用户名: 密码: 验证码:
黑土区土壤弹尾虫群落多样性及其对外源C、N干扰的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹尾虫(节肢动物门六足总纲Hexapoda:弹尾纲Collembola)是土壤生态系统中分布最广,类群和数量最丰富的节肢动物,是中小型土壤动物的主要组成部分。它们在加速土壤中有机物质的分解速率,提高土壤潜在碳截获能力和土壤肥力等方面具有重要作用。外界的干扰,如外源性C、N等物质输入土壤,直接或间接影响土壤弹尾虫群落丰富性和多样性,并削弱了它们在土壤生态系统中的功能性作用,进而影响与其相关联的生态系统的功能。因此,研究土壤弹尾虫群落丰富性和多样性动态变化以及对外源性C、N的响应,对进一步揭示弹尾虫在土壤有机质分解和矿化过程中的功能性作用具有重要意义。
     本文在研究自然条件下黑土区土壤弹尾虫群落丰富性和多样性动态变化规律以及对不同浓度外源性C、N干扰响应的基础上,通过人工模拟实验,进一步研究在外源性C、N干扰下,土壤弹尾虫多样性变化与土壤微生物群落结构以及土壤主要性质之间的相互关系。本研究得出如下结论:
     1、在自然条件下,采用改良干漏斗法和贝尔曼漏斗法对2011年和2012年不同外源C、N干扰下的土壤弹尾虫群落结构进行调查,共采集270个土壤样本,获得42634头土壤弹尾虫,隶属12科。
     土壤弹尾虫群落多样性受外源性质和采样时段的影响显著。不同外源C、N干扰对土壤弹尾虫群落多样性的影响不同,外源C干扰下的土壤弹尾虫个体数高于外源N干扰下的土壤弹尾虫个体数,并且在外源C分解和矿化初期阶段(2011年),土壤弹尾虫类群数是随着时间的变化呈上升趋势,9月开始下降,在后期阶段(2012年),土壤弹尾虫类群数随时间的变化呈下降趋势。主成分分析表明,土壤弹尾虫群落组成与采样时间和干扰源性质相关。
     外源C、N的干扰对土壤理化性质,如土壤温度、湿度、pH、土壤有机质含量、全氮含量和碳氮比,存在不同程度的影响。与未受干扰的处理(CK)相比,外源C的输入会增加土壤温度(6.59%~9.16%)和土壤湿度(1.16%~6.26%),并增加土壤有机质含量(9.43%~26.37%)和全氮含量(7.93%~21.01%),从而提高土壤肥力;外源N的输入会降低土壤碳氮比,加速有机物的分解速率,不利有机物质的积累。
     发生变化后的土壤理化性质会对土壤弹尾虫群落多样性产生影响。土壤弹尾虫与土壤理化性质的相关分析表明,土壤弹尾虫群落的变化与土壤温度、湿度、土壤有机质和全氮含量显著相关(p<0.05),其中,土壤湿度对土壤弹尾虫群落的变化影响最大。
     2、在人工模拟条件下,首次采用变性梯度凝胶电泳方法对土壤弹尾虫群落多样性进行分析,结果发现,土壤弹尾虫群落的丰富度受外源性质和采样时间共同作用的影响极显著(p<0.01),并且随月份变化明显(p<0.05)。在采样时间段内,土壤弹尾虫群落的丰富度主要是在5月与6月、7月、8月之间存在显著差异(p<0.05);在不同外源C、N干扰下,土壤弹尾虫群落的丰富度主要是在N1.5与对照(CK)存在显著差异(p<0.05)。
     利用磷脂脂肪酸(PLFA)生物标记法分析不同外源C、N干扰对土壤微生物群落结构的影响,结果发现,土壤微生物磷脂脂肪酸(PLFA)总量受采样时间和外源性质共同作用的影响极显著(p<0.01),外源C的施入增加了PLFA总量,而外源N的施入则减少了PLFA总量,并且相关分析结果显示,PLFA总量与土壤全氮含量有着密切的相关性(p<0.05)。另外,外源C的施入同时也增加了细菌PLFAs、真菌PLFAs、菌根真菌PLFAs、革兰氏阳性菌PLFAs和革兰氏阴性菌PLFAs含量,外源N的施入则减少了它们的含量。土壤温度、湿度、pH对土壤微生物群落变异的影响显著(p<0.05),其中pH对土壤微生物群落变异的影响最显著。
     外源物质、土壤理化性质和土壤微生物对土壤弹尾虫群落遗传多样性的影响各不相同。冗余分析(RDA)结果表明,土壤微生物对土壤弹尾虫群落遗传多样性变异的影响很大(p<0.01),为24%,并且土壤微生物与土壤理化性质交互作用下对土壤弹尾虫遗传多样性变异的影响最大(p<0.01),达到了38%。
     根据上述研究的结论表明,外源C干扰对土壤弹尾虫群落的影响高于外源N的干扰;外源C、N分解过程会改变土壤理化性质,外源C干扰以增加土壤有机质、土壤氮含量和土壤微生物量的方式来增加土壤肥力;土壤理化性质发生改变后,土壤弹尾虫的群落结构和土壤微生物群落结构也会随之发生变化,而土壤微生物也影响土壤弹尾虫群落多样性。这些结论为加强土壤管理、提高土壤生物多样性、改善土壤营养状况,创造有利于林木和作物生长的良好土壤生态环境提供了基础资料,具有重要的科学意义。
Collembolan (Hexapoda: Collembola) are among the most widespread and abundantterrestrial arthropods. They play an important role in accelerating the rate of decomposition ofsoil organic matter, improving the potential soil carbon sequestration and soil fertility, and soon. The abundance and diversity of soil collembolan could be affected, directly or indirectly, byexternal disturbance, such as inputting exogenous carbon and nitrogen to soil. This couldundermine their functional role in the soil ecosystem, and further affect the ecosystemfunctions associated with soil collembolan. Therefore, a study of the dynamic changes in soilcollembolan community richness and diversity and their response to exogenous carbon andnitrogen has great significance in revealing the functional role of soil collembolan in theprocess of decomposition and mineralization of soil organic matter.
     In this paper, dynamic changes in the richness and diversity of soil collembolancommunities and their response to disturbance with exogenous carbon and nitrogen werestudied in a field experiment in the black soil area; thereafter greenhouse pot experiments wereconducted to investigate the relationship among soil collembolan community diversity, soilmicrobial community structure and soil properties in response to disturbance by exogenouscarbon and nitrogen. The main results were as follows:
     1. In the field experiment, the methods of modified Tullgren and Baermann were used tosurvey the composition and structure of soil collembolan as affected by exogenous carbon andnitrogen in2011and2012. A total of270soil samples and42634soil collembolan individualswere collected and sorted into12families.
     The effects of exogenous carbon and nitrogen and sampling time on soil collembolancommunity diversity were significant. The number of soil collembolan individuals subjected todisturbance by exogenous carbon was higher than the number subjected to disturbance ofexogenous nitrogen. In2011, the number of soil collembolan individuals rose from May to August and declined in September; in2012, the number of soil collembolan individualsdeclined from May to September. A principal component analysis (PCA) showed that thecomposition of soil collembolan was related to sampling time and type of exogenousdisturbance.
     Soil properties, such as temperature, moisture, pH, organic carbon, total nitrogen and thecarbon to nitrogen ratio, were influenced by exogenous carbon and nitrogen. Compared to acontrol treatment (CK), soil temperature, moisture, carbon and soil total nitrogen increased by6.59%~9.16%,1.16%~6.26%,9.43%~26.37%and7.93%~21.01%, respectively. Soil fertilitywas improved with disturbance by exogenous carbon. The soil carbon-nitrogen ratio wasreduced and the rate of decomposition of organic matter was accelerated with disturbance byexogenous nitrogen, which was not conducive to the accumulation of organic material.
     Soil collembolan community diversity was influenced by the changed soil properties. Aredundancy analysis (RDA) showed that soil collembolan communities were affectedsignificantly by soil temperature, soil moisture, soil organic carbon and total nitrogen (p<0.05),the influence of soil moisture was greatest.
     2. In the greenhouse pot experiments, the method of denaturing gradient gelelectrophoresis was used for the first time to survey the diversity of soil collembolancommunity. The results showed that the richness of soil collembolan communities wasinfluenced significantly by exogenous carbon and nitrogen and sampling time (p<0.01). Further,the richness of soil collembolan communities varied over season. The richness in May wasdifferent significantly with that in June, July and August (p<0.05); and the richness in N1.5wassignificantly different from that in the control treatment (CK)(p<0.05).
     Using the method of phospholipid fatty acids to survey the composition and structure ofsoil microbial community as affected by exogenous carbon and nitrogen, the results showedthat the total PLFAs was increased in the treatments of exogenous carbon, decreased in thetreatments of exogenous nitrogen, and influenced significantly by exogenous substances andsampling time (p<0.01). And the results of Pearson correlation analysis showed that the total PLFAs was correlated significantly with soil total nitrogen (p<0.05). The bacterial PLFAs,fungal PLFAs, arbuscular mycorrhizal fungi PLFAs, gram-positive bacterial PLFAs andgram-negative bacterial PLFAs were also increased in the treatments of exogenous carbon anddecreased in the treatments of exogenous nitrogen. The soil microbial communities weresignificantly influenced by soil moisture, temperature and pH (p<0.05), and the influence ofpH was greatest (p<0.01).
     The influences of exogenous substances, soil properties, and soil microbial on soilcollembolan community were different. A redundancy analysis (RDA) showed that theinfluence of soil microbial on the soil collembolan community was the largest (p<0.01), whichwas24%, and the genetic diversity of soil collembolan was most influenced significantly bythe interaction between the soil properties and the soil microbial (p<0.01), which was38%.
     In summary, the impact of exogenous carbon on soil collembolan community was higherthan that of the exogenous nitrogen. Soil properties could be changed in the decompositionprocess of exogenous carbon and nitrogen, such as soil organic carbon and total nitrogen, andsoil microbial biomass could be increased under disturbances by the exogenous carbon. Soilcollembolan community structure and soil microbial community structure could be changedwith a change of soil properties, and then soil collembolan community could be furtherinfluenced by soil microbial. These conclusions have important scientific significance andprovide basic information for reinforcing soil management, increasing soil biodiversity,improving soil nutrition and creating a better soil ecological environment for plant and crop.
引文
Amossé J, Bettarel Y, Bouvier C, et al. The flows of nitrogen, bacteria and viruses from the soil to watercompartments are influenced by earthworm activity and organic fertilization (compost vs.vermicompost). Soil Biology and Biochemistry,2013,66:197-203.
    An Y J, Kim S W, Lee W M. The collembola Lobella sokamensis juvenile as a new soil quality indicator ofheavy metal pollution. Ecological Indicators,2013,27:56-60.
    Anderson J M, Ineson P. Interactions between microorganisms and soil invertebrates in nutrient fluxpathways of forest ecosystems. In: Invertebrate-microbial interactions (Anderson J M, Rayner A D M,and Walton D W H, eds), pp.59-88. Cambridge University Press, New York.1984.
    Ardestani M M, Van Gestel C A M. Using a toxicokinetics approach to explain the effect of soil pH oncadmium bioavailability to Folsomia candida. Environmental Pollution,2013,180:122-130.
    Ardestani M M, Van Gestel C A M. The effect of pH and calcium on copper availability to the springtailFolsomia candida in simplified soil solutions. Pedobilogia,2014,57(1):53-55.
    Bandow C, Coors A, Karau N, et al. Interactive effects of lambda-cyhalothrin, soil moisture, and temperatureon Folsomia candida and Sinella curviseta (Collembola). Environmental Toxicology and Chemistry,2014,33(3):654-661.
    Bao Z, Ikunaga Y, Matsushita Y, et al. Combined analyses of bacterial, fungal and nematode communities inandosolic agricultural soils in Japan. Microbes and Environments,2012,27(1):72-79.
    Bastian F, Alabouvette C, Saiz-Jimenez C. The impact of arthropods on fungal community structure inLascaux Cave. Journal of Applied Microbiology,2009,106(5):1456-1462.
    Bellinger P F, Christiansen K A, Janssens F. Checklist of the Collembola of the World.http://www.collembola.org.1996-2014.
    B ehme L, Langer U, B ehme F. Microbial biomass, enzyme activities and microbial community structurein two European long-term field experiments. Agriclture, Ecosystems and Environment,2005,109:141-152.
    B rner C. Die Familien der Collembolen. Zoologischer Anzeiger,1913,41:315-322.
    B rner C. üeber ein neues Achorutidengenus Willemia, sowie4weitere neue Collembolenformen derselbenfamilie. Zoologischer Anzeiger,1901b,24:428-432.
    B rner C. Vorl ufige Mitteilung über einige neue Aphorrurinen und zur Sytematik der Collembola.Zoologischer Anzeiger,1901a,24:1-15.
    B rner C. Zur Systematik der Hexapoda (Stepsiptera). Zoologischer Anzeiger,1904,27:511-533.
    Boxman A W, Van Dam D, Van Dijk H F G, et al. Ecosystem responses to reduced nitrogen and sulphurinputs into two coniferous forest stands in the Netherlands. Forest Ecology and Management,1995,71(1):7-29.
    Boxman A W, Blanck K, Brandrud T, et al. Vegetation and soil biota response to experimentally-changednitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology andManagement,1998,101:65-79.
    Campbell C D, Chapman S J, Cameron C M, et al. A rapid microtiter plate method to measure carbondioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soilmicrobial communities by using whole soil. Applied Environmental Microbiology,2003,69(6):3593-3599.
    Cao Y S, Fu S L, Zou X M, et al. Soil microbial community composition under Eucalyptus plantations ofdifferent age in subtropical China. European Journal of Soil Biology,2010,46(2):128-135.
    Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses tosimulated nitrogen deposition. Ecology,2000,81(9):2359-2365.
    Chahartaghi M, Langel R, Scheu S, et al. Feeding guilds in Collembola based on nitrogen stable isotoperatios. Soil Biology and Biochemistry,2005,37(9):1718-1725.
    Chamberlain P M, Bull I D, Black H I J, et al. Collembolan trophic preferences determined using fatty aciddistributions and compound-specific stable carbon isotope values. Soil Biology and Biochemistry,2006,38(6):1275-1281.
    Chamberlain P M, Bull I D, Black H I J, et al. Lipid content and carbon assimilation in Collembola:implications for the use of compound-specific carbon isotope analysis in animal dietary studies.Oecologia,2004,139(3):325-335.
    Chang L, Wu H T, Wu D H, et al. Effect of tillage and farming management on Collembola in marsh soils.Applied Soil Ecology,2013,64:112-117.
    Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecoloyg. New York: SpringerVerlag,2002.
    Choi W I, Moorhead D L, Neher D A, et al. A modeling study of soil temperature and moisture effects onpopulation dynamics of Paronychiurus kimi (Collembola: Onychiuridae). Biology and Fertility of Soils,2006,43(1):69-75.
    Christensen B T. Physical fractionation of soil and organic matter in primary particle size and densityseparates. Advance in Soil Science,1992,20:2-90.
    Christiansen K A. Springtails. The Kansas School Naturalist,2003.
    Christiansen K, Bellinger P. The biogeography of Collembola. Polskie Pismo Entomologiczne,1995,64(1-4):279-294.
    Christiansen K, Bellinger P. The Collembola of North America North of the Rio Grande. A TaxonomicAnalysis, Grinnell College, Iowa,1998:1-1518.
    Coleman D C. Soil ecology. In McGraw-Hill Encyclopedia of Science and Technology,1987,16:550-553.
    Convey P, Pugh P J A, Jackson C, et al. Response of Antarctic terrestrial microarthropods to longtermclimate manipulations. Ecology,2002,83:3130-3140.
    Coulson S J, Hodkinson I D, Wooley C, et al. Effects of experimental temperature elevation on high-arcticsoil microarthropod populations. Polar Biology,1996,16(2):147-153.
    D′Haese C A. Morphological appraisal of Collembola phylogeny with special emphasis on Poduromorphaand a test of the aquatic origin hypothesis. Zoological Scripta,2003,32(6):563-586.
    de Boer T E, Holmstrup M, van Straalen N M, et al. The effect of soil pH and temperature on Folsomiacandida transcriptional regulation. Journal of Insect Physiology,2010,56(4):350-355.
    de Boer T E, Tas N, Braster M, et al. The influence of long-term copper contaminated agricultural soil atdifferent pH levels on microbial communities and springtail transcriptional regulation. EnvironmentalScience and Technology,2011,46(1):60-68.
    de Bruyn L A L. The status of soil macrofauna as indicators of soil health to monitor the sustainability ofAustralian agricultural soils. Ecological Economics,1997,23(2):167-178.
    Deharveng L. Recent advances in Collembola systematics. Pedobiologia,2004,48:415-433.
    Deharveng L. Soil Collembola Diversity, Endemism, and Reforestation: A Case Study in the Pryenees(France). Conservation Biology,2002,10:74-84.
    Dinakaran J, Krishnayya N S R. Variations in soil organic carbon and litter decomposition across differenttropical vegetal covers. Current Science,2010,99:1051-1060.
    Dixon P. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science,2003,14(6):927-930.
    Domínguez G F, Diovisalvi N V, Studdert G A, et al. Soil organic C and N fractions under continuouscropping with contrasting tillage systems on mollisols of the southeastern Pampas. Soil and TillageResearch,2009,102:93-100.
    Filser J. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth internationalColloquium on Apterygota, eské Budějovice2000: Apterygota at the Beginning of the ThirdMillennium. Pedobiologia,2002,46(3):234-245.
    Freckman D W. Linking biodiversity and ecosystem function of soils and sediments. Ambio,1997,26:556-662.
    Gardi C, Tomaselli M, Parisi V. Soil quality indicators and biodiversity in northern Italian permanentgrasslands. Europe Journal of Soil Biology,2002,38:103-110.
    Gloor G B, Preston C R, Johnson-Schlitz D M, et al. Type I repressors of Pelement mobility. Genetics,1993,135:81-95.
    Gongalsky K B, Persson T, Pokarzhevskii A D. Effects of soil temperature and moisture on the feedingactivity of soil animals as determined by the bait-lamina test. Applied Soil Ecology,2008,39(1):84-90.
    Gregorich E G,Carter M R,Doran J W, et al. Biological attributers of soil quality. In: Soil quality for cropproduction and ecosystem health (Gregorich E G and Carter M R, eds), pp.81-113. Elsevier,Amsterdam,1997.
    Haase J, Brandl R, Scheu S, et al. Above-and belowground interactions are mediated by nutrient availability.Ecology,2008,89:3072-3081.
    H gvar S, Abrahamsen G. Collembola in Norwegian coniferous forest soils. III. Relations to soil chemistry.Pedobiologia,1984,27:331-339.
    Hasegawa M, Hiroshi T. Changes in feeding attributes of four collembolan populations during thedecomposition process of pineneedles. Pedobiologia,1995,39:155-169.
    Hasegawa M, Ota A T, Kabeya D, et al. The effects of mixed broad-leaved trees on the collembolancommunity in larch plantations of central Japan. Applied Soil Ecology,2013.(In Press)
    Hasegawa M. Changes in Collembola and Cryptostigmata communities during the decomposition of pineneedles. Pedobiologia,1997,41(4):225-241.
    Haubert D, H ggblom M M, Langel R, et al. Trophic shift of stable isotopes and fatty acids in Collembolaon bacterial diets. Soil Biology and Biochemistry,2006,38:2004-2007.
    Hesham A E L, Qi R, Yang M. Comparison of bacterial community structures in two systems of a sewagetreatment plant using PCR-DGGE analysis. Journal of Environmental Sciences,2011,23(12):2049-2054.
    Hildebrand M, Tebbe C C, Geider K. Survival studies with the fire blight pathogen Erwinia amylovara insoil and in a soil-inhabiting insect. Phytopathol,2001,149:635-639.
    Hishi T, Hyodo F, Saitoh S, et al. The feeding habits of collembola along decomposition gradients usingstable carbon and nitrogen isotope analyses. Soil Biology and Biochemistry,2007,39(7):1820-1823.
    Hopkin S P. Collembola. Encyclopedia of Soil Science,2002:207-210.
    Huebner K, Lindo Z, Lechowicz M J. Post-fire succession of collembolan communities in a northernhardwood forest. European Journal of Soil Biology,2012,48:59-65.
    Humbert W, Barra J A. Les Collembolas: unmodele d’étude l’absorption intestinale de l’excretion et de ladetoxication de quelques metaux lourds. Bulletin de la Société Ecophysiologie,1979,4:117-121.
    Humbert W. Excretion et detoxication de quelques metauxlourds chez les collemboles (insects). Bulletin de l′Association Philomathique d′Alsace et de Loraine,1981,18:97-101.
    Humbert W. Intracellular accumulation of uranium and lead in Collembolan (Insect). In: The38th AnnualProceedings of the Electron Microscopical Society of America, pp.564-565. Reno, CambridgeUniversity Press,1980.
    Hutson B R. Influence of pH, temperature and salinity on the fecundity and longevity of four species ofCollembola. Pedobiologia,1978,18:163-179.
    Jaeger G, Eisenbeis G. pH-dependent absorption of solutions by the ventral tube of Tomocerus flavescens(Tullberg,1871)(Insecta, Collembola). Revue d’Ecologie et de Biologie du Sol,1984,21:519-531.
    J rgensen H B, Elmholt S, Petersen H. Collembolan dietary specialisation on soil grown fungi. Biology andFertility of Soils,2003,39:9-15.
    Kaneda S, Kaneko N. Collembolans feeding on soil affect carbon and nitrogen mineralization by theirinfluence on microbial and nematode activities. Biology and Fertility of Soils,2008,44(3):435-442.
    Karl R, Black H I J, Campbell C D, et al. Selecting biological indicators for monitoring soils: A frameworkfor balancing scientific and technical opinion to assist policy development. Ecological Indicators,2009,9:1212-1221.
    Kaye J P, Binkley D, Rhoades C. Stable soil nitrogen accumulation and flexible organic matter stoichiometryduring primary flood plainsuccession. Biogeochemistry,2003,63:1-22.
    Kim S W, An Y J. Jumping behavior of the springtail Folsomia candida as a novel soil quality indicator inmetal-contaminated soils. Ecological Indicators,2014,38:67-71.
    Klamer M, B th E. Estimation of conversion factors for fungal biomass determination in compost usingergosterol and PLFA18:2ω6,9. Soil Biology and Biochemistry,2004,36(1):57-65.
    Klironomos J N, Bednarczuk E M, Neville J. Reproductive significance of feeding on saprobic andarbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Functional Ecology,1999,13(6):756-761.
    Klironomos J N, Kendrick B. Relationships among microarthropods, fungi and their environment. Plant andSoil,1995,170:183-197.
    Koblerg R L, Rouppet B, Westfall D G, et al. Evaluation of an in situ net soil nitrogen mineralization methodin dryland agroecosystems. Soil Science Society of America Journal,1997,61(2):504-508.
    Krab E J, Berg M P, Aerts R, et al. Vascular plant litter input in subarctic peat bogs changes Collembola dietsand decomposition patterns. Soil Biology and Biochemistry,2013,63:106-115.
    Kuikman P J, VanVeen J A. The impacts of protozoa on the availability of bacterial nitrogen to plants.Biology and Fertility of Soils,1989,8(1):13-18.
    Kuusk A K, Agustí N. Group-specific primers for DNA-based detection of springtails (Hexapoda:Collembola) within predator gut contents. Molecular Ecology Resources,2008,8(3):678-681.
    Larsen J, Johansen A, Erik Larsen S, et al. Population performance of collembolans feeding on soil fungifrom different ecological niches. Soil Biology and Biochemistry,2008,40(2):360-369.
    Lavelle P, Chauvel A, Fragoso C. Faunal activity in acid soils. In: Plant-Soil Interactions at Low pH (Date RA et al., eds), pp.201-211. The Netherlands: Kluwer Academic Publishers,1995.
    Lavelle P, Spain A V, Blanchart E, Martin A, et al. The impact of soil fauna on the properties of soils in thehumid tropics. In: Myths and Science of Soils of the Tropics.(Sanchez P and Lal R, eds), pp.157-185.Soil Science Society of America Special Publication, Madison, Wisconsin, USA.1992b.
    Lavelle P. Diversity of soil fauna and ecosystem function. Biology Intertional,1996,33:3-16.
    Lavy D, Verhoef H A. Modelling the time-temperature relationship in cold injury and effect ofhigh-temperature interruptions on survival in a chill-sensitive collembolan. Functional Ecology,1998,12(5):816-824.
    Li L J, Han X Z, You M Y, et al. Carbon and nitrogen mineralization patterns of two contrasting cropresidues in a Mollisol: Effects of residue type and placement in soils. European Journal of Soil Biology,2013,54:1-6.
    Lubbock J. Monograph of the Collembola and Thysanura. Ray Society, London,1873.
    Lupetii P, Marsili L, Focardi S, et al. Organochlorine compounds in litter-dwelling arthropods Collembola(Insect, Apterygota) from Central Italy. Acta Zoologica Fennica,1994,195:94-97.
    Lussenhop J, Treonis A, Curtis P S, et al. Response of soil biota to elevated atmospheric CO2in popularmodel systems. Oecologia,1998,113:247-251.
    Lussenhop L. Mechanisms of microarthropod microbial interaction in soil. Advance Ecological Research,1992,23:1-33
    Lyncb H B, Epps K Y, Fukami T, et al. Introduced canopy tree species effect on the soil microbialcommunity in a montane tropical forest. Pacific Science,2012,66:141-150.
    Madan R, Pankhurst C, Hawke B, et al. Use of fatty acids for identification of AM fungi and estimation ofthe biomass of AM spores in soil. Soil Biology and Biochemistry,2002,34(1):125-128.
    Massoud Z, Rapoport E H. Collemboles Isotomides d'Amerique du Sud et de l'Antarctique. Biologie de laAmérique Australe,1968,4:307–337.
    Mendham D S, Sankaran K V, O'Connell A M, et al. Eucalyptus globulus harvest residue managementeffects on soil carbon and microbial biomass at1and5years after plantation establishment. SoilBiology and Biochemistry,2002,34:1903-1912.
    Mertens J. L'influence du facteur pH sur le comportement de Orchesella villosa (Geoffroy,1764),(Collembola, Insecta). Annales de la Société Royale de Zoologie de Belgique,1975,105:45-52.
    Michelle T F, Hopkin S P. Continuous monitoring of Folsomia candida (Insecta: Collembola) in a metalexposure test. Ecotoxicology and Environmental Safety,2001,48:275-286.
    Mitchell R J, Hester A J, Campbell C D, et al. Explaining the variation in the soil microbial community: dovegetation composition and soil chemistry explain the same or different parts of the microbial variation?Plant Soil,2012,351:355-362.
    Mudrák O, Uteseny K, Frouz J. Earthworms drive succession of both plant and Collembola communities inpost-mining sites. Applied Soil Ecology,2012,62:170-177.
    Muturi J J, Mbugi J P, Mueke J M, et al. Effect of integrated soil fertility management interventions on theabundance and diversity of soil collembolan in Embu and Taita Districts, Kenya. Tropical andSubtropical Agroecosystems,2011,13:37-42.
    Nardi F, Spinsanti G, Boore J L, et al. Hexapoda origins: monophyletic or paraphyletic? Science,2003,299(5614):1887-1889.
    Ngosong C, Raupp J, Scheu S, et al. Low importance for a fungal based food web in arable soils undermineral and organic fertilization indicated by Collembola grazers. Soil Biology and Biochemistry,2009,41(11):2308-2317.
    Nursita A I, Singh B, Lees E. The effects of cadmium, copper, lead, and zinc on the growth and reproductionof Proisotoma minuta Tullberg (Collembola). Ecotoxicology and Environmental Safety,2005,60(3):306-314.
    Oros-Sichler M, Smalla K. Semi-Nested PCR Approach to Amplify Large18S rRNA Gene Fragments forPCR-DGGE Analysis of Soil Fungal Communities.(Gupta V K, et al., eds), pp.289-298. LaboratoryProtocols in Fungal Biology. Springer New York,2013.
    Petersen H. A review of collembolan ecology in ecosystem context. Acta Zoologica Fennica,1994,195:111-118.
    Ponge J F. Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia,1993,37:223-244.
    Ptersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decompositionprocesses. Oikos,1982,39:287-388.
    Querner P, Bruckner A, Drapela T, et al. Landscape and site effects on Collembola diversity and abundancein winter oilseed rape fields in eastern Austria. Agriculture, Ecosystems and Environment,2013,164:145-154.
    Rodgers D. Soil collembolan (Insecta: Collembola) assemblage structure in relation to understorey plantspecies and soil moisture on a eucalypt woodland site. Memoirs of the Museum of Victoria,1997,56(2):287-293.
    Rusek J. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity andConservation,1998,7:1207-1219.
    Sabatini M A, Innocenti G. Effects of Collembola on plant-pathogenic fungi interactions in simpleexperimental systems. Biology and Fertility of Soils,2001,33:62-66.
    Salmon S, Ponge J F. Distribution of Heteromurus nitidus (Hexapoda, Collembola) according to soil acidity:interactions with earthworms and predator pressure. Soil Biology and Biochemistry,1999,31(8):1161-1170.
    Salmon J T. An index to the Collembola. Bulletin of the Royal Society of New Zealand,1964,7:1-651.
    Santorufo L, Van Gestel C A M, Rocco A, et al. Soil invertebrates as bioindicators of urban soil quality.Environmental Pollution,2012,161:57-63.
    Scheu S, Folger M. Single and mixed diets in Collembola: effects on reproduction and stable isotopefractionation. Functional Ecology,2004,18(1):94-102.
    Scheu S, Theenhaus A, Jones T H. Links between the detritivore and the herbivore system: effects ofearthworms and Collembola on plant growth and aphid development. Oecologia,1999,119(4):541-551.
    Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species,melanin and mixed diets. Oecologia,2004,139(3):347-353.
    Seastedt T R. The role of microarthropods in decomposition and mineralization processes. Annual Review ofEntomology,1984,29(1):25-46.
    Siddiky M R K, Schaller J, Caruso T, et al. Arbuscular mycorrhizal fungi and collembola non-additivelyincrease soil aggregation. Soil Biology and Biochemistry,2012,47:93-99.
    Son J, Mo H, Kim J, Ryoo M I, et al. Effect of soil organic matter content and pH on toxicity of cadmium toParonychiurus kimi (Lee)(Collembola). Journal of Asia-Pacific Entomology,2007,10(1):55-61.
    Son J, Ryoo M I, Jung J, et al. Effects of cadmium, mercury and lead on the survival and instantaneous rateof increase of Paronychiurus kimi (Lee)(Collembola). Applied soil Ecology,2007,35(2):404-411.
    Taylor A R, Schr ter D, Pflug A, et al. Response of different decomposer communities to the manipulationof moisture availability: potential effects of changing precipitation patterns. Global Change Biology,2004,10:1313-1324.
    Tordoff G M, Boddy L, Jones T H. Grazing by Folsomia candida (Collembola) differentially affectsmycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaetevelutina and Resinicium bicolor. Mycological Research,2006,110(3):335-345.
    Tranvik L, Eijsackers H. On the advantage of Folsomia fimetarioides over Isotomiella minor (Collembola)in a metal polluted soil. Oecologia,1989,80(2):195-200.
    Trofymow J A, Morley C R, Coleman D C, et al. Mineralization of cellulose in the presence of chitin andassemblages of microflora and fauna in soil. Oecologia,1983,60(1):103-110.
    Van Amelsvoort P A M, Domgen M V, Van der Werff P A. The impact of Collembola on humification andmineralization of soil organic matter. Pedobiologia,1988,31:103-111.
    Verhoef H A, Dorel F G, Zoomer H R. Effects of nitrogen deposition on animal mediated nitrogenmobilization inconiferous litter. Biology and Fertility and Soil,1989,8(3):255-259.
    Wang M, Qu L Y, Ma K M, et al. Soil microbial properties under different vegetation types on Mountain Han.Science China Life Sciences,2013,56(6):561-570.
    Wardle D, Bardgett R, Klironomos J, et al. Ecological linkages between aboveground and belowgroundbiota. Science,2004,304:1629-1633.
    Xu G L, Fu S L, Schleppi P, et al. Responses of soil Collembola to long-term atmospheric CO2enrichmentin a mature temperate forest. Environmental Pollution,2013,173:23-28.
    Xu G L, Kuster T M, Günthardt-Goerg M S, et al. Seasonal exposure to drought and air warming affects soilCollembola and mites. PloS One,2012,7(8): e43102.
    Yosii R. Critical checklist of the Japanese species of Collembola. Contributions from the Biological,Laboratory Kyoto University,1977,25:141-170.
    Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere,1997,35:275-294.
    Zhao L J, Tumura H, Ke X. Tentative checklist of Collembolan species from China (Insect). Publication ofItako Hydrobiological Station,1997,9:15-40.
    卜云,高艳,栾云霞,等.低等六足动物系统学研究进展.生命科学,2012,24(2):130-138.
    陈建秀,麻智春,严海娟,等.跳虫在土壤生态系统中的作用.生物多样性,2007,15(2):154-161.
    陈振翔,于鑫,夏明芳,等.磷脂脂肪酸分析方法在微生物生态学中的应用.生态学杂志,2005,24(7):828-832.
    邓晓保,邹寿青,付先惠,等.西双版纳热带雨林不同土地利用方式对土壤动物个体数量的影响.生态学报,2003,23(1):130-138.
    丁程成,戴征凯,李辉信,等.退化红壤不同植被恢复类型的土壤弹尾虫群落结构.应用生态学报,2008,19(3):593-598.
    董鸣.陆地生物群落调查观察与分析.北京:中国标准出版社,1996.
    方新,王志学,周建树.根结线虫生防菌剂介绍.微生物学杂志,2005,25(2):111-112.
    傅声雷.土壤生物多样性的研究概况与发展趋势.生物多样性,2007,15(2):109-115.
    高梅香,张雪萍.石灰和EM处理条件下土壤动物群落在落叶分解中的变化.生态学报,2011,31(1):164-174.
    高艳.弹尾纲系统分类学与土壤动物应用生态学研究.中国科学院研究生院博士学位论文,2007:1-99.
    郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展.林业科学,2006,42(4):93-100.
    胡锋,刘满强,李辉信.土壤动物对土壤质量的影响及研究进展.见:中国土壤学会.面向农业与环境的土壤科学.北京:科学出版社,2004:160-173.
    黄昌勇.土壤学.北京:中国农业出版社,2000.
    黄顶成,尤民生,侯有明,等.化学除草剂对农田生物群落的影响.生态学报,2005,25(6):1451-1458.
    黄玉梅.土壤动物群落多样性研究进展.西部林业科学,2004,33(3):63-68.
    靳亚丽,由文辉,易兰,等.天童森林生态系统凋落物层跳虫群落的生态学研究.生态环境学报,2011,20(2):241-247.
    柯欣,梁文举,宇万太,等.下辽河平原不同土地利用方式下土壤微节肢动物群落结构研究.应用生态学报,2004,15(4):600-604.
    柯欣,岳巧云,傅荣恕,等.浦东滩涂中型土壤动物群落结构及土质酸碱度生物评价分析.动物学研究,2002,23(2):129-135.
    柯欣,赵立军,尹文英.青冈林土壤动物群落结构在落叶分解过程中的演替变化.动物学研究,1999,20(3):207-213.
    柯欣,赵立军,尹文英.三种乔木落叶分解过程中跳虫群落结构的演替.昆虫学报,2001,44(2):221-226.
    柯欣,赵立军,尹文英.青冈林土壤跳虫群落结构在落叶分解过程中的变化.生态学报,2001,21(6):982-987.
    李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展.生态学报,2001,21(7):1187-1195.
    李晓勇,骆永明,柯欣,等.土壤弹尾目昆虫Folsomia candida对铜污染的急性毒理初步研究.土壤学报,2011,48(1):197-201.
    梁斌,赵伟,杨学云,等.小麦-玉米轮作体系下氮肥对长期不同施肥处理土壤氮含量及作物吸收的影响.土壤学报,2012,49(4):748-757.
    梁文举,闻大中.土壤生物及其对土壤生态学发展的影响.应用生态学报,2001,12(1):137-140.
    刘任涛,赵哈林,赵学勇.半干旱区草地土壤动物多样性的季节变化及其与温湿度的关系.干旱区资源与环境,2013,27(1):97-101.
    刘永琴,徐兴全,童昱.玉米秸杆腐解过程中跳虫群落结构的变化.西南师范大学学报:自然科学版,2009,34(2):57-60.
    刘玉荣,贺纪正,郑袁明.跳虫在土壤污染生态风险评价中的应用.生态毒理学报,2008,3(4):323-330.
    卢萍,徐演鹏,谭飞,等.黑土区农田土壤节肢动物群落与土壤理化性质的关系.中国农业科学,2013,46(009):1848-1856.
    栾云霞.通过核糖体RNA基因序列分析探讨低等六足动物的系统发生.中国科学院研究生院博士学位论文,2004:1-93.
    孟摇,磊摇,章家恩.模拟酸雨对广东赤红壤的中小型动物群落组成及多样性的影响.生态学杂志,2010,29(11):2204-2209.
    邱军,傅荣恕.土壤温湿度对甲螨和跳虫数量的影响.山东师范大学学报(自然科学版),2004,19(4):72-74.
    王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用.微生物学通报,2004,31(1):114-117.
    王移,卫伟,杨兴中,等.我国土壤动物与土壤环境要素相互关系研究进展.应用生态学报,2010,21(9):2441-2448.
    王宗英,朱永恒,路有成,等.九华山土壤跳虫的生态分布.生态学报,2001,21(7):1142-1147.
    吴东辉,尹文英,李月芬.刈割和封育对松嫩草原碱化羊草草地土壤跳虫群落的影响.草业学报,2008,17(5):117-123.
    吴东辉,尹文英,殷秀琴.松嫩草原中度退化草地不同植被恢复方式下土壤跳虫群落特征比较.昆虫学报,2008,51(5):509-515.
    吴东辉,张柏,陈鹏.吉林中、西部平原区土壤弹尾虫群落结构的比较.昆虫学报,2005,48(6):935-942.
    吴东辉,张柏,陈鹏.长春市不同土地利用生境土壤弹尾虫群落结构特征.生态学杂志,2006,25(2):180-184.
    武海涛,吕宪国,杨青,等.土壤动物主要生态特征与生态功能研究进展.土壤学报,2006,43(2):314-323.
    邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析.微生物学报,2006,46(2):331-335.
    熊燕,栾云霞.跳虫系统进化的研究进展.生命科学,2007,19(2):239-244.
    徐国良,莫江明,周国逸,等.土壤动物与N素循环及对N沉降的响应.生态学报,2003,23(11):2453-2463.
    徐演鹏,卢萍,谭飞,等.外源C、N干扰下吉林黑土区农田土壤动物组成与结构.土壤学报,2013,50(4):800-809.
    许杰,柯欣,宋静,等.弹尾目昆虫在土壤重金属污染生态风险评估中的应用.土壤学报,2007,44(3):544-549.
    许湘琴,林植华,陈慧丽.凋落物分解对土壤生物的影响.生态学杂志,2011,30(6):1258-1264.
    颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用.土壤学报,2006,43(5):851-859.
    杨曾奖,曾杰,徐大平.森林枯枝落叶分解及其影响因素.生态环境,2007,16(2):649-654.
    殷秀琴,李建东.羊草草原土壤动物群落多样性的研究.应用生态学报,1998,9(2):186-188.
    殷秀琴,宋博,董炜华,等.我国土壤动物生态地理研究进展.地理学报,2010,65(1):91-102.
    尹文英.土壤动物学的研究近况.生命科学,1993,5(3):1-4.
    尹文英.中国土壤动物.北京:科学出版社,2000.
    张雪萍,崔国发,陈鹏.人工落叶松林土壤动物生物量的研究.应用生态学报,1996,7(2):150-154.
    张一,陈鹏.吉林省东部山地主要土壤类型及土壤动物.东北师范大学学报(自然科学版),1984,(2):82-92.
    赵晶,田红灯,闫文德,等.森林生态系统土壤氮素矿化影响因子分析及其研究趋势.中南林业科技大学学报,2013,32(11):110-114.
    郑乐怡,归鸿.昆虫分类(上).南京:南京师范大学出版社,1999.
    钟宇.不同立地类型巨桉人工林生物多样性特征.四川农业大学博士学位论文,2009.
    周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用.生物多样性,2007,15(2):162-171.
    朱永恒,赵春雨,王宗英,等.我国土壤动物群落生态学研究综述.生态学杂志,2005,24(12):1477-1481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700