Nippostrongylusbrasiliensis. The Journal of Parasitology,1977,63:364-367
    Bonner TP. Etges FJ. Chemically mediated sexual attraction in Trichinella spiralis. ExperimentalParasitology,1976,21:53-60
    Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses intoa single theoretical framework. Diversity and Distributions,200915,22-40
    Chahoud I. Faqi AS. An optimized approach for the assessment of sexual in male rats. ReproductiveToxicology,1998,12:667-671
    Chasnov JR, So WK, Chan CM et al. The species, sex, and stage specificity of a Caenorhabditis sexpheromone. Proceedings of the National Academy of Sciences of the United States of America,2007,104:6730-6735
    Cheng XY, Xie PZ, Cheng FY et al. Competitive displacement of the native species Bursaphelenchusmucronatus by an alien species Bursaphelenchus xylophilus (Nematoda: Aphelenchida:Aphelenchoididae): a case of successful invasion. Biological Invasions,2009,11(2):205-213
    Collet J, Spike CA, Lundquist EA et al. Analysis of osm-6, a gene that affects sensory cilium structure andsensory neuron function in Caenorhabditis elegans. Genetics,1998,148:187-200
    Cooper MI, Telford SR. Copulatory sequences and sexual struggles in Millipedes. Journal of Insect Behavior,2000,13(2):217-230
    Cox GW. Alien Species and Evolution: The Evolutionary Ecology of Exotic Plants, Animals, Microbes, andInteracting Native Species. Island Press, Washington.2004
    Cox MP, Peterson DA, Biggs PJ. SolexaQA: At-a-glance quality assessment of Illumina second-generationsequencing data. BMC Bioinformatics,2010.11: p.485
    Darkins R. The selfish gene. Oxford University Press.1976
    Dropkin VH, Foudin A, Kondo E et al. Pinewood nematode: a threat to U.S. forest. Plant Disease,1981,(65):1022-1027
    Dozono Y.マツ切枝(試片)の含水率と材線虫の增殖.日林九支研論,1974,27:165-166
    Edwards OR, Linit MJ. Transmission of Bursaphelenchus xylophilus through oviposition wounds ofMonochamus carolinensis (Coleoptera: Cerambycidae). J. Nematol,1992,24:133-139.
    Emmons SW, Lipton J. Genetic basis of male sexual behavior. J. Neurobiol,2003,54:93-110
    Eo J, Takemoto S, Otobe K. Is there a relationship between the intrinsic rate of propagation and in-vitromigration and virulence of the pinewood nematode, Bursaphelenchus xylophilus? European Journal ofPlant Pathology,2011,130(2):231-237
    Evans H, McNamara DG, Braasch H et al. Pest Risk Analysis (Pra) for the Territories of the EuropeanUnion (as Pra Area) on Bursaphelenchus xylophilus and Its Vectors in the Genus Monochamus. EPPOBulletin.1996,26(2):199-249
    Foissac S. Sammeth M. ASTALAVISTA: dynamic and flexible analysis of alternative splicing events incustom gene datasets. Nucleic Acids Res,2007.35(Web Server issue): p. W297-299
    Fu P, Neff BD, Gross MR. Tactic-specific success in sperm competition. Proceedings of the Royal Society ofLondon B,2001,268:1105-1112
    Futai K. Ecological studies on the infection sources of pine wilt (I). Population dynamics of pine woodnematodes in the withered stem of Japanese red pine. Bull Kyoto Univ Forests,1986,57:1-3
    Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annual Review of Phytopathology,2013,51:61-83
    Gao Y, Kang L. Operational sex ratio and alternative reproductive behaviours in Chinese bushcricket,Gampsocleis gratiosa. Ethology,2006,112(4):325-331
    García-Rejón L, verdeio S, Sanchez-Moreno M et a1. Some factors affecting sexual attraction in Ascarissuum (Nematoda). Can J Zool,1985,63:2074-2076
    Garcia LR, Mehta P, Sternberg PW. Regulation of distinct muscle behaviors controls the C. elegans male'scopulatory spicules during mating. Cell,2001,107:777-788
    Garcia LR, Sternberg PW. Caenorhabditis elegans UNC-103ERG-like potassium channel regulatescontractile behaviors of sex muscles in males before and during mating. J. Neurosci,2003,23,2696-2705
    Garcia-zejon L, Sanchez-Moreno M, Verdejo S et a1. Estudios previos sobre las feromonas sexuales en losnematodes. Rev Iber Parasitol,1982:307-314
    Gower NJ, Walker DS. Baylis HA. Inositol1,4,5-Trisphosphate signaling regulates mating behavior inCaneorhabditis elegans males. Molecular Biology of the Cell,2005,16:3978-3986
    Gross MR. Alternative reproductive strategies and tactics: Diversity within sexes. Trends in Ecology&Evolution,1996,11(2):92-98
    Gruninger TR, Gualberto DG, LeBoeuf B et al. Integration of male mating and feeding behaviors inCaenorhabditis elegans. J. Neurosci,2006,26:169-179
    Hamura H. Distribution of Bursaphelenchus lignicolus in dead pine trees. Jpn. J. Nematol.1976,6:60-66
    Hodgkin J. Doniach T. Natural variation and copulatory plug formation in Caenorhabditis elegans.Genetics,1997,146:149-164
    Hongtao Niu, Lilin Zhao, Min Lu et al. The Ratio and Concentration of Two Monoterpenes MediateFecundity of the Pinewood Nematode and Growth of Its Associated Fungi. PloS ONE,2012,7(2):e31716
    Howard RD. The influence of male-defended oviposition sites on early embryo mortality in bullfrogs.Ecology,1978,59:789-798
    Howard RD. The evolution of mating strategies in bullfrogs, Rana catesbeiana. Evolution,1978,32:850-871
    Huang L, Ye J, Wu X et al. Detection of pine wood nematode using a real-time PCR assay to target the DNAtopoisomerase I gene. European Journal of Plant Pathology,2010,127:89-98
    Huck UW, Banks EM. Coopersmith CB. Social olfaction in male brown lemmings (Lemmus sibiricus=trimucronatus) and collared lemmings (Dicrostynyx groenlandicus): II discrimination of mated andunmated females. Journal of Comparative Physiology,1984,98,60-65
    Ichihara Y, Fukuda K, Suzuki K. Early symptom development and histological changes associated withmigration of Bursaphelenchus xylophilus in seeding tissue of Pinus Thunbergii. Plant disease,2000,84(6):675-680
    Ikeda T, Yamane A, Enda N et al. Attractiveness of volatile components of felled pine trees for Monochamusalternatus (Coleoptera: Cerambycidae). J. Jpn. For. Soc.,1986,68:15-19
    Ishikawa M, Hinode Y, Shuto Y et a1. Bic-organic chemical studies on pine withering caused by pine woodnemat0de,Bursaphelenchus lignicolus. Abstracts of symposium on biomimetic chemistry at Kyushuuniversity.1984
    Jikumaru S, Togashi K. Temperature effect on the transmission of Bursaphelenchus xylophilus (NematodeAphelenchoididae) by Momochamus alternatus (Coleptera Cerambycidae). J. Nematol.2000,32(1):110-116
    Johnson PC, Hadfield JD, Webster LM et al. Bayesian paternity analysis and mating patterns in a parasiticnematode, Trichostrongylus tenuis. Heredity,2010,104:573-582
    Johnston R E. Chemical signals and reproductive behavior. In Pheromones and Reproduction in Mammals(ed. J. G. Vandenbergh),1983,3-37. Academic Press, New York.
    Jones JT, Moens M, Mota M et al. Bursaphelenchus xylophilus: opportunities in comparative genomics andmolecular host-parasite interactions. Molecular Plant Pathology,2008,9:357-368.
    Joung A. Son, MK, Norihisa M et al. Migration of pine wood nematodes in the tissues of Pinus thunbergii.Journal of Forest Research,2010,15(3):186-193
    Judge KA, Brooks RJ. Chorus participation by male bullfrogs, Rana catesbeiana: a test of the energeticconstraint hypothesis. Animal Behaviour,2001,62(5):849-861
    Kim D, Pertea G, Trapnell C et al. TopHat2: accurate alignment of transcriptomes in the presence ofinsertions, deletions and gene fusions. Genome Biol,2013.14(4): p. R36
    Kiyohara T. Nematode population growth and disease development in the pine wilting disease. Eur J ForPath,1978,8:285-292
    Kiyohara T. Sexual attraction in Bursaphelenchus xylophilus. Jpn J Nematol,1982,11:7-12
    Kiyohara T. Mating behavior of Nematodes. Syokubutsu-Boeki,1984,38:111-l15
    Kikuchi T, Cotton JA, Dalzell JJ et al. Genomic Insights into the Origin of Parasitism in the Emerging PlantPathogen Bursaphelenchus Xylophilus. PLoS Pathog.2011,7(9): e1002219
    Knapp R, Hews DK, Thompson CW et al. Environmental and endocrine correlates of tactic switching bynonterritorial male tree lizards (Urosaurus ornatus). Hormones and Behavior,2003,43(1):83-92
    Kobayashi F, Yamane A, Ikeda T. The Japanese pine sawyer beetle as the vector of pine wilts disease. AnnualReview of Entomology,1984,29:115-135
    Kolluru GR, Grether GF. The effects of resource availability on alternative mating tactics in guppies(Poecilia reticulata). Behavioral Ecology,2005,16(1):294-300
    Koo PK, Bian X, Sherlekar AL et al. The robustness of Caenorhabditis elegans male mating behaviordepends on the distributed properties of ray sensory neurons and their output through core andmale-specific targets. The Journal of Neuroscience,2011,31:7497-7510
    Larison B. Impacts of environmental heterogeneity on alternative mating tactics in the threadtail damselfly.Behavioral Ecology and Sociobiology,2009,63(4):531-536
    Leary CJ, Fox DJ, Shepard DB et al. Body size, age, growth and alternative mating tactics in toads: satellitemales are smaller but not younger than calling males. Animal Behaviour,2005,70(3):663-671
    Leary CJ, Garcia AM, Knapp R. Elevated corticosterone levels elicit non-calling mating tactics in male toadsindependently of changes in circulating androgens. Hormones and Behavior,2006,49(4):425-432
    Leary CJ, Garcia AM, Knapp R. Density-dependent mating tactic expression is linked to stress hormone inWoodhouse’s toad. Behavioral Ecology,2008,19(6):1103-1110
    LeBoeuf B. Garcia LR. Cell excitability necessary for male mating behavior in Caenorhabditis elegans iscoordinated by interactions between big current and ether-a-go-go family K(+) channels. Genetics,2012,190:1025-1041
    Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics,2009,25(16): p.2078-2079
    Liebhold A, Macdonald W, Bergdahl D et al. Invasion by exotic forest pests:a threat to forestecosystems.Forest Science Monographs.The Society of American Foresters,1995,30:1-49
    Linit M.J. In: Wingfield M. J.(ed.), Pathogenicity of Pine Wood Nematods St. Paul MN: Amer. Phytopathol.Soc. Press,1987,67-73
    Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegansray sensory neurons by a TGFb family signaling pathway and a Hox gene. Development,1999,126:5819-5831
    Lints R, Jia L, Kim K et al. Axial patterning of C. elegans male sensilla identities by selector genes. Dev.Biol,2004,269:137-151
    Lipton J, Kleemann G, Ghosh R et al. Mate searching in Caenorhabditis elegans: a genetic model for sexdrive in a simple invertebrate. J. Neurosci,2004,24:7427-7434
    Liu KS. Ph.D. Thesis. California Institute of Technology, Pasadena,1996
    Liu KS, Sternberg PW. Sensory regulation of male mating behavior in Caenorhabditis elegans.Neuron,1995,14:79-89
    Loer CM, Davidson B, McKerrow J. A phenylalanine hydroxylase gene from the nematode C.elegans isexpressed in the hypodermis. J. Neurogenet,1999,13:157-180
    Loer CM, Kenyon CJ. Serotonin-deficient mutants and male mating behavior in the nematodeCaenorhabditis elegans. J. Neurosci,1993,13:5407-5417
    Mack RN, Simberloff D, Mark Lonsdale W et al. Biotic Invasions: Causes, Epidemiology, GlobalConsequences, and Control. Ecological applications.2000,10(3):689-710
    Mair J, Blackwell A. Effect of age and multiple mating on the mating behavior of Culicoides nubeculosus(Diptera: Ceratopogonidae). Journal of Medical Entomology,1998,35,996-1001
    Mamiya Y, Kiyahara T. Description of Bursaphelenchus lignicolus n.sp.(Nematoda: Aphelenchoididae) frompine wood and histopathology of nematode-infested trees. Nematologica,1972,18:120-124
    Mamiya Enda. Bursaphelenchus mucronatus n.sp.(Nmeatoda:Aphelenchoididae)from pine wood and itsbiology and pathologenicity to pine trees. Nematologica,1979,25:353-361
    Mamiya Y. Pathology of the Pine wilt disease caused by Bursaphelenchus xylophilus. Annual Review ofPhytopathology,1983,21:201-220
    Mamiya,Y. History of pine wilt disease in Japan. Journal of Nematology,1988,20(2):219-226
    Mamiya Y. The life history of the pine wood nematode, Bursaphelenchus lignicolus. Jpn J Nematol,1975,5:16-25
    Mamiya Y. Aggregation of Bursaphelenchus lignicolus around the pupal chamber of Monochamus alternatusin pine wood. See Ref,1972,24:30
    Mamiya Y. The effect of unsaturated fatty acids added to culture media of the growth of the pine woodhemat0de, Bursaphelenchus xylophilus. Jpn J Nematol,1986,16:10-20
    Mamiya Y, Kiyohara T. Description of Bursaphelenchus lignicolus n.sp.(Nematoda: Aphelenchoididae)from pine wood and histopathology of nematode-infested trees. Nematologica,1972,18:120-124
    Mamiya Y, Furukawa M. Fecundity and reprocuctive rate of Bursaphelenchus lignicolus. Jpn J Nematol,1977(7):6-9
    Mamiya Y. Movement of the pinewood nematode, Bursaphelenchus xylophilus, through tracheids indiseased pine trees,2008,38(1):41-44
    Marchlewska-koj A, Lepri JJ. Muller-schwarze, D. Chemical Signals in Vertebrates,2001,9. KluwerAcademic Publishers/Plenum Press, Dordrecht
    Myers RF. Cambium destruction in conifers caused by pinewood nematodes. Journal of Nematology,1986,18(3):398
    Mendel JE, Korswagen HC, Liu KS et al. Participation of the protein Go in multiple aspects of behavior in C.elegans. Science,1995,267:1652-1655
    Moczek AP. Emlen DJ. Proximate determination of male horn dimorphism in the Beetle Onthophagus taurus(Coleoptera: Scarabaeidae). Journal of Evolutionary Biology,1999,12(1):27-37
    Moles AT, Gruber MAM, Bonser SP. A new frame work for predicting invasive plant species. Journal ofEcology,2008,96:13-17
    Mota MM, Braasch H, Bravo MA et al. First report of Bursaphelenchus xylophilus in Portugal and in Europe.Nematology,1999,1:727-734
    Naves PM, Camacho S, de Sousa EM et al. Transmission of the pine wood nematode Bursaphelenchusxylophilus through feeding activity of Monochamus galloprovincialis (Col., Cerambycidae). J. Appl.Entomol,2007,131(1):21-25
    Nickle W, Golden A, Mamiya Y, Wergin W. On the Taxonomy and Morphology of the Pine Wood Nematode,Bursaphelenchus Xylophilus (Steiner&Buhrer1934) Nickle1970. Journal of nematology.1981,13(3):385-392
    O’Donnell RP, Ford NB, Shine R et al. Male red-sided garter snakes, Thamnophis sirtalis parietallis,determine female mating status from pheromone trails. Animal Behaviour,2004,68,677-683
    Oku H. Role of toxins in pine wilt disease.In: Yang, eds.International sym posium on pine wilt diseasecaused by pine wood nema tode.Chinese SocietyofForestry; Branch SocietyofForestPathology,CSF,1995:5-l4
    Peden EM, Barr MM. The KLP-6Kinesin Is Required for Male Mating Behaviors and PolycystinLocalization in Caenorhabditis elegans. Curr. Biol,2005,15:394-404
    Pereiral F, Moreira C, Fonseca L et al. New insights into the phylogeny and worldwide dispersion of twoclosely related nematode species, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. PLoSOne,2013,8, e56288
    Piché J, Hutchings JA, Blanchard W. Genetic variation in threshold reaction norms for alternativereproductive tactics in male Atlantic salmon, Salmo sala. Proceedings of the Royal SocietyB-Biological Sciences,2008,275(1642):1571-1575
    Py ek P, Richardson DM. Traits associated with invasiveness in alien plants: Where do we stand? In:Biological Invasions (ed Nentwig W),2007,97-126
    Py ek P, Hulme PE. Biological Invasions in Europe50Years after Elton: Time to Sound the Alarm. In: FiftyYearsof Invasion Ecology: the Legacy of Charles Elton (ed.Richardson DM). Wiley-Blackwell, Oxford,UK.2010, doi:10.1002/9781444329988.ch7
    Qin H, Rosenbaum JL, Barr MM. An autosomal recessive polycystic kidney disease gene homolog isinvolved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr Biol,2011,11:457-461
    Raihani G, Serrano-Meneses MA, Cdoba-Aguilar A. Male mating tactics in the American rubyspot damselfly:territoriality, nonterritoriality and switching behaviour. Animal Behaviour,2008,75(6):1851-1860
    Riechert SE. Singer FD. Investigation of potential male mate choice in a monogamous spider. AnimalBehaviour,1995,49:715-723
    Riga E, Webster JM. Use of Sex Pheromones in the Taxonomic Differentiation of Bursaphelenchus Spp.(Nematoda), Pathogens of Pine Trees. Nematologica,1992,38:133-145
    Rutherford TA, Webster JM. Distribution of pine wilt disease with respect to temperature in North America,Japan, and Europe. Canadian Journal of Forest Research,1987,17(9):1050-1059
    Rutherford TA, Riga E, Webster JM. Temperature-mediated Behavioral Relationships in Bursaphelenchusxylophilus, B. mucronatus, and Their Hybrids. Journal of Nematology,1992,24(1):40-44
    Shingai R, Furudate M, Hoshi K et al. Evaluation of head movement periodicity and irregularity duringlocomotion of Caenorhabditis elegans. Frontiers in Behavioral Neuroscience,2013,7,20
    Shuster SM. Male alternative reproductive strategies in a marine isopod crustacean (Paracerceis sculpta):The use of genetic markers to measure differences in fertilization success among α-, β-, and γ-males.Evolution,1989,43:1683-1698
    Shuster SM, Wade MJ. Female copying and sexual selection in a marine isopod crustacean, Paracerceissculpta. Animal Behaviour,1991,41:1071-1078
    Shuster SM, Wade MJ. Equal mating success among male reproductive strategies in a marine isopod. Nature,1991,350:608-610
    Shuster SM, Wade MJ. Mating systems and strategies. Princeton,New Jersey: Princeton University Press.2003
    Simon JM, Sternberg PW. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditiselegans. Proc. Natl. Acad. Sci. USA,2002,99:1598-1603
    Srinivasan J, Kaplan F, Ajredini R, Zachariah C. A blend of small molecules regulates both mating anddevelopment in Caenorhabditis elegans. Nature,2008,454:1115-1118
    Sriwati R, Takemoto S. The Relationship Between the Pinewood Nematode (PWN) and Fungi Cohabiting inaine Trees Inoculated with the PWN. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems,2008,2:101-114
    Steiner G, Buhrer EM. Aphelenchoides Xylophilus N. Sp., a Nematode Associated with Blue-Stain and OtherFungi in Timber. Journal of Agricultural Research.1934,48(10):949-951
    Stoltz JA, Neff BD. Male size and mating tactic influence proximity to females during sperm competition inbluegill sunfish. Behavioral Ecology and Sociobiology,2006,59(6):811-818
    Sulston JE, Albertson DG, Thomson JN. The Caenorhabditis elegans male: postembryonic development ofnongonadal structures. Dev Biol,1980,78:542-576
    Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol,1977,56:110-156
    Taborsky M, Oliveira RF, Brockmann HJ. The evolution of alternative reproductive tactics: concepts andquestions. Rui MT, O-liveira F, BrockmannH J. Alternative Reproductive Tactics. CambridgeUniversity Press,2008
    Taga Y, Goto S, Matsunaga K et al. Temporal changes in characteristics of populations originating frominterbreeding between Bursaphelenchus xylophilus and B. mucronatus. Nematology,2011,13(6):701-712
    Tamura H, Enda N. Distribution of Bursaphelenchus xylophilus and B. mucronatus and histological changesin the inoculate branches of pine tress. Dropkin V. The Resistance Mechanisms of Pine against PineWilt Disease. Honolulu Hawaii,1984
    Tamura H. Early development of Bursaphelenchus xylophilus (Nematode: Aphelenchoididae) population ininoculate branches of pine seedings. Appl. Ent. Zool.1984,19:125-129
    Thaker M, Lima S, Hews D. Alternative antipredator tactics in tree lizard morphs: hormonal and behaviouralresponses to a predator encounter. Animal Behaviour,2009,77:395-401
    Ting JH, Kelly LS. Snell TW. Identification of sex, age and species-specific proteins on the surface of theharpacticoid copepod Tigriopus japonicus. Marine Biology,2000,137:31-37
    Tokushige Y, Kiyohara T. Bursaphelenchus sp. in the wood of dead pine trees. Journal of Japanese ForestSociety,1969,51:193-195
    Tomkins JL, Hazel W. The status of the conditional evolutionarily stable strategy. Trends in Ecology&Evolution,2007,22(10):522-528
    Trapnell C, Roberts A, Goff L et al. Differential gene and transcript expression analysis of RNA-seqexperiments with TopHat and Cufflinks. Nat Protoc,2012.7(3): p.562-78
    TsubakiY. The genetic polymorphism linked to mate-securing strategies in the male damselfly Mnais costalisSelys (Odonata: Calopterygidae). Population Ecology,2003,45(3):263-266
    Vicente C, Espada M, Vieira P et al. Pine Wilt Disease: A threat to European forestry. European Journal ofPlant Pathology,2012,133:89-99
    Vincent B, Altemayer V, Roux-Morabito G. Competitive interaction between Bursaphelenchus xylophilusand the closely related species Bursaphelenchus mucronatus. Nematology,2008,10(2):219-230
    Wada T, Takegaki T, Mori T et al. Alternative male mating behaviors dependent on relative body size incaptive oval squid Sepioteuthis lessoniana (Cephalopoda, Loliginidae). Zoological Science,2005,22(6):645-651
    Walling CA, Stamper CE, Salisbury CL et al. Experience does not alter alternative mating tactics in theburying beetle Nicrophorus vespilloides. Behavioral Ecology,2008,20(1):153-159
    Waltz EC. Alternative mating tactics and the law of Diminishing Returns: The Satellite Threshold Model.Behavioral Ecology and Sociobiology,1982,10(2):75-83
    Wang Z, Wang CY, Fang ZM et al. Advances in research of pathogenic mechanism of pine wilt disease,2010,4(6):437-442
    Watanabe M, Takamura S, Maekawa K. Effects of timing of nest entry and body size on the fertilizationsuccess of alternative male reproductive phenotypes of masu salmon (Oncorhynchu smasou). CanadianJournal of Zoology,2008,86(10):1121-1130
    White JG, Southgate E, Thomson JN et al. The structure of the nervous system of the nematodeCaenorhabditis elegans: the mind of a worm. Phil. Trans. R. Soc. Lond,1986,314:1-340
    White JQ, Nicholas TJ, Gritton J et al. The sensory circuitry for sexual attraction in C. elegans males.Current biology,2007,17:1847-1857
    Wingfield MJ, Blanchette RA, Nicholls TH et al. The pine wood nematode: a comparison of the situation inthe United States and Japan. Canadian Journal of Forest Research,1982,12(1):71-75
    Wingfield MJ, Blanchette RA. The Pine-Wood Nematode, Bursaphelenchus xylophilus, in Minnesota andWisconsin: Insect Associates and Transmission Studies. Canadian Journal of Forest Research.1983,13(6):1068-1076
    Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecological insights. BiologicalInvasions,2008,10,1411-1429
    Xie BY, Cheng XY, Shi J et al. Mechanisms of invasive population establishment and spread of pinewoodnematodes in China. Science in China Series C: Life Sciences,2009,52(6):587-594
    Xie Y, Li Z, Williamp G et al. Invasive species in China over view. Biodiversity and Conservation,2002,45:121-130
    Ye J, Fang L, Zheng H et al., Nucleic Acids Res,2006.34(Web Server issue): p. W293-297
    Yu Wang, Toshihiro Yamada, Daisuke Sakaue et al. Influence of Fungi on Multiplication and Distribution ofthe Pinewood Nematode. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems,2008,2:115-128
    何善勇,温俊宝,骆有庆等.气候变暖情境下松材线虫在我国的适生区范围.应用昆虫学报.2012,49(1):236-243
    崔永三,赵宇翔,胡学兵.我国外来林业有害生物入侵现状与防控对策.中国森林病虫,2009,3(28)40-42
    黄响珠,林秋秋,吴远杰等.松材线虫分离及不同真菌对松材线虫繁殖的影响.莆田学院学报,2011,18(5):46-50
    刘军民,冯志新.松材线虫病组织病理学研究.植物病理学报,1999,25(2):171-174.
    刘劼,吴小芹,应晨希,何龙喜等.松材线虫和拟松材线虫的繁殖力及其超氧自由基差异.南京林业大学学报,2009,33(3):5-8
    刘维志.病原植物线虫学.北京:中国农业出版社,2000
    吕全,王卫东,梁军等.松材线虫在我国的潜在适生性评价.林业科学研究,2005,18(4):460-464
    宁眺,方宇凌,汤坚,孙江华.松材线虫及其关键传媒墨天牛的研究进展.昆虫知识,2004,41(2):97-104
    孙永春.南京中山陵发现松材线虫.江苏林业科技.1982,4:47
    宋玉双,臧秀强,刘阳等.松材线虫在罹病木中种群动态的初步研究.森林病虫通讯.1993,2:9-11
    谈家金,郝德君,潘玉雯等.几种松树挥发物对松材线虫行为的影响.东北林业大学学报,2009,37(12):58-59
    万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005
    万方浩,李保平,郭建英.生物入侵:生物防治篇.科学出版社,北京.2008
    万方浩,谢丙炎,褚栋.生物入侵:管理篇.科学出版社,北京.2008
    万方浩,彭德良,王瑞.生物入侵:预警篇.科学出版社,北京.2010
    万方浩,谢丙炎,杨国庆.入侵生物学.科学出版社,北京.2011
    万方浩,冯洁,徐进.生物入侵:检测与监测篇.科学出版社,北京.2011
    万方浩,严盈,王瑞等.生物安全学报,2011,20:1–19
    吴侠中,肖华,汤家康.松材线虫在松树体内的分布.安徽林业科技,1992,4:31-33
    徐福元,席客,徐刚等.不同龄级马尾松对松材线虫病抗性的探讨.南京林业大学学报,1994,18(3):27-33
    杨宝君,潘宏阳,汤坚等.松材线虫病.北京:中国林业出版社.2003a
    张润志,张大勇,叶万辉等.农业外来生物入侵种研究现状和发展趋势.植物保护,2004,30(3):5-9
    张星耀,骆有庆主编.中国森林重大生物灾害.北京:中国林业出版社,2003:1-29
    张星耀,吕全,冯益明等.中国松材线虫病危险性评估及对策.北京:科学出版社,2011:1-8
    杨振德,赵博光,郭建等.松材线虫行为学研究进展.南京林业大学学报(自然科学版).2003,27(1):87-92
    张建平,蔡新.温度对松材线虫的生物效应.四川林业科技,2007,28(5):69-72
    张兴华,朱天辉.不同真菌对松材线虫繁殖的影响.四川林业科技,2008,29(5):39-42
    朱克恭,张宁.病死木上松材线虫的存在及数量消长.南京林业大学学报,1992,16(2):7-10
    瞿红叶,谈家金,叶建仁等.不同真菌对松材线虫繁殖及致病力的影响.南京林业大学学报,2009,33(6):57-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700