用户名: 密码: 验证码:
高寒沙地生物结皮碳释放及其对土壤呼吸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤呼吸是陆地生态系统碳循环的重要组成部分,土壤呼吸任何微小的变化都将引起大气中CO2浓度的变化,进而影响全球气候的变化。作为土壤与大气之间界面层的生物结皮是干旱、半干旱区生态系统的重要组成部分。因为生物结皮能够进行呼吸作用释放CO2,而且干旱、半干旱区生物结皮活体的盖度通常能达到70%或更高,所以生物结皮的存在对该地区碳循环的贡献不容忽视。在干旱、半干旱区,生态系统主要受水分条件限制,因此,全球气候变化特别是降水格局的改变,将会影响该地区生物结皮的活性和土壤碳循环过程。目前,对于有生物结皮覆盖的土壤呼吸及生物结皮碳释放的研究还不多,降水对有生物结皮覆盖的土壤呼吸及生物结皮碳释放影响方面的研究更为缺乏。对于高寒沙区来说,上述研究尚未展开。研究青藏高原高寒沙区有生物结皮覆盖的土壤呼吸、生物结皮碳释放及其对模拟降雨的响应,对于揭示高寒沙区生物结皮碳释放特征及其对土壤呼吸的影响规律、准确评价生物结皮在高寒干旱区碳循环中的作用有重要意义。
     本研究以青海共和盆地沙地上分布的藻结皮、苔藓结皮、苔藓地衣结皮为研究对象,通过原位测定和控制实验,研究和揭示了生物结皮土壤呼吸和生物结皮碳释放的动态特征及模拟降雨条件下有生物结皮覆盖的土壤呼吸和生物结皮碳释放规律,探讨了高寒沙区生物结皮对土壤呼吸的影响规律。本研究主要得到以下结论:
     (1)生物结皮碳释放速率和有生物结皮覆盖的土壤呼吸的速率具有明显的动态变化特征,生物结皮碳释放速率的日变化较为平缓,没有明显的峰值,其生长季变化曲线呈双峰型;有生物结皮覆盖的土壤呼吸速率的日变化和生长季变化曲线都呈现单峰型。生物结皮碳释放速率的日均值和生长季均值都显著小于有生物结皮覆盖的土壤呼吸速率。
     (2)降水促进了生物结皮碳释放速率和有生物结皮覆盖的土壤呼吸速率的增加,并且对生物结皮碳释放速率的促进作用大于对有生物结皮覆盖的土壤呼吸速率的促进作用。其促进作用主要体现在降水初期,在降水后的3到6分钟内,生物结皮碳释放速率和有生物结皮覆盖的土壤呼吸速率分别增长了20倍和3倍以上。降水后有生物结皮覆盖的土壤呼吸速率的增长主要是由生物结皮碳释放速率的快速增长造成的。
     (3)无降水时,生物结皮的存在增大了日尺度和生长季尺度上土壤呼吸的温度敏感性;降水后,生物结皮的存在降低了土壤呼吸对近地面气温变化的敏感性。无降水时,在日尺度和生长季尺度上,基于近地面气温和土壤温度得到的无结皮土壤呼吸的Q10值小于有生物结皮覆盖的土壤的Q10值;降水后,基于近地面气温得到的无结皮土壤呼吸的Q10值大于有生物结皮覆盖的土壤呼吸的Q10值。
     (4)不同类型的生物结皮对土壤呼吸的影响存在差异。在整个生长季中,藻结皮对土壤呼吸的影响微弱,苔藓结皮和苔藓地衣结皮对土壤呼吸起明显的促进作用。
Soil respiration is the main component of terrestrial ecosystem carbon cycle, any changein soil respiration could influence the change in atmospheric CO2concentration which affectsthe global climate change in future. As an interface layer between soil and atmosphere,biological soil crust was an important part of arid and semi-arid ecosystems. Biological soilcrust could release CO2by respiration and its cover in arid and semi-arid area can reach70%orhigher, so that the contribution of biological soil crust to carbon cycle in this area could not beignored. The global climate change, particularly change in precipitation patterns could affectthe activity of biological soil crust and soil carbon cycle in arid and semi-arid ecosystem whichrestricted by water. Now no study about soil respiration, crust carbon emission and theirresponse to precipitation carried out in alpine sandy land. Thus, carrying out related research inQinghai-Tibet Plateau can fill biological soil crust gaps in carbon cycle and assess accuratelythe role of biological soil crust in carbon cycle in alpine sandy land. To discuss the carbonemission of algal crust, moss crust and moss-lichen crust and its effects on soil respiration inalpine sandy land, dynamic characteristics of biological soil crust and soil respiration and theirresponses for simulated precipitation were determined at Republican Basin in QinghaiProvince. The main conclusions from this study included:
     (1) Crust carbon emission rates and crust soil respiration rates had obviously temporaldynamics. The daily dynamics of crust carbon emission rates were smoothly without peak, andthe growing seasonal dynamics were bimodal. The daily and growing seasonal dynamics of thecrust soil respration rates were unimodal. The daily and growing seasonal average values ofcrust carbon emission rates were obviously smaller than those of crust soil respiraiton rates.
     (2) Precipitation could promote the crust carbon emission rates and crust soil respirationrates, and the precipitation played a greater role in promenting for crust carbon emission ratesthan crust soil respiraiton rates. This role was mainly reflectly in the early stage of precipitation,within the3~6minutes after precipitation, crust carbon emission rates and crust soil respiration had increased more than20-fold and3-fold, respectively. This showed that the “blowout”phenomenon of crust soil respiration rates after precipitation was caused by rapid growth ratesof crust carbon emission.
     (3) The biological soil crust could increase the temperature sensitivity of soil respirationon the scale of day and growing season in no precipitation conditions, and the precipitationcould alter the air temperature sensitivity of soil respiraiton. On scale of day and growingseason, the Q10values of no crust soil respiration were smaller than those of crust soilrespiraiton. After precipitation, the Q10values of no crust soil respiraiton based on airtemperature were bigger than crust soil respiraiton.
     (4) The effects of different types of biological soil crusts on soil respiration was different.On the scale of growing season, the effect of algal crust on soil respiraiton was weak, and themoss crust and moss-lichen crust promoted significantly the soil respiration.
引文
gren GI, Wetterstedt J M. What determines the temperature response of soil organic matter decomposition?Soil Biology and Biochemistry,2007,39:1794-1798.
    Austin AT, Yahdjian L, Stark JM, et al. Water pulses and biogeochemical cycles in arid and semiaridecosystems. Oecologia,2004,141(2):221-235.
    Barger NN, Herrick JE, Vanzee J, et al. Impacts of biological soil crusts disturbance and composition on Cand N loss from water erosion. Biogeochemistry,2006,77:247-263.
    Belnap J, Eldridge D. Biological soil crusts: structure, function, and management. Berlin: Springer-Verlag,2003,363-383.
    Belnap J, Phillips SL, Miller ME. Response of desert biological soil crusts to alterations in precipitationfrequency. Oecologia,2004,306-316.
    Beymer RJ, Klopatek JM. Potential contribution of carbon by microphytic crusts in pinyon-juniperwoodlands. Arid Land Research and Management,1991,5(3):187-198.
    Bowden RD, Newkirk KM, Rullo GM. Carbon dioxide and methane fluxes by a forest soil underlaboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry,1998,30(12):1591-1597.
    Bowker MA. Biological soil crust rehabilitation in theory and practice: An underexploited opportunity.Restoration Ecology,2007,15:13-23.
    Carrillo-Garcia A, Bashan Y, Rivera ED, et al. Effects of resource-island soils, competition, and inoculationwith Azospirillum on survival and growth of Pachycereus pringlei, the giant cactus of the SonoranDesert. Restoration Ecology,2000,8,65-73.
    Casals P, Gimeno C, Carrara A, et al. Soil CO2efflux and extractable organic carbon fractions undersimulated precipitation events in a Mediterranean Dehesa. Soil Biology and Biochemistry,2009,41(9):1915-1922.
    Chen B, Liu S, Ge J, et al. Annual and seasonal variations of Q10soil respiration in the sub-alpine forests ofEastern Qinhai-Tibet Plateau’ China. Soil Biology and Biochemistry,2010,42(10):1735-1742.
    Chen SP, Lin GH, Huang JH, et al. Responses of soil respiration to simulated precipitation pulses in semiaridsteppe under different grazing regimes. Journal of Plant Ecology,2008,1(4):237-246.
    Clair LLS, Johansen JR. Introduction to the symposium on soil crust communities. Great Basin Naturalist,1993,53(1):1-4.
    Coe KK, Belnap J, Sparks JP. Precipitation driven carbon balance controls survivorship of desert biocrustmosses. Ecological Society of America,2012,93(7):1626-1636.
    Cornwell WK, Cornelissen JHC, Amatangelo K, et al. Plant species traits are the predominant control onlitter decomposition rates within biomes worldwide. Ecology Letter,2008,11(10):1065-1071.
    Cox PM, Betts RA, Jones CD, et al. Acceleration of global warming due to carbon-cycle feedbacks in acoupled climate model. Nature,2000,408:184-187.
    Davidson EA, Janssens IA, Luo YQ. On the variability of respiration in terrestrial ecosystems: movingbeyond Q10. Global Change Biology,2006,12(2):154-164.
    Eldridge DJ, Greene RSB. Microbiotic soil crusts: A view of their roils in soil and ecological processes inthe rangelands of Australia. Australian Journal of Soil Research,1994,32:389-415.
    Gao XJ, Zhao ZC, Ding YH, et al. Climate change due to greenhouse effects in China as simulated by aregional climate model. Advances in Atmosphere Science,2001,18(6):1224-1230.
    Garcia-Pichel F, Belnap J. Microenvironments and microscale productivity of cyanobacterial desert crusts.Journal of Phycology,1996,32(4):774-782.
    Gifford GF. Infiltration rate and sediment production trends on a ploughed big sagebrush site. Journal ofRange Management,1972,25:53-55.
    Graf A, Weihermuller L, Huisman JA, et al. Comment of “Global convergance in temperature sensitivity ofrespiraiton at ecosystem level”. Science,2011,331:1265.
    Grishkan I, Nevo E, Wasser SP. Soil micromycete in the hyper saline Dead Sea coastal area, Israel.Mycological Progress,2003,2(1):19-28.
    Grote EE, Belnap J, Housman DC, et al. Carbon exchange in biological soil crust communities underdifferential temperatures and soil water contents: implications for global change. Global ChangeBiology,2010,16,2763-2744.
    Han G, Luo Y, Li D, et al. Ecosystem photosynthesis regulates soil respiration on a diurnal scale with ashort-term time lag in a coastal wetland. Soil Biology and Biochemistry,2014,68:85-94.
    Hao YB, Niu HS, Wang YF, et al. Rainfall variability in ecosystem CO2ecosystem CO2flux studies. ClimateResearch,2011,46(1):77-83.
    Hawkes CV. Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Floridashrub land during drought. Plant Ecology,2004,170:121-134.
    Heisler-White JL, Knapp AK, Kelly EF. Increasing precipitation event size increases aboveground netprimary productivity in a semi-arid grassland. Oecologia,2008,158(1):129-140.
    Holst J, Butterbach-Bahl K, Liu CY, et al. Dinitrogen fixation by biological soil crusts in an Inner Mongoliansteppe. Biology and Fertility of Soils,2009,45:679-690.
    Hou L, Lei RD, Wang DX, et al. Review of soil respiration in forest ecosystem. Chinese Journal of SoilScience,2006,37(3):589-595.
    Huxman TE, Snyder KA, Tissue D, et al. Precipitation pulses and carbon fluxes in semiarid and aridecosystems. Oecologia,2004,141,254-268.
    IPCC. Climate Change: The physical scientific basis, summary for policymakers, formally approved at the10thsession of working group I of the intergovernmental panel on climate Change. Geneva: IPCC,2007.
    Issa OM, Defarge C, Bissonnais YL, et al. Effects of the inoculation of cyanobacteria on the microstructureand the structural stability of a tropical soil. Plant Soil,2007,290:209-219.
    Jassal RS, Black TA, Novak MD, et al. Effect of soil water stress on soil respiration and its temperaturesensitivity in an18-year-old temperature Douglas-fir stand. Global Change Biology,2008,14(6):1305-1318.
    Jenkinson DS, Adams DE, Wild A. Model estimates of CO2emissions from soil in response to globalwarming. Nature,1991,351:304-306.
    Jones C, McConnell C, Coleman K, et al. Global climate change and soil carbon stocks; predictions fromtwo contrasting models for the turnover of organic carbon in soil. Global Change Biology,2005,11:154-166.
    Karnieli A, Gabai A, Ichoku C, et al. Temporal dynamics of soil and vegetation spectral responses in asemi-arid environment. International Journal of Remote Sensing,2002,23:4073-4087.
    Kastovska K, Elster J, Stibal M, et al. Microbial assemblages in soil microbial succession after glacial retreatin Svalbard (High Arctic). Microbial Ecology,2005,50:396-407.
    Klimek B, Choczynski M, Juszkiewicz A. Scots pine (Pinus sylvestris L.) roots and soil moisture did notaffect soil thermal sensitivity. European Journal of Soil Biology,2009,45(5/6):442-447.
    Lange OL, Belnap J, Reichenberger H, et al. Photosynthesis of green algal soil crust lichens from arid landsin southern Utah, USA: role of water content on light and temperature responses of CO2exchange.Flora,1997,192:1-15.
    Lange OL, Belnap J, Reichenberger H. Photosynthesis of the cyanobacterial soil crust lichen Collema tenaxfor arid lands in southern Utah, USA: role of water content on light and temperature response of CO2exchange. Functional Ecology,1998,12:195-202.
    Lange OL, Meyer A, Zellner H, et al. Photosynthesis and water relations of lichen soil crusts: fieldmeasurements in the coastal fog zone of the Namib Desert. Functional Ecology,1994,8,253-264.
    Larionova AA, Yevdokimov IV, Bykhovets SS. Temperature response of soil respiration is dependent onconcentration of readily decomposable C. Biogeosciences,2007,4:1073-1081.
    Lashof DA, Ahuja DR. Relative contributions of greenhouse gas emissions to global warming. Nature,1990,344:529-531.
    Lichner L, Hallett PD, Feeney DS, et al. Field measured of soil water repellency and its impact on waterflow under different vegetation. Biologia, Bratislava,2007,62(5):537-541.
    Li XR, Zhou HY, Wang XP, et al. The effects of sand stabilization and revegetation on cryptogam speciesdiversity and soil fertility in Tengger desert, northern China. Plant and Soil,2003,251:237-245.
    Li XR, Chen YW, Yang LW. Cryptogam diversity and formation of soil crusts in temperate desert. Annals ofArid Zone,2004,43:335-353.
    Liu XZ, Wan SQ, Su B, et al. Response of soil CO2efflux to water manipulation in a tallgrass prairieecosystem. Plant and Soil,2002,240:11-24.
    Maestre FT, Cortina J. Small-scale spatial variation in soil CO2efflux in a Mediterranean semiarid steppe.Applied Soil Ecology,2003,23:199-209.
    Mahecha MD, Reichstein M, Carvalhais, N, et al. Global convergence in the temperature sensitivity ofrespiration at ecosystem level. Science,2010,329,838-840.
    McCulley RL, Boutton TW, Archer SR. Soil respiration in a subtropical savanna parkland: response to wateradditions. Soil Science Society of America Journal,2007,71(3):820-828.
    McCalley CK, Sparks JP. Controls over nitric oxide and ammonia emissions from Mojave Desert soils.Oecologia,2008,156:871-881.
    Noy-Meir I. Desert ecosystems: Environment and Producers. Annual Review Ecology and Systematics,1973,4,25-51.
    Parker DE,Jones PD, Folland CK, et al. Interdecadal changes of surface temperature since late nineteenthcentury. Journal of Geophysical Research,1994,99:14373-14399.
    Patrick L, Cable J, Potts D, et al. Effects of an increase in summer precipitation on leaf, soil, and ecosystemfluxes of CO2and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia,2007,151,704-718.
    Peng SS, Piao SL, Wang T, et al. Temperature sensitivity of soil respiratio in different ecosystems in China.Soil Biology and Biochemistry,2009,41,1008-1014.
    Prasse R, Bornkamm R. Vascular plants response to microbiotic soil surface crusts. Springer-Verlag BerlinHeidelberg,2008,337-351.
    Raich JW, Potter CS. Global patterns of carbon dioxide emissions from soils. Global Biochemical Cycles,1995,9(1):23-36.
    Raich JW, Tufekciogul A. Vegetation and soil reparation: correlations and controls. Biogeoehemistry,2000,48:71-90.
    Ram A, Aaron Y. Negative and positive effects of topsoil biological crusts on water availability along arainfall gradient in a sandy arid area. Catena,2007,70:437-442.
    Reichstein M, Subke JA, Angeli AC, et al. Does the temperature sensitivity of decomposition of soil organicmatter depend upon water content, soil horizon, or incubation time? Global Change Biology,2005,11(10):1754-1767.
    Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oakforest in Central Italy. Global Change Biology2002,8,851-866.
    Rustad LE, Thomas G, Huntington M, et al. Controls on soil respiration: implications for climate change.Biogeochemistry,2000,48(1):1-6.
    Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry,2000,48(1):7-20.
    Schimel DS. Terrstrial ecosystem and the carbon-cycle. Global Change Biology,1995,1,77-91.
    Schwinning S, Sala OE, Loik ME, et al. Thresholds, memory and seasonality: understanding pulse dynamicsin arid/semi-arid ecosystems. Oecologia,2004,141,191-193.
    Schwinning S, Starr BI, Ehleringer JR. Dominant cold desert plants do not partition warm seasonprecipitation by event size. Oecologia,2003,136,252-260.
    Serpe MD, Orm JM, Barkes T, et al. Germination and seed water status of four grasses on moss-dominatedbiological soil crusts form arid lands. Plant Ecology,2006,185:163-178.
    Shen WJ, Reynolds JF, Hui DF. Responses of dryland soil respiraiton and soil carbon pool size to abrupt vs.gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]:a simulation analysis. Global Change Biology,2009,15,2274-2294.
    Shi WY, Zhang JG, Yan MJ, et al. Seasonal and diurnal dynamics of soil respiration fluxes in two typicalforests on the semiarid Loess Plateau of China: Temperature sensitivities of autotrophs and heterotrophsand analyses of integrated driving factors. Soil Biology and Biochemistry,2012,52:99-107.
    Singh JS, Gupta SR. Plant decomposition and soil respiration in terrestrial ecosystem. The Botanical Review,1977,43(4):449-528.
    Smith VR. Moisture carbon and inorganic nutrient controls of soil respiraiton at a sub-Antarctic island. SoilBiology and Biochemistry,2005,37(1):81-91.
    Song W, Chen S, Wu B, et al. Vegetation cover and rain timing co-regulate the responses of soil CO2effluxto rain increase in an arid desert ecosystem. Soil Biology Biochemistry,2012,49,114-123.
    Stone R. Ecosystems–Have desert researchers discovered a hidden loop in the carbon cycle? Science,2008,320,1409-1410.
    Subke JA, Inglima I, Cotrufo MF. Trends and methodological impacts in soil CO2efflux partitioning: ametaanalytical review. Global Change Biology,2006,12,921-943.
    Sun YS, Solomon AD, Portmann RW. How often will it rain? Journal of Climate,2007,20:4801-4818.
    Tjoelker MG, Oleksyn J, Reich PB. Modelling respiration of vegetation:evidence for a generaltemperature-dependent Q10. Global Change Biology,2001,7(2):223-230.
    Vester M. Importance of biological soil crusts for rehabilitation of degraded arid and semi-arid ecosystems.Science of soil and water conservation,2005,3(4):42-47.
    Vies H. Understanding dryland landscape dynamics: Do biological crusts hold the key?. GeographyCompass,2008,(2/3):899-919.
    Wan SQ, Luo YQ. Substrate regulation of soil repiration in a tallgrass prairie: Results of a clipping andshading experiment. Global Biogeochemical Cycles,2003,17(2):1054.
    Wan SQ, Norby RJ, Ledford J, et al. Responses of soil respiration to elevated CO2, air warming, andchanging soil water availability in a model old-field grassland. Global Change Biology,2007,13(11):2411-2424.
    West NE. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-aridregions. Advances in Ecological Research,1990,20:179-223.
    Wilske B, Burgheimer J, Karnieli A, et al. The CO2exchange of biological soil crusts in a semiaridgrass-shrubland at the northern transition zone of the Negev desert Israel. Biogeosciences,2008,5(5):1411-1423.
    Wilske B, Burgheimer J, Maseyk K, et al. Modeling the variability in annual carbon fluxes related tobiological soil crusts in a Mediterranean shrubland. Biogeosciences Discussions,2009,6(4):7295-7324.
    Wu B, Han HY, He J, et al. Field-Specific calibration and evaluation of ECH2O EC-5sensor for sandy soils.Soil Science Society of America Journal,2014,78(1):70-78.
    Wu N, Wang HL, Liang SM, et al. Temporal-spatial dynamics of distribution patterns of microorganismrelating to biological soil crusts in the Gurbantunggut desert. Chinese Science Bulletin,2006,51(1):124-131.
    Yuste JC, Janssens IA, Carrara A, et al. Annual Q10of soil respiraiton reflects plant phenological patterns aswell as temperature sensitivity. Global Change Biology,2004,10(2):161-169.
    Zhao JC, Zheng YP, Zhang BC, et al. Progress in the study of algae and mosses in biological soil crusts.Frontiers of Biology in China,2009,4(2):143-150.
    包艳丽.青藏高原东缘沙化区生物结皮中荒漠藻抗旱生理特性的研究.2011.兰州理工大学硕士学位论文.
    陈进福,李新荣,陈应武等.生物土壤结皮对荒漠昆虫多样性的影响.中国沙漠,2006,26(6),986-996.
    陈妮娜,关德新,金昌杰等.科尔沁草甸草原土壤呼吸特征.中国草地学报,2011,33(5):82-87.
    陈泮勤.地球系统碳循环.北京,2004,科学出版社.
    陈全胜,李凌浩,韩兴国等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响.植物生态学报,2003,27(2):202~209.
    陈全胜,李凌浩,韩兴国等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报,2004,24(4):831-836.
    陈四清,崔骁勇.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究.植物学报,1999,6:645-650.
    陈正宏.高寒草甸沙化过程中生物结皮藻类组成及分布的变化.2009.兰州理工大学硕士学位论文.
    程琴娟,蔡强国,胡霞.不同粒径黄绵土的溅蚀规律及表土结皮发育研究.土壤学报,2007a,44(3):392-396.
    程琴娟,蔡强国,李家永.表土结皮发育过程及其侵蚀响应研究进展.地理科学进展,2005,24(4):114-122.
    程琴娟,蔡强国,廖义善.土壤表面特性与坡度对产流产沙的影响.水土保持学报,2007b,21(2):9-12.
    曹广民,李英年,张金霞等.高寒草甸不同土地利用格局土壤CO2的释放量.环境科学,2001,22(6):14-19.
    常建国,刘世荣,史作民等.北亚热带——南暖温带过渡区典型森林生态系统土壤呼吸及其组分分离.生态学报,2007,27(5):1791-1802.
    常宗强,冯起,司建华等.土壤水热条件对祁连山荒漠草原土壤CO2通量的影响.干旱区地理,2007,30(6):812-819.
    董云社,齐玉春,刘纪远等.不同降水强度4种草地群落土壤呼吸通量变化特征.科学通报,2005,5:473-480.
    付刚,沈振西,张宪洲.草地土壤呼吸对全球变化的响应.地理科学进展,2010,29:1391-1399.
    樊启顺,沙占江,曹广超等.气候变化对青藏高原生态环境的影响评价.盐湖研究,2005,13(1),12-18.
    范连连,谢继萍,马健等.准噶尔盆地南缘草本层碳通量及土壤呼吸的变化特征.生态学杂志,2013,32(10):2567-2573.
    范志平,王红,邓东周等.土壤异养呼吸的测定及其温度敏感性影响因子.生态学杂志,2008,27(7):1221-1226.
    高艳红,张志山,刘立超等.水热因子对沙漠地区土壤呼吸的影响.生态学报,2009,29(11):5995-6001.
    韩发,贲桂英,师生波.青藏高原不同海拔矮嵩草抗逆性的比较研究.生态学报,1998,18(6):654-659.
    韩海燕,曾立雄,雷静品等.三峡库区兰陵溪小流域三种森林类型土壤呼吸组分的量化.东北林业大学学报,2014,42(3):73-76.
    李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报,1998,22(4):300-302.
    李晓丽,申向东.结皮土壤的抗风蚀性分析.干旱区资源与环境,2006,20(2):203-207.
    李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望.地球科学进展,2009,24(1):11-24.
    李新荣,贾玉奎,龙利群等.干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展.中国沙漠,2001,21(1):4-11.
    李玉强,赵哈林,赵伟等.生物结皮对土壤呼吸的影响作用初探.水土保持学报,2008,22(3):106-110.
    刘殿君.极端干旱区泡泡刺群落土壤呼吸对增雨的响应.2012.中国林业科学研究院博士学位论文.
    刘殿君,吴波,李永华等.极端干旱区增雨对泡泡刺群落土壤呼吸的影响.中国沙漠,2013,3:788-796.
    刘合满,曹丽花,马和平.土壤呼吸日动态特征及其与大气温度、湿度的响应.水土保持学报,2013,27(1):193-196.
    刘立超,李守中,宋耀选等.沙坡头人工植被区微生物结皮对地表蒸发影响的试验研究.中国沙漠,2005,25(2):191-195.
    刘艳梅,李新荣,何明珠等.生物土壤结皮对土壤微生物量碳的影响.中国沙漠,2012,32(3):669-673.
    刘允芬,欧阳华,曹广民等.青藏高原东部生态系统土壤碳排放.自然资源学报,2001,16(2):152-160.
    栾军伟,刘世荣.土壤呼吸的温度敏感性-全球变暖正负反馈的不确定因素.生态学报,2012,32(15):4902-4913.
    罗辑,杨忠,杨清伟.贡嘎山东坡峨眉冷杉林区土壤CO2排放.土壤学报,2003,37(3):402-409.
    罗璐,申国珍,谢宗强等.神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性.植物生态学报,2011,35(7):722-730.
    鲁春霞,谢高地,肖玉等.青藏高原生态系统服务功能的价值评估.生态学报,2004,24(12),2749-2755.
    卢晓杰,张克斌,李瑞.北方农牧交错带生物结皮的主要影响因子探讨.水土保持研究,2007,14(6):1-4.
    裴志永,欧阳华,周才平.青藏高原高寒草原碳排放及其迁移过程研究.生态学报,2003,23(1):231-236.
    齐玉春,董云社,刘立新等.内蒙古锡林河流域主要针茅属草地土壤呼吸变化及其主导因子.中国科学D辑,2010,40(3):341-351.
    施雅风,沈永平,李栋梁等.中国西部气候由暖干向暖湿转型的特征和趋势探讨.第四纪研究,2003,23(2):152-164.
    宋维民.我国西北荒漠生态系统土壤呼吸对降雨增加的响应.2011.中国科学研究生院博士学位论文.
    苏延桂,李新荣,陈应武等.生物土壤结皮对荒漠土壤种子库和种子萌发的影响.生态学报,2007,27(3):938-946.
    苏延桂,李新荣,陈应武等.不同演替序列的藻结皮净光合速率日变化特征.兰州大学学报,2010,46:1-6.
    田玉强,高琼,张智才等.青藏高原高寒草地植物光合与土壤呼吸研究进展.生态环境学报,2009,18(2):711-721.
    王爱国,赵允格,许明祥等.黄土丘陵区不同演替阶段生物结皮对土壤CO2通量的影响.应用生态学报,2013,24:659-666.
    王兵,姜艳,郭浩.土壤呼吸及其三个生物学过程研究.土壤通报,2011,42(2):483-490.
    王平,张劲松,孟平等.华北低丘山地栓皮栎人工林土壤呼吸变化特征及其与撂荒地的差异.中国农业气象,2011,32(3):346-349.
    王小国,朱波,王艳强等.不同土地利用方式下土壤呼吸及其温度敏感性.生态学报,2007,27(5):1968-1968.
    王雪芹,张元明,张伟民等.古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验.冰川冻土,2004,26(5):932-638.
    王英,曹明奎,陶波等.全球气候变化背景下中国降水量空间格局的变化特征.地理研究,2006,25(6):1031-1040.
    王义东,王辉民,马清泽等.土壤呼吸对降雨响应的研究进展.植物生态学报,2010,34(5):601-610.
    魏远,张旭东,江泽平等.湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究.林业科学研究,2010,5:656-665.
    吴林,苏延桂,张元明.模拟降水对古尔班通古特沙漠生物结皮表观土壤碳通量的影响.生态学报,2013,32:4103-4113.
    肖波,赵允格,邵明安.黄土高原侵蚀区生物结皮的人工培育及其水土保持效应.草地学报,2008,16(1):28-33.
    谢高地,鲁春霞,肖玉等.青藏高原高寒草地生态系统服务价值评估.山地学报,2003,21(1),50-55.
    薛英英,闫德仁,李刚铁.鄂尔多斯地区沙漠生物结皮特征研究.内蒙古农业大学学报,2007,28(2):102-105.
    闫德仁,薛英英,刘果厚.库布齐沙漠生物结皮层土壤理化特性的研究.土壤,2008,40(1):145-148.
    杨靖春,王大珍.东北羊草草原土壤微生物呼吸速率的研究.生态学报,1989,9(2):139-143.
    杨庆朋,徐明,刘洪升等.土壤呼吸温度敏感性的影响因素和不确定性.生态学报,2011,31(8):2301-2311.
    叶笃正,符淙斌,董文杰等.全球变化科学进展与未来趋势.科学研究进展,2002,18(3),262-268.
    于云江,林庆功,石庆辉等.包兰铁路沙坡头段人工植被区生境与植被变化研究.生态学报,2002,22(3):133-139.
    赵洋,齐欣林,陈永乐等.极端降雨事件对不同类型生物土壤结皮覆盖土壤碳释放的影响.中国沙漠,2013,33:543-548.
    赵允格,许明祥, Jayne B.生物结皮光合作用对光温水的响应及其对结皮空间分布格局的解译.生态学报,2010,30(17):4668-4675.
    赵允格,许明祥,王全九等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响.自然资源学报,2006,21(3):441-448.
    张丽华,陈亚宁,李卫红等.干旱区荒漠生态系统的土壤呼吸.生态学报,2008,28(5):1911-1922.
    张宪洲,刘允芬,钟华平等.西藏高原农田生态系统土壤呼吸的日变化和季节变化特征.资源科学,2003,25(5):103-107.
    张元明,潘惠霞,潘伯荣.古尔班通古特沙漠不同地貌部位生物结皮的选择性分布.水土保持学报,2004,18(4):61-64.
    张元明,王雪芹.荒漠地表生物土壤结皮形成与演替特征概述.生态学报,2010,30(16):4484-4492.
    张正偲,赵爱国,董治宝等.藻类结皮自然恢复后抗风蚀特性研究.中国沙漠,2007,27(4):558-562.
    周涛,史培军,惠大丰等.中国土壤呼吸温度敏感性空间格局的反演.中国科学C辑:生命科学,2009,39(3):315-322.
    周洪华,李卫红,杨余辉等.干旱区不同土地利用方式下土壤呼吸日变化差异及影响因素.地理科学,
    2011,31(2):190-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700