用户名: 密码: 验证码:
典型农田土壤磷素环境阈值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷素是作物生长必需营养元素,然而,磷素的过量施用已经引起水体富营养化等环境问题。在保障作物产量和水环境质量安全的条件下,如何确定土壤有效磷农学阈值和环境阈值对于农业生产和水环境保护具有重要意义。本研究分别在我国南方(南方湿润平原区、湖北省)和北方(黄淮海半湿润平原区、北京市)的两个典型区域位点,选择水旱轮作和小麦玉米轮作2种典型种植模式,以长期监测点数据为基础,结合室内模拟试验,通过分析不同磷肥用量条件下土壤有效磷与作物产量、水环境指标的关系,确定了基于保障作物产量和水环境质量安全的土壤有效磷农学阈值和环境阈值(Pt),并通过分析土壤Olsen-P初始含量、施磷量、作物吸磷量、流失磷素以及单位剩余磷素引起的Olsen-P累积量等参数间相互关系,提出土壤磷素环境投入阈值经验模型,为预测磷肥投入对水环境污染风险评估提供技术支撑。主要研究结果如下:
     1.南方湿润平原区水旱轮作模式,土壤磷素径流流失以颗粒态磷为主,其中,不同施肥处理磷素流失中,可溶性总磷(TDP)占总磷(TP)的9.5-85.6%,平均为47.8%;旱作期TDP约占TP的29.3%,水稻季TDP约占TP的50.0%。不同施肥处理总磷流失量在3.9-5.7kg P hm-2之间,其中土壤本底磷素流失比重占80%以上。土壤磷素表观流失率平均为1.5%。
     2.黄淮海半湿润平原区小麦玉米轮作模式,土层120cm处磷素淋溶流失以可溶性磷为主,其中,不同施肥处理磷素流失中,可溶性总磷(TDP)占总磷(TP)的48.2-91.7%,平均为69.1%。不同施肥处理总磷流失量在0.035-0.096kg P hm-2之间。土壤磷素表观流失率平均为0.065%。
     3.当磷肥过量投入时,土壤Olsen-P含量随着时间延长而升高。在北京褐潮土地区,小麦玉米轮作模式下,单施化肥处理每剩余1kg磷肥(P),土壤Olsen-P含量增加0.019mg kg-1,有机无机配施处理每剩余1kg磷肥(P),土壤Olsen-P含量平均增加0.054mg P kg-1,约为单施化肥处理的3倍;在湖北水稻土地区,水旱轮作模式下,单施化肥处理每剩余1kg磷肥(P),土壤Olsen-P含量平均增加0.086mg P kg-1。
     4.分别利用双直线和直线-平台模型模拟分析了黄淮海半湿润平原区典型轮作模式(小麦玉米轮作)下,褐潮土Olsen-P含量与作物产量之间的关系,确定了小麦-玉米轮作模式下土壤Olsen-P农学阈值为15mg Pkg1;同时,室内培养与田间原位监测相结合,模拟分析了土壤Olsen-P含量与水环境磷指标的关系,结果表明,黄淮海半湿润平原区农田面源污染径流流失风险较低,主要以淋溶为主,控制土壤Olsen-P环境阈值为30mg P kg1;最终提出,黄淮海半湿润平原区小麦-玉米轮作模式下农田褐潮土Olsen-P阈值控制范围为15-30mg Pkg-1。
     5.分别利用双直线和直线-平台模型分析探讨了南方湿润平原区典型轮作模式(水旱轮作)下水稻土Olsen-P含量与作物产量之间的关系,确定了水稻油菜轮作模式下土壤Olsen-P农学阈值为15mg Pkg1;同时,室内培养与田间原位监测相结合,模拟研究了土壤Olsen-P含量与水环境磷指标的关系,结果表明,南方湿润平原区农田面源污染风险主要以径流为主,并结合地表水环境质量标准(GB3838-2002)中Ⅲ类水对不同水体类型的限制,磷素流失目标水体为湖、库区时,应控制土壤Olsen-P环境阈值为25mg P kg-1;目标水体为河流时,控制目标为75mg P kg-1;最终提出,南方湿润平原区水旱轮作模式下水稻土Olsen-P阈值为15-25mg Pkg-1(湖、库区)与15-75mg Pkg-1(河流流域)。
     6.基于土壤磷平衡黑箱理论,通过模拟分析土壤有效磷累积特征,首次构建了土壤磷素投入阈值经验模型: f (P1i C i Yi L i) ti。以本研究中小麦玉米轮作模式为例,假设土壤Olsen-Pi起始含量为15mg P kg-1时,年均化肥磷素投入量(Pi)为65kg P hm-2,土壤Olsen-P达到环境阈值(30mg P kg-1)需要25年,而在年均化肥磷素投入量为35kg P hm-2时,基本能够保证土壤Olsen-P不累积,并能够保障作物产量和水环境质量安全。本方法能够为农业生产和水环境保护提供管理思路。
The soil available phosphorus (P) plays an important role on crop growth and the safety of waterenvironment, excessive application of P fertilizers to agricultural land can cause various ecologicalproblems, such as entrophication. How to establish the relationship between soil availiable P, the cropyield and the evaluation index of water environment, which have a great significance for the agricultureproduction and water environment protection. Two typical agriculture planting patterns were chose asthe research regions, which were the Southern semi-humid region of Hubei province and the NorthernHuang-huai-hai semi-humid region of Beijing, and in combination with two long-term monitor test,which were paddy-upland rotation and wheat-maize rotation, respectively. The research was based onthe field monitor test and combined with the indoor simulation experiment. Through the differentdosage of P fertilizer applicating to the field, analysising the relationship between soil availiable P, thecrop yield and the evaluation index of water environment. The threshold value of agronomy andenvironmental was identified, which was based on ensure the crop yield and the security of waterenvironment quality. According to analysising the relationship between the initial concentration of soil P,P application, crop yield and the Olsen-P accumulation by residual P, and based on environmentalthreshold, then present the calculation model of soil P application to the field. The model was expectedto provide a kind of management thought concerning the agricultural product and water environmentprotect. The main results were as follows:
     1. In the paddy-upland rotation of the Southern semi-humid region, the runoff loss of soil P wasmainly composed of PP, in the P leaching process with different treatments, TDP was accounted for9.5-85.6%of the TP, with average of47.8%; TDP was accounted for29.3%of TP in the dry periodwhile TDP was accounted for50.0%of TP in the rice season. The leaching of TP with differenttreatments was ranged from3.9to5.7kg P hm-2and the soil available P was accounted for above80%.The average value of soil Papparent turnover was1.5%.
     2. In the wheat-maize rotation of the Northern Huang-huai-hai semi-humid region, the leaching lossof soil P was mainly composed of TDPin120cm of soil profile, in the Pleaching process with differenttreatments, TDP was accounted for48.2-91.7%of the TP, with average of69.1%. The leaching of TPwith different treatments was ranged from0.035to0.096kg P hm-2. The average value of soil Papparent turnover was0.065%.
     3. When excessive application P fertilizer to the soil, soil Olsen-P content was increased withprolonged. In the wheat-maize rotation of the Haplic Luvisol soil in Beijing area, soil Olsen-P contentincreased0.019mg kg1with NPK treatment when1kg P fertilizer was remained in soil. Meanwhile,soil Olsen-P content increased an average of0.054mg kg1with NPKM1and NPKM2treatments when1kg P fertilizer was remained in soil, which was about three times than the NPK treatment. In addition,in the paddy-upland rotation of the Paddy soil in Hubei province, soil Olsen-P content increased0.086mg Pkg-1with NPK treatment when1kg Pfertilizer was remained in soil.
     4. The results showed that the line-line and line-platform model was fitted to simulate relationshipbetween soil Olsen-P content and crop yield in the wheat-maize rotation of the Huang-huai-haisemi-humid region, the agronomy threshold of soil Olsen P was15mg Pkg1; Meanwhile conbinatingwith the indoor cultivation and monitoring experiments in the situ, analysising the relationship betweensoil Olsen-P content and the index of the water environment. Results showed that the non-point sourcepollution in this regions was mainly conposed of P leaching and the environmental threshold of soilOlsen P was30mg P kg1. Finally, the threshold of Olsen P in Haplic Luvisol soil was ranged from15to30mg P kg-1in the wheat-maize rotation of the Northern Huang-huai-hai semi-humid region.
     5. The results showed that the line-line and line-platform model was fitted to simulate relationshipbetween soil Olsen-P content and crop yield in the paddy-upland rotation of the semi-humid region, theagronomy threshold of soil Olsen P was15mg P kg1; Meanwhile conbinating with the indoorcultivation and monitoring experiments in the situ, analysising the relationship between soil Olsen-Pcontent and the index of the water environment. Results showed that the non-point source pollution inthis regions was mainly conposed of running off of P. Furthermore, in combination with the Pconcentration limit in different waters refering to the Environmental Quality Standards for SurfaceWater (GB3838-2002), the environmental threshold of soil Olsen-P was25mg P kg-1when aiming atthe waters of lake or reservoir; the environmental threshold of soil Olsen-P was75mg P kg-1whenaiming at the waters of river. Finally, in the paddy-upland rotation of the Southern semi-humid region,the threshold of Olsen P in Paddy soil was ranged from15to25mg P kg-1mg P kg-1in the waters oflake or reservoir while in the waters of river, the values was ranged from15to75mg P kg-1mg Pkg-1.
     6. In this study, we built a threshold model of soil P input to the field in the first time, it was basedon the balance of soil phosphorus black-box theory, and analyzed the soil Olsen-P accumulationnP t characteristic, which th P0f (P i Ci Yi L i) te model wasi1. We took the wheat and maize rotation asexample in this study. The soil Olsen-Pinitial content was15mg P kg-1, and the average of chemical Papplication amount was65kg P hm-2a-1. The result calculated by the model indicated that the soilOlsen-P would reach the environmental threshold in25years. However, if the input amount was35kg Phm-2a-1, it could guarantee the soil Olsen-P did not accumulate, and could ensure the crop yield and thesafety of water environment. This method could provide a management idea for the agriculturalproduction and water environment protection.
引文
[1]艾买提.热木都拉,图尔荪.阿卜杜瓦依提,努尔阿米娜.玉买尔.巴楚县冬小麦测土配方施肥应用效果调查[J].新疆农业科技,2011,1:32-33.
    [2]曹雪艳,李永梅,张怀志,等.滇池流域原位模拟降雨条件下不同土壤质地磷素流失差异研究[J].水土保持学报,2010,24(3):13-17.
    [3]曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征[J].土壤学报,2005,42:799-804.
    [4]曾招兵,李盟军,姚建武,等.习惯施肥对菜地氮磷径流流失的影响[J].水土保持学报,2012,26(5):34-38.
    [5]陈海生,王光华,宋仿根,等.生态沟渠对农业面源污染物的截留效应研究[J].江西农业学报,2010,22(7):121-124.
    [6]陈怀满,郑春荣,周东美,等.关于我国土壤环境保护研究中一些值得关注的问题[J].农业环境科学学报,2004,23(6):1244-1245.
    [7]陈会,王康,周祖昊.基于排水过程分析的水稻灌区农田面源污染模拟[J].农业工程学报,2012,28(6):112-119.
    [8]陈吉宁.流域面源污染控制技术——以滇池流域为例[M].北京:中国环境科学出版社,2009.
    [9]陈璐,党廷辉,戚瑞生.黄土旱塬冬小麦磷素含量累积动态与磷肥利用效率研究[J].水土保持通报,2011,31(3):190-193.
    [10]陈伦寿.应正确看待化肥利用率[J].磷肥与复肥,1996,(4):4-7.
    [11]陈水土,阮五崎.九龙江口、厦门西海域磷的生物地球化学研究——III.生物活动参与下的磷形态转化及磷循环估算[J].海洋学报:中文版,1994,16(2):63-71.
    [12]程红光,郝芳华,任希岩,等.2006.不同降雨条件下非点源污染氮负荷入河系数研究[J].环境科学学报,26(3):392-397.
    [13]程明芳,何萍,金继运.我国主要作物磷肥利用率的研究进展[J].作物杂志,2010.1:11-13.
    [14]邓九胜,张炜,朱荣松,等.基于土壤有效磷水稻磷肥施用推荐体系的探讨[J].西北农业学报,2011,20(2):81-84.
    [15]邓欧平,孙嗣旸,吕军.基于ArcSWAT模型的长乐江流域非点源氮素污染源识别和分析[J].环境科学,2013,34(4):1284-1290.
    [16]邓伟,许振成,吴根义,等.地膜覆盖对农田径流中氮磷流失的影响[J].安徽农业科学,2011,39(16):9687-9689,9710.
    [17]丁孟,杨仁斌,冯国禄,等.微区模拟控排水条件下田面水氮磷流失特征及其减排效能研究.江西农业学报,2010,22(5):122-124.
    [18]董稳军,黄旭,郑华平,等.广东省60年水稻肥料利用率综述[J].广东农业科学,2012,76-79.
    [19]杜娟,李怀恩,李家科.基于实测资料的输出系数分析与陕西沣河流域非点源负荷来源探讨[J],2013,32(4):827-837.
    [20]段永惠,张乃明,洪波,等.滇池流域农田土壤氮磷流失影响因素探析[J].中国生态农业学报,2005,13(2):116-118.
    [21]冯国禄,杨仁斌.不同耕作模式下稻田水中氮磷动态特征及减排潜力[J].生态学报,2011,31(15):4235-4243.
    [22]高超,朱建国,窦贻俭.农业非点源污染对太湖水质的影响:发展态势与研究重点[J].长江流域资源与环境,2002,11(3):260-263.
    [23]高静.长期施肥下我国典型农田土壤磷库与作物磷肥效率的演变特征[博士毕业论文].中国农业科学院研究生院,2009.
    [24]高秀美,汪吉东,刘兆普,等.集约化蔬菜地土壤磷素累积特征及流失风险[J].生态与农村环境学报,2010,26(1):82-86.
    [25]高杨,宋付朋,马富亮,等.模拟降雨条件下3种类型土壤氮磷钾养分流失量的比较[J].水土保持学报,2011,25(2):15-18.
    [26]耿润哲,王晓燕,焦帅,等.密云水库流域非点源污染负荷估算及特征分析[J].环境科学学报,33(5):1484-1492.
    [27]关焱,宇万太,李建东.长期施肥对土壤养分库的影响.生态学杂志,2004,23(6),131-137.
    [28]郭富强,史海滨,杨树青,等.盐渍化灌区不同水肥条件向日葵氮磷利用率及淋失规律[J].水土保持学报,2012,26(5):39-43.
    [29]郭圣浩,王克勤,宋维峰,等.昆明迤者小流域坡面地表径流磷素流失研究[J].水土保持研究,2010,17(6):53-29.
    [30]郭智,肖敏,陈留根,等.稻田径流侵蚀泥沙对磷素流失的影响[J].水土保持学报,2010,24(5):63-67.
    [31]郭智,周炜,陈留根,等.稻秸还田对稻麦两熟农田麦季养分径流流失的影响[J].水土保持学报,2011,25(4):17-21.
    [32]郭智,周炜,陈留根,等.稻麦两熟农田茬口衔接期养分径流流失特征[J].水土保持学报,2012,26(4):86-89.
    [33]韩例娜,李裕元,石辉,等.水生植物对农田排水沟渠氮磷迁移生态阻控效果比较研究.农业现代化研究,2012,33(1):117-120.
    [34]何军,崔远来,吕露,等.沟渠及塘堰湿地系统对稻田氮磷污染的去除试验[J].农业环境科学学报,2011,30(9):1872-1879.
    [35]何军,崔远来,王建鹏,等.不同尺度稻田氮磷排放规律试验[J].农业工程学报,2010,26(10):56-62.
    [36]何晓滨,李庆龙,段庆钟,等.云南省施肥及土壤养分变化分析[J].中国土壤与肥料,2011,3:21-26.
    [37]黄东风,邱孝煊,李卫华,等.福州市郊菜地土壤磷素特征及流失潜能分析[J].水土保持学报,2009,23(1):83-88.
    [38]黄凯.洱源农村畜禽粪便氮磷流失规律及控制方案研究[硕士毕业论文].昆明:昆明理工大学,2011.
    [39]黄利玲,王子芳,高明,等.三峡库区紫色土旱坡地不同坡度土壤磷素流失特征研究[J].水土保持学报,2011,25(1):30-33.
    [40]黄美玲,丁俊伟,吴文振,等.晋江市耕地土壤养分现状分析[J].江西农业学报,2011,23(2):134-136.
    [41]黄绍敏,郭斗斗,张水清.长期施用有机肥和过磷酸钙对潮土有效磷积累与淋溶的影响[J].应用生态学报,2011,22(1):93-98.
    [42]姬红利,颜蓉,李运东,等.施用土壤改良剂对磷素流失的影响研究[J].土壤,2011,43(2):203-209.
    [43]焦平金,许迪,王少丽,等.施肥与作物类型对旱作农田氮磷径流流失的影响[J].武汉大学学报(工学版),2009,42(5):614-617.
    [44]李红莉,张卫峰,张福锁,等.中国主要粮食作物化肥施用量与效率变化分析[J].植物营养与肥料学报,2010,16(5):1136–1143.
    [45]李津津,姚菊祥,郑洪福,等.南太湖区域水浆管理技术与稻田磷素流失控制的研究[J].环境科学学报,2009,29(2):389-396.
    [46]李娜.江淮农业流域壤中流养分的迁移过程研究.[硕士毕业论文].北京林业大学资源与环境学院,2004.
    [47]李秋梅.高肥力土壤上小麦-夏玉米轮作中磷钾合理施用的研究[硕士毕业论文].北京:中国农业大学,2001.
    [48]李瑞鸿,洪林,罗文兵.漳河灌区农田地表排水中磷素流失特征分析[J].农业工程学报,2010,26(12):102-106.
    [49]李书田,金继运.中国不同区域农田养分输入、输出与平衡[J].中国农业科学,2011,44(20):4207-4229.
    [50]李霞,陶梅,肖波,等.免耕和草篱措施对径流中典型农业面源污染物的去除效果[J].水土保持学报,2011,25(6):221-224.
    [51]李小平.美国湖泊富营养化的研究和治理[J].自然杂志,2002,24(2):63-68.
    [52]李学平,石孝均,刘萍,隋涛.紫色土磷素流失的环境风险评估-土壤磷的“临界值”[J].土壤通报,2011,42(5):1153-1158
    [53]李中阳.我国典型土壤长期定位施肥下土壤无机磷的变化规律研究[硕士论文].中国农业科学院,2007
    [54]梁斐斐,蒋先军,袁俊吉,等.降雨强度对三峡库区坡耕地土壤氮、磷流失主要形态的影响[J].水土保持学报,2012,26(4):81-85.
    [55]林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994,6-18.
    [56]林超文,罗春燕,庞良玉,等.不同耕作和覆盖方式对紫色丘陵区坡耕地水土及养分流失的影响[J].生态学报,2010,30(22):6091-6101.
    [57]刘波,陈玉成,王莉玮,等.4种人工湿地填料对磷的媳妇特性分析[J].环境工程学报,2010a,4(1):44-49.
    [58]刘波.农田径流人工湿地处理中磷的去除研究[硕士论文].西南大学,2010b.
    [59]刘方,黄昌勇,何腾兵,等.黄壤旱坡地退耕还林还草对减少土壤磷流失的作用[J].水土保持学报,2002,16(3):20-23.
    [60]刘建玲,廖文华,张作新,等.磷肥和有机肥的产量效应与土壤积累磷的环境风险评价[J].中国农业科学,2007,40(5):959-965.
    [61]刘利花,杨淑英,吕家珑.长期不同施肥土壤中磷淋溶“阈值”研究[J].西北农林科技大学学报(自然科学版),2003,31(3):123-126.
    [62]刘宗岸,杨京平,杨正超,等.苕溪流域茶园不同种植模式下地表径流氮磷流失特征[J].水土保持学报,2012,26(2):29-33.
    [63]鲁如坤,时正元,顾益初.土壤积累态磷研究II:磷肥的表观积累利用率[J].土壤,1996,286-289.
    [64]鲁如坤,谢建昌,蔡贵信,等.土壤植物营养学原理和施肥[M].北京:化学工业出版社,1998,152-201.
    [65]鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,18(1):4-8.
    [66]鲁如坤主编,土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,166-186.
    [67]鲁艳红,廖育林,黄铁平,等.湖南省不同区域早稻施磷效应及土壤速效磷丰缺指标研究[J].中国农学通报,2011,27(05):94-99.
    [68]鲁耀,胡万里,雷宝坤,等.云南坡耕地红壤地表径流氮磷流失特征定位监测[J].农业环境科学学报,2012,31(8):1544-1553.
    [69]陆景陵,张福锁,曹一平,等.植物营养学(上)[M].北京:中国农业大学出版社,2001,26-35.
    [70]罗春燕,涂仕华,庞良玉,等.降雨强度对紫色土坡耕地养分流失的影响[J].水土保持学报,2009,23(4):24-27.
    [71]吕福堂,张秀省,董洁,等.日光温室土壤磷素累积淋移和形态组成变化研究[J].西北农业学报,2010,19(2):203-206.
    [72]马骞,于兴修,刘前进.横坡耕作径流溶解态氮磷流失特征及其富营养化风险——以鲁中南山地丘陵区为例[J].农业环境科学学报,2011,30(3):492-499.
    [73]马立珊,汪祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [74]牛明芬,温林钦,赵牧秋,等.可溶性磷损失与径流时间关系模拟研究[J].环境科学,2008,29(9):2580-2587.
    [75]戚瑞生,党廷辉,杨绍琼,等.长期定位施肥对土壤磷素吸持特性与淋失突变点影响的研究[J].土壤通报,2012,43(5):1187-1194.
    [76]秦红灵,全智,刘新亮,等.长沙市郊不同种植年限菜地土壤磷状况及淋失风险分析[J].中国农业科学,2010,43(9):1843-1851.
    [77]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998.
    [78]石艳平,段增强.水肥综合管理对减少滇池北岸韭菜地氮磷流失的研究[J].农业环境科学学报,2009,28(10):2138-2144.
    [79]司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤,2000(4):188-193.
    [80]孙海栓,吕乐福,刘春生,等.不同形态磷肥的径流流失特征及其效应[J].水土保持学报,2012,26(4):90-93.
    [81]孙正宝,陈治谏,廖晓勇,等.三峡库区典型小流域农业非点源氮磷流失特征[J].生态学杂志,2011,30(8):1720-1725.
    [82]汤秋香,任天志,雷宝坤,等.洱海北部地区不同轮作农田氮、磷流失特性研究[J].植物营养与肥料学报2011,17(3):608-615.
    [83]唐浩,熊丽君,鄢忠纯,等.缓冲带截除农业面源强污染的效果[J].农业工程学报,2012,28(2):186-190.
    [84]唐旭.小麦玉米轮作土壤磷素长期演变规律研究[博士毕业论文].中国农业科学院,2009
    [85]陶伟,胡凤桂.寿县主要土种的养分变化趋势[J].安徽农学通报,2011,17(09):105-108.
    [86]童倩倩,何腾兵,高雪,等.贵州省耕地土壤的养分状况[J].贵州农业科学,2011,39(2):82-84.
    [87]汪丽婷,马友华,储茵,等.巢湖流域不同施肥措施下稻田氮磷流失特征与产量研究[J].水土保持学报,2011,25(5):41-45.
    [88]王春梅,蒋治国,赵言文.太湖流域典型蔬菜地地表径流氮磷流失[J].水土保持学报,2011,25(4):36-40.
    [89]王辉,王全九,邵明安.表层土壤容重对黄土坡面养分随径流迁移的影响[J].水土保持学报,2007,21(3):10-16.
    [90]王静,郭熙盛,王允青,等.保护性耕作与氮肥后移对巢湖流域麦田磷素流失的影响[J].农业环境科学学报,2011,30(6):1152-1159.
    [91]王静,郭熙盛,王允青,等.巢湖流域不同耕作和施肥方式下农田养分径流流失特征[J].水土保持学报,2012,26(1):6-12.
    [92]王伟妮,鲁剑巍,鲁明星,等.水田土壤肥力现状及变化规律分析——以湖北省为例[J].土壤学报,2012,49(2):319-330.
    [93]王夏晖,尹澄清,单保庆.农业流域“汇”型景观结构对径流调控及磷污染物截留作用的研究[J].环境科学学报,2005,25(3):293-299.
    [94]王晓燕,王静怡,欧洋,等.坡面小区土壤-径流-泥沙中磷素流失特征分析[J].水土保持学报,2008,22(2):1-6.
    [95]王兴仁,曹一平,张福锁,等.磷肥衡量监控施肥法在农业中的探索[J].植物营养与肥料学报,1995,1(3-4):59-64.
    [96]王岩,建国,李伟,等.生态沟渠对农田排水中氮磷的去除机理初探[J].生态与农村环境学报,2010,26(6):586-590.
    [97]王艳华,邱现奎,胡国庆,等.控释肥对坡地农田地表径流氮磷流失的影响[J].水土保持学报.2011,25(2):10-14
    [98]王哲,谢杰,方达,等.洱海北部2种典型种植制度下农田氮污染负荷研究[J].生态与农村环境学报,2013,29(5):625-629.
    [99]王振华,朱波,李青云.不同土地利用方式下侵蚀泥沙中磷释放风险评价[J].中国环境科学2011,31(3):474~480
    [100]王震宇,温胜芳,李锋民.南四湖湿地六种水生植物的磷素根际效应[J].中国环境科学,2010,30(增刊):64-68.
    [101]吴春玲.基于分布式水文模型SWAT的非点源关键源区识别[J].广东水利水电,2013,(1):37-41.
    [102]伍红琳,张辉,孙庆业.坡面人工植物群落修复对水土流失及控磷的影响[J].水土保持学报,2011,25(3):26-30.
    [103]夏立忠,马力,杨林章,等.植物篱和浅垄作对三峡库区坡耕地氮磷流失的影响[J].农业工程学报,2012,28(14):104-111.
    [104]夏小江,胡清宇,朱利群,等.太湖地区稻田田面水氮磷动态特征及径流流失研究[J].水土保持学报,2011,25(4):21-25.
    [105]项大力,杨学云,孙本华,等.灌溉水平对土磷素淋失的影响[J].植物营养与肥料学报,2010,16(1):112-117.
    [106]谢如林,谭宏伟,周柳强,等.不同氮磷施用量对甘蔗产量及氮肥、磷肥利用率的影响[J].西南农业学报,2012,25(1):198-202.
    [107]辛艳,王瑄,邱野,等.坡耕地不同耕作模式下土壤养分流失特征研究[J].沈阳农业大学学报,2012,43(3):346-350.
    [108]熊艳,王平华,何晓滨,等.云南省水稻土壤养分丰缺指标及肥料利用率研究[J].西南农业学报,2012,25(3):930-934.
    [109]徐畅,谢德体,高明,等.三峡库区小流域旱坡地氮磷流失特征研究[J].水土保持学报,2011,25(1):1-6.
    [110]徐楠,印红伟,陈志刚,等.农业磷面源污染形成机制及治理进展[J].苏州科技学院学报(工程技术版),2012,25(1):18-22.
    [111]徐泰平,朱波,况福虹,等.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学学报,2006,25(4):1055-1059.
    [112]许开平,吕军,吴家森,等.不同施肥雷竹林氮磷径流流失比较研究[J].水土保持学报,2011,25(3):31-34.
    [113]许开平,吴家森,黄程鹏,姜培坤.不同植物篱在减少雷竹林氮磷渗漏流失中的作用[J].土壤学报,2012,49(5):980-987.
    [114]许其功,刘鸿亮,沈珍瑶,等.三峡库区典型小流域氮磷流失特征[J].环境科学学报,2007,27(2):326-331.
    [115]晏维金,亢宇,漳申,等.磷在土壤中的解吸动力学[J].中国环境科学,2000,20(2):97-101.
    [116]杨皓宇,赵小蓉,曾祥忠,等.不同农作制对四川紫色丘陵区地表径流氮、磷流失的影响[J].生态环境学报,2009,18(6):2344-2348.
    [117]杨丽霞,杨桂山,苑韶峰,等.不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征[J].环境科学,2007,28(8):1763-1771.
    [118]杨丽霞,杨桂山.施磷对太湖流域水稻田磷素径流流失形态的影响[J].水土保持学报,2010,24(5):31-34.
    [119]杨学云,Brookes PC,李生秀.土壤磷淋失机理初步研究[J].植物营养与肥料学报,2004,10(5):479-482.
    [120]杨育红,阎百兴.土壤磷向地表径流迁移的提取系数研究[J].水土保持学报,2010,24(1):61-64.
    [121]殷国玺,张展羽,邵光成.农田地表控制排水对排水中磷质量浓度的影响[J].水利水电科技进展,2006,26(4):24-26.
    [122]尹微琴,王小治,高人,等.利用大型径流场研究太湖地区稻田磷素径流排放[J].扬州大学学报(农业与生命科学版),2007,28(4):71-75.
    [123]喻定芳,戴全厚,王庆海,等.北京地区等高草篱防治坡耕地水土及氮磷流失效果研究[J].水土保持学报,2010,24(6):11-15.
    [124]袁兴程,钱新,庞宗强,等.不同土地利用方式土壤表层氮、磷流失特征研究[J].环境化学,2011,30(9):1657-1662.
    [125]张凤华,廖文华,刘建玲.连续过量施磷和有机肥的产量效应及环境风险评价[J].植物营养与肥料学报,2009,15(6):1280-1287.
    [126]张凤华,刘建玲,廖文华.农田磷的环境风险及评价研究进展[J].植物营养与肥料学报,2008,14(4):797-805.
    [127]张福锁,陈新平,马文奇.现代农业时代谈化肥[J].磷肥与复肥,2003,18(1):1-3.
    [128]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    [129]张国林,钟继洪,蓝佩玲,等.蔬菜地土壤磷提取及模拟径流中磷素潜在流失的影响[J].生态环境,2007,16(1):170-175.
    [130]张国荣,谷思玉,李菊梅,等.长江中下游地区高产稻田施肥与产量的关系[J].中国土壤与肥料,2010,(1):75-80.
    [131]张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J].南京林业大学学报(自然科学版).2004,28(5):6-10.
    [132]张健,李德智,姚强,等.十堰市城区耕地土壤养分变化分析[J].江西农业学报2011,23(9):98-100.
    [133]张亮,杜耘,刘蜀治.湖滨带湿地截磷研究进展及问题探讨[J].长江流域资源与环境,2012,21(7):875-878.
    [134]张平,高阳昕,刘云慧,等.基于氮磷指数的小流域氮磷流失风险评价[J].生态环境学报,2011,20(6-7):1018-1025.
    [135]张漱茗,周景明,张增俭.磷肥在小麦夏玉米轮作中的合理分配[J].土壤肥料,1995,(1):26-29.
    [136]张四代.IFA:全球磷肥过剩量将增至300万吨[J].农资导报,2010:72.
    [137]张天斌,欧海.三亚市农田土壤养分现状及施肥建议[J].现代农业科技,2011,7:311-312.
    [138]张维理,武淑霞,冀宏杰,等.中国农业面源污染估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,34:1008-1017.
    [139]张燕,李永梅,张怀志,等.滇池流域农田径流磷素流失的土壤影响因子[J].水土保持学报,2011,25(4):41-45.
    [140]张燕,阎百兴,刘秀奇,等.农田排水沟渠系统对磷面源污染的控制[J].土壤通报,2012,43(3):745-750.
    [141]张玉斌,郑粉莉,曹宁.近地表土壤水分条件对坡面农业非点源污染物运移的影响[J].环境科学,2009,30(2):376-383.
    [142]张展羽,张卫,杨洁,等.不同尺度下梯田果园地表径流养分流失特征分析[J].农业工程学报,2012,28(11):105-109.
    [143]张志玲,郭成久,范昊明.模拟降雨条件下坡面径流、泥沙与磷素质量浓度变化特征[J].辽宁工程技术大学学报(自然科学版),2009,28(增刊):245-248.
    [144]章明奎,王阳,黄超.水网平原地区不同种植类型农田氮磷流失特征[J].应用生态学报,2011,22(12):3211-3220.
    [145]章明奎,方利平.河岸水稻缓冲带宽度对排水中氮磷流失的影响[J].水土保持学报,2005,19(4):10-13.
    [146]章明奎,周翠,方利平.水稻土磷环境敏感临界值的研究-临界值确定[J].农业环境科学学报.2006,25(1):170-174.
    [147]长江流域水文资料.中华人民共和国水文年鉴.中华人民共和国水利部水文局,2009-2012.
    [148]赵建宁,张贵龙,刘红梅,等.农田排水氮磷拦截潜流坝的设计与运行[J].农业工程学报,2013,29(2):88-92.
    [149]赵小蓉,钟晓英,李贵桐,等.我国23个土壤磷素淋失风险评估Ⅱ.淋失临界值与土壤理化性质和磷吸附特性的关系[J].生态学报,2006,26(9):3011-3017.
    [150]赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报,1991,28(1):7-13.
    [151]郑建,韩会庆,蔡广鹏,等.贵州省农业非点源氮,磷污染时空特征分析[J].长江科学院院报,2013,30(6):1-4.
    [152]中华人民共和国环境保护总局.GB3838-2002.地表水环境质量标准[S].北京:中国环境出版社,2002.
    [153]钟晓英,赵小蓉,鲍华军,等.我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J].生态学报,2004,24(10):2275-2280.
    [154]周宝库,张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究[J].植物营养与肥料学报,2005,11(2):143-147.
    [155]周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2702.
    [156]周明华,朱波,汪涛,等.紫色土坡耕地磷素流失特征及施肥方式的影响[J].水利学报,2010,41(11):1374-1381.
    [157]周萍,范先鹏,何丙辉,等.江汉平原地区潮土水稻田面水磷素流失风险研究[J].水土保持学报,2007,21(4):47-51.
    [158]周全来,赵牧秋,鲁彩艳,等.施磷对稻田土壤及田面水磷浓度影响的模拟[J].应用生态学报,2006,17(10):1845-1848.
    [159]朱兆良.肥料与农业和环境[J].大自然探索,1998,17(4):25-28.
    [160] Abdala D. B., A. K. Ghosh, I. R. Da Silva, et al. Phosphorus saturation of a tropical soil andrelated P leaching caused by poultry litter addition [J]. Agriculture Ecosystems&Environment,2012,162:15-23.
    [161] Andersen H E, Kronvang B. Modifying and evaluating a P index for Denmark [J]. Water Air andSoil Pollution,2006,174(1-4):341-353.
    [162] Andraski, T.W. and Bundy, L.G. Relationships between P levels in soil and runoff in cornproduction systems [J]. J.Environ. Qual.2003,32:310-316.
    [163] Andrew N. Sharpley, William J. Gburek, G. Folmar, H.B. Pionke. Sources of phosphorusexported from an agricultural watershed in Pennsylvania. Agricultural Water Management1999,41:77-89.
    [164] Aulakh M S, Garg A K, Kabba B S. Phosphorus accumulation, leaching and residual effects oncrop yields from long-term applications in the subtropics [J]. Soil Use Manage.2007,23:417-427.
    [165] Bache B W, Williams E G. Aphosphate sorption index for soils [J]. Journal of Soil Science,1971,22(3):288-301.
    [166] Bado B. V., M. E. De Vries, S. M. Haefele, et al. Critical Limit of Extractable Phosphorous in aGleysol for Rice Production in the Senegal River Valley of West Africa [J]. Communications inSoil Science and Plant Analysis,2007,39:1-2,202-206.
    [167] Bai Z, Li H, Yang X, Zhou B, Shi X, Wang B, et al. The critical soil P levels for crop yield, soilfertility and environmental safety in different soil types [J]. Plant and Soil2013;372:27-37.
    [168] Bollons H M, Barraclough P B. Assessing the phosphorus status of winter wheat crops: inorganicorthophosphate in whole shoots [J]. J. Agric. Sci.1999,133:285-295.
    [169] Brookes P C, Heckrath G, De Smet J, et al. Losses of phosphorus in drainage water. In: H.Tunney, O. T. Carton, P. C. Brookes, et al., eds. Phosphorus Loss from Soil to Water [M]. BiddlesLtd, Guildford&King's Lynn, UK,1998.253-271.
    [170] Brown B D,2006. Winter cereal-corn double crop forage production and phosphorus removal [J].Soil Sci. Soc. Am. J.70:1951-1956.
    [171] Carignan R. and Kalff J. Phosphorus sources for aquatic weeds: water or sediments [J]. Science,1980,207:987-989.
    [172] Cate R B, Nelson L A. Asimple statistical procedure for partitioning soil test correlation data intotwo classes [J]. Soil Sci. Soc. Am. J.1971,35:658-660.
    [173] Chakraborty D, Nair VD, Harris WG, et al. Environmentally Relevant Phosphorus RetentionCapacity of Sandy Coastal Plain Soils [J]. Soil Science,2012;177:701-707.
    [174] Colomb.B, Debaeke.P, Jouany. C, Nolot.J.M. Phosphorus management in low input stocklesscropping systems: Crop and soil responses to contrasting P regimes in a36-year experiment insouthern France [J]. Europ. J. Agronomy2007,26:154-165.
    [175] Cui G, Zaheer I, Luo J. Quantitative evaluation of non-point pollution of Taihu watershed usinggeographic information system [J]. Journal of Lake Sciences,2003,15(3):236-244.
    [176] Daniel, T.C., A.N. Sharpley, and J.L. Lemunyon.1998. Agricultural phosphorus andeutrophication: Asymposium overview [J]. Journal of Environmental Quality27:251–257.
    [177] Djodjic F L, Bergstron B, Ulen, et al. Mode of transport of surface applied phosphorus-33through a clay and sandy soil [J]. J Environ Qual,1999,28:1273-1282.
    [178] Djodjic, F. and L. Mattsson. Changes in plant-available and easily soluble phosphorus within1year after Pamendment [J]. Soil Use and Management,2013,29:45-54.
    [179] Drewry J J, Newham L T H, Croke B F W. Suspended sediment, nitrogen and phosphorusconcentrations and exports during storm-events to the Tuross estuary, Australia [J]. Journal ofenvironmental management,2009,90(2):879-887.
    [180] Edwin D. Ongley, Zhang Xiaolan, Yu Tao. Current status of agricultural and rural non-pointsource Pollution assessment in China [J]. Environmental Pollution2010,158:1159-1168.
    [181] Fairhust T., Lefroy R., Mutert E., et al. The importance, distribution and causes of phosphorusdeficiency as a constraint to crop production in the tropics [J]. Agroforestry Forum,1999,2-8.
    [182] Fay al Bouraoui, Bruna Grizzetti. Long term change of nutrient concentrations of riversdischarging in European seas [J]. Science of the Total Environment2011,409:4899-4916.
    [183] Furumai, H., Kazmi, A. A., Fujita, M., et al. Modeling long term nutrient removal in a sequencingbatch reactor [J]. Water Research,1999,33(11):2708-2714.
    [184] Gardner, B.R., Jones, J.P., Effects of temperature on phosphate sorption isotherms and phosphatedesorption. Commun [J].1973, Soil Sci. PlantAnal.4,83-93.
    [185] Gassman, P. W., J. R. Williams, X. Wang, et al. The Agricultural Policy/Environmental EXtender(APEX) model: An emerging tool for landscape and watershed environmental analyses [J]. Trans.ASABE.2010,53(3):711-740.
    [186] Gaston, L. A., Drapcho, C. M., Tapadar, S.et al. Prunoff relationships for Louisiana Coastal plainsoils amended with poultry litter [J]. J. Environ. Qual.2003,32:1422-1429.
    [187] Haden V R, Ketterings Q M, Kahabka J E. Factors affecting change in soil test phosphorusfollowing manure and fertilizer application [J].Soil Sci. Soc. Am. J.,2007,71:1225-1232.
    [188] Halvorson, A D.&A L.Black.Long-term dryland crop responses to residual phosphorus fertilizer[J].Soil Sci.Soc.Am.J.1985,49:928-933.
    [189] Hesketh N, Brookes PC. Development of an indicator for risk of phosphorus leaching [J]. JEnviron Qual2000;29:105-110.
    [190] Higgs B, Johnston AE, Salter J L, et al. Some aspects of achieving sustainable phosphorus use inagriculture [J]. J. Environ. Qual.2000,29:80-87.
    [191] Hinsby, K. S. Markager, B. Kronvang, et al. Threshold values and management options fornutrients in a catchment of a temperate estuary with poor ecological status [J]. Hydrol. Earth Syst.Sci.,2012(16):2663–2683
    [192] Holford I C R, Mattingly G E G. Phosphate adsorption and plant availability of phosphate [J].Plant Soil,1976,44:1745-1756.
    [193] Hooper R P, Aulenbach B T, Kelly V J. The National Stream Quality Accounting Network: aflux-based approach to monitoring the water quality of large rivers [J]. Hydrological Processes,2001,15(7):1089-1106.
    [194] Horst W.J.&M. Kamh. Agronomic-based technologies towards more ecological use ofphosphorus in agriculture. Publishing in environmental technology: principles and applications.Edited by Rugenia Valsami-Jones. ISBN:1843990019,2004.
    [195] Hughes S, Reynolds B, Bell S A, et al. Simple phosphorus saturation index to estimate risk ofdissolved Pin runoff from arable soils Horne [J]. Soil Use and Management,2000,16:206-210.
    [196] James B R. Phosphorus sorption by peat and sand amended with iron oxides or steel wool [J].Wat Env Res,1992,64(5):699-705.
    [197] Javid, S., Rowell, D. L. Assessment of the effect of time and temperature on the availability ofresidual phosphate in a glasshouse study of four soils using the Olsen method [J]. Soil Use andManagement,2003,19(3),243-249.
    [198] Johnes P J. Evaluation and management of the impact of land use change on the nitrogen andphosphorus load delivered to surface waters: the export coefficient modelling approach [J]. Journalof hydrology,1996,183(3):323-349.
    [199] Johnston A E, Lane P W, Mattingly G E G, et al. Effects of soil and fertilizer P on yields ofpotatoes, sugar beer, barley and winter wheat on a sandy clay loam soil at Sazmundham, Suffolk[J]. J. Agric. Sci.1986,106:155-167.
    [200] Johnston A E, Poulton P R. Defining critical levels of available soil phosphorus for agriculturalcrops. In: Tunney H (ed) Phosphorus Loss from Soil to Water [C]. CAB International, Oxon,1997a,pp441-445.
    [201] Johnston A E, Poulton P R. Factors affecting critical soil phosphorus values. In: Tunney H (ed)Phosphorus Loss from Soil to Water [C]. CAB International, Oxon,1997b, pp445-448.
    [202] Johnston AE, Poulton P R. The role of phosphorus in crop production and soil fertility:150yearsof field experiments at Rothamsted, United Kingdom. In: Schultz, J.J.(Ed.), Phosphate Fertilizersand the Environment. Proceedings of an International Workshop. International FertilizerDevelopment Centre, Tampa, FL.1992.
    [203] Johnston AE, Poulton PR, White RP. Plant-available soil phosphorus. Part II: the response ofarable crops to Olsen P on a sandy clay loam and a silty clay loam [J]. Soil Use and Management2013;29:12-21.
    [204] Johonston A. Edward, Paul R. Poulton, Paul E. Fixen, et al. Phosphorus: Its efficient use inagriculture [M]. Advaces in agronomy, chapter five,2014,177-228.
    [205] Jordan C, McGuckin S O, Smith R V. Increased predicted losses of phosphorus to surface watersfrom soils with high Olsen-Pconcentrations [J]. Soil Use and Management,2000,16:27-35.
    [206] Kleinman P J A, Sharpley A N, Moyer B G, et al. Effect of mineral and manure phosphorussources on runoff phosphorus [J]. J. Environ. Qual.,2002b,31:2026-2033.
    [207] Kleinman P J A, Sharpley A N, Wolf A M, et al. Measuring water-extractable phosphorus inmanure as an indicator of phosphorus in runoff [J]. Soil Science Society of America Journal,2002a,66:2009-2015.
    [208] Lemunyon J L, Gilbert R G. Concept and need for a phosphorus assessment tool [J]. J. Prod.Agric,1993,6:483-486.
    [209] Li, D P, Wu, Z J. Impact of chemical fertilizers application on soil ecological environment [J].Chinese Journal ofApplied Ecology,2008,19(5):1158-1165.
    [210] Liu Y., Y. Tao, K.Y. Wan, et al. Chena.Runoff and nutrient losses in citrus orchards on slopingland subjected to different surface mulching practices in the Danjiangkou Reservoir area of China[J]. Agricultural Water Management,2012:34-40.
    [211] Lu X X, Li S, He M, et al. Seasonal changes of nutrient fluxes in the Upper Changjiang basin: Anexample of the Longchuanjiang River, China [J]. Journal of Hydrology,2011,405(3):344-351.
    [212] Ma Xiao, Ye Li, Meng Zhang, et al. Assessment and analysis of non-point source nitrogen andphosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China [J]. Science of theTotal Environment2011,41:154-161.
    [213] Mallarino A P, Atia A M. Correlation of a resin membrane soil phosphorus test with corn yieldand routine soil tests [J]. Soil Sci. Soc. Am. J.2005,69:266-272.
    [214] Mallarino A P, Blackmer A M. Comparison of methods for determining critical concentrations ofsoil test phosphorus for corn [J]. Agron. J.1992,84:850-856.
    [215] Mann R A, Bavor H J. Phosphorus removal in constructed wetlands using gravel andindustrial waste substrata [J]. Wat Sci Tech,1993,27(1):107-113.
    [216] Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure applicationon soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-aridtropical India [J]. Field Crops Res.2005,93:264-280.
    [217] Mardamootoo T, Kwong KFNK, Du Preez CC. Assessing environmental phosphorus status ofsoils in Mauritius following long-term phosphorus fertilization of sugarcane [J]. Agricultural WaterManagement,2013,117:26-32.
    [218] Mardamootoo T., Kwong KFNK, Du Preez CC. Evolution of the Agronomic and EnvironmentalPhosphorus Status of Soils in Mauritius After a Seven Year [J] Sugarcane Crop Cycle, Sugar Tech,2012,14(3):266-274.
    [219] Mashal K., Y. S. Al-Degs, M. Al-Qinna et al. Elucidation of phosphorous sorption by calcareoussoils using principal component analysis [J]. Chemistry and Ecology,2014,30(2):133-146.
    [220] Matias N G, Johnes P J. Catchment Phosphorous Losses: An Export Coefficient ModellingApproach with Scenario Analysis for Water Management [J]. Water resources management,2012,26(5):1041-1064.
    [221] Mcdowell Richard, Sharpley Andrew, Brookes Philip, et al. Relationship between soil testphosphorus and phosphorus release to solution [J]. Soil science.2001,166(2):137-149.
    [222] McDowell, R. W., A. N. Sharpley, et al. Phosphorus in pasture plants: potential implications forphosphorus loss in surface runoff [J]. Plant and Soil,2011,345(1-2):23-35.
    [223] Mokwuny A.S.H., Chien S.H. Rhodes E.R. Reactions of phosphate with tropical African soils. Inmanagement of nitrogen and phosphorus fertilizers in Sub-Saharan Africa (eds Mokwuny, A andVlek, P.L.G.),1986, pp.253-282, Martinus nijhoff publishers, Dordrecht, Netherlands.
    [224] Murphy J, Riley J P. A modified single solution method for the determination of phosphate innatura waters [J].Anal.Chem. Aeta,1962,27:31-36.
    [225] Nair, V. D. and W. G. Harris. A capacity factor as an alternative to soil test phosphorus inphosphorus risk assessment [J]. New Zealand Journal of Agricultural Research.2004,47(4):491-497.
    [226] Nair, V. D., K. M. Portier, et al. An environmental threshold for degree of phosphorus saturationin sandy soils [J].2004. J Environ Qual33(1):107-113.
    [227] National Recommended Water Quality Criteria http://water.epa.gov/scitech/swguidance/standards/current/.
    [228] Neeteson, J.J. Nitrogen and phosphorus management on Dutch dairy farms: legislation andstrategies employed to meet the regulations [J]. Biol. Fert. Soils,2000,30:566-572.
    [229] Nicolás Wyngaard, Liliana Picone, Cecilia Videla, et al. Impact of Feedlot on Soil PhosphorusConcentration [J].Journal of Environmental Protection,2011,2,280-286.
    [230] Nicole J. Mathers, David M. Nash, and Philomena Gangaiya. Nitrogen and Phosphorus Exportsfrom High Rainfall Zone Cropping in Australia: Issues and Opportunities for Research [J]. J.Environ. Qual.2007,36:1551-1562.
    [231] Nikitishen, V. I., Lichko, V. I., Kurganova, E. V. Phosphorus in agroecosystems on gray forestsoils in the opolie regions of Central Russia [J]. Eurasian Soil Science,208,41(8),869-881.
    [232] Niraula R, Kalin L, Srivastava P, et al. Identifying critical source areas of nonpoint sourcepollution with SWAT and GWLF [J]. Ecological Modelling,2013,268:123-133.
    [233] Niraula R, Kalin L, Wang R, et al. Determining nutrient and sediment critical source areas withSWAT: Effect of lumped calibration [J]. Transactions of theASABE,2012,55(1):137-147.
    [234] Nurnberg G.K. and Peters R.H. Biological availability of soluble reactive phosphours in anoxicand oxic freshwaters [J]. Canadian journal of fisheries and aquatic science,1984,41:757-765.
    [235] Oenema, O., Kros, H. and De Vries, W. Approaches and uncertainties in nutrient budgets:Implications for nutrient management and environmental policies [J]. European Journal ofAgronomy,2003,20,3-16.
    [236] Panagopoulos Y, Makropoulos C, Baltas E, et al. SWAT parameterization for the identification ofcritical diffuse pollution source areas under data limitations [J]. Ecological Modelling,2011b,222(19):3500-3512.
    [237] Panagopoulos. Y, Makropoulos. C, Mimikou. M. Reducing surface water pollution through theassessment of the cost-effectiveness of BMPs at different spatial scales [J]. Journal ofEnvironmental Management.2011a,92:2823-2835.
    [238] Pham S T, Thach N A, Nguyen V L, et al. Yield trends of a long-term NPK experiment forintensive rice monoculture in the Mekong Rice Delta of Viet Nam [J]. Field Crops Res.1995,42:101-109.
    [239] Pietilainen O.P., Rekolainen S. Dissolved reactive and total phosphorus load from agriculturaland forested basins to surface waters in Finland [J]. Aqua Fennica,1991,21:127-136.
    [240] Pionke H B, Gburek W J, Schnabel R R, et al. Seasonal flow, nutrient concentrations and loadingpatterns in stream flow draining an agricultural hill-land watershed [J]. Journal of hydrology,1999,220:62-73.
    [241] Pommel B., Dorioz J.M. Movement of phosphorous from agricultural soil to water. In: Tunney H,Carton OT, Brookes PC, Johnston AE, editors [J]. Phosphorus Loss from Soil to Water. CAB, UK,1998, pp.243-251.
    [242] Poulton PR, Johnston AE, White RP. Plant-available soil phosphorus. Part I: the response ofwinter wheat and spring barley to Olsen P on a silty clay loam [J]. Soil Use and Management2013;29:4-11.
    [243] Qiu YQ, Peng PQ, Yu P, et al. A Preliminary study on the characteristics of phosphorus leachingin different soils [C]. Third International Conference on Intelligent System Design and EngineeringApplications (Isdea),2013:163-167.
    [244] Ram′rez-A′vila, J. R., Sotomayor-Ram′rez, D., Mart′nez-Rodr′guez, G. A. et al.Concentration de phosphore en ruissellement superficiel de deux sols tropicaux fortementde′grade′s [J]. Can. J. Soil Sci.2011,91:267-277.
    [245] Robin Girard. http://finzi.psych.upenn.edu/R/library/ConConPiWiFun/html/cplfunctionvec.html.2013.
    [246] Rory MO, Thomas SJ. Soil testing to predict phosphorus leaching [J]. J. Environ. Qual.2002;31:1601-1609.
    [247] Sahrawat K. L., M. P. Jones, S. Diatta. Extractable phosphorus and rice yield in an ultisol of thehumid forest zone in West Africa [J]. Communications in Soil Science and Plant Analysis,1997,28:9-10,711-716.
    [248] Sahrawat, K. L., Jones, M. P., Diatta, S., et al. Long-term phosphorus fertilizer effects onphosphorus uptake, efficiency, and recovery by upland rice on an ultisol [J]. Communications inSoil Science and Plant Analysis,2003,34(7-8),999-1011.
    [249] Saleque, M. A., Abedin, M. J., Bhuiyan, N. I., et al. Long-term effects of inorganic and organicfertilizer sources on yield and nutrient accumulation of lowland rice [J]. Field Crops Research,2004,86(1),53-65.
    [250] Sánchez, M., Boll, J., The effect of flow path and mixing layer on phosphorus release: physicalmechanisms and temperature effects [J]. J. Environ. Qual.2005,34,1600-1609.
    [251] Selles F, Campbell C A, Zentner P R. Effect of cropping and fertilization on plant andsoil-phosphorus [J]. Soil Sci. Soc. Am. J.1995,59:140-144.
    [252] Shang X, Wang X, Zhang D, et al. An improved SWAT-based computational framework foridentifying critical source areas for agricultural pollution at the lake basin scale [J]. EcologicalModelling,2012,226:1-10.
    [253] Sharpley A N, Weld J L, Beegle D B, et al. Development of phosphorus indices for nutrientmanagement planning strategies in the United States[J].Journal of soil and water conservation,2003,58:137-152
    [254] Sharpley A N, Daniel T C, Edwards D R. Phosphorus movement in the landscape [J]. Journal ofProductionAgriculture,1993,6(4):492-500
    [255] Sharpley A N, Tunney H. Phosphorus research strategies to meet agricultural and environmentalchallenges of21st century [J]. J. Environ.Qual.,2000b,29(1):176-181.
    [256] Sharpley A, Foy B, Withers P. Practical and innovative measures for control of agriculturalphosphorus losses to water:An overview [J]. Journal of Environmental Quality,2000a,29:1-9.
    [257] Sharpley A., Doug Beegle, Carl Bolster, et al. Phosphorus Indices: Why We Need to Take Stockof How WeAre Doing [J]. J. Environ. Qual.2012,41:1711-1719.
    [258] Sharpley A., et al., Technical Guidance for Assessing Phosphorus Indices, Southern CooperativeSeries Bulletin No.417, January,2013, URL: http://saaesd.ncsu.edu/docs/Assessing%20P%20Indices%20SERA17.pdf
    [259] Sharpley, A., Sheffield, R. Lesson34: Phosphorus Management for Agriculture and theEnvironment, Livestock and Poultry Environmental Stewardship Curriculum.http://www.lpes.org/Lessons/Lesson34/34_Phosphorus_Management.html12(accessedAug2006).
    [260] Sharpley, A., T. C. Daniel, Sims, J. T. et al. Determining environmentally sound soil phosphoruslevels. Journal of Soil and Water Conservation.1996,51(2):160-166.
    [261] Sharpley, A.N., Ahuja, L.R., Effects of temperature and soil-water content during incubation onthe desorption of phosphorus from soil [J]. Soil Sci.1982,133,350-355.
    [262] Sharpley, A.N., Kleinman, P.J., Heatherwaite, A.L., et al. Phosphorus loss from an agriculturalwatershed as a function of storm size [J]. Journal of Environmental Quality.2008,37,362-368.
    [263] Shen Zhenyao, QianLiao, QianHong, et al. An overview of research on agricultural non-pointsource pollution modelling in China [J], Separ. Purif. Technol.2012,84:104-111.
    [264] Shen, J., Li, R., Zhang, F., et al. Crop yields, soil fertility and phosphorus fractions in response tolong-term fertilization under the rice monoculture system on a calcareous soil [J]. Field CropsResearch.2004,86,225-238.
    [265] Shepherd M A, Withers P J. Applications of poultry litter and triple superphosphate fertilizer to asandy soil: effects on soil phosphorus status and profile distribution [J]. Nutr. Cycl. Agroecosyst.1999,54:233-242.
    [266] Shuai X F, Zhou Z J, and Yost R S. Using segmented regression models to fit soil nutrient andsoybean grain yield changes due to liming [J]. J.Agric. Biol. Environ. Stat.2003,8(2):240-252.
    [267] Sibbesen E, Sharpley AN. Setting and justifying upper critical limits for phosphorous in soils [M].In: Tunney H, Carton OT, Brookes PC, Johnston AE, editors. Phosphorus Loss from Soil to Water.CAB, UK,1998, pp.151-176.
    [268] Tang X, Ma YB, Hao XY, Li XY, Li JM, Huang SM, et al. Determining critical values of soilOlsen-P for maize and winter wheat from long-term experiments in China [J]. Plant and Soil2009;323:143-151.
    [269] Tang, X., J. Li, Ma Y B, et al. Phosphorus efficiency in long-term (15years) wheat–maizecropping systems with various soil and climate conditions [J]. Field Crops Research,2008,108(3):231-237.
    [270] Torrent. J, Barberis. E, Gil-Sotres. F. Agriculture as a source of phosphorus for eutrophication insouthern Europe [J]. British Society of Soil Science,2007,23(Suppl.1):25-35.
    [271] Tripathi M P, Panda R K, Raghuwanshi N S. Identification and prioritisation of criticalsub-watersheds for soil conservation management using the SWAT model [J]. BiosystemsEngineering,2003,85(3):365-379.
    [272] U.S. Department of Agriculture–Natural Resources Conservation Service.2011b. Title190–National instruction (Title190-NI, Amend, December2011)302-X.1, Part302–Nutrientmanagement policy implementation. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1046177.pdf (accessed19Mar.2013).
    [273] Vadas P A, Kleinman P J A, Sharpley A N, et al. Relating soil phosphorus to dissolvedphosphorus in runoff: A single extraction coefficient for water quality modeling [J]. Journal ofEnvironmental Quality.2005,34,572–580.
    [274] Vadas, P. A., B. C. Joern, P. A Moore, Simulating Soil Phosphorus Dynamics for a PhosphorusLoss Quantification Tool [J]. J Environ Qual.2012,41(6):1750-1757.
    [275] Van Bochove E, Theriault G, Denault JT, Dechmi F, Allaire SE, Rousseau AN. Risk ofPhosphorus Desorption from Canadian Agricultural Land:25-Year Temporal Trend [J]. J EnvironQual2012;41:1402-1412.
    [276] Veith, T.L., A.N. Sharpley, J.L. Weld, et al. Comparison of measured and simulated phosphoruslosses with indexed site vulnerability [J]. Trans. ASAE,2005,48:557-565.
    [277] Vollenweider, R.A. Elemental and biochemical composition of plankton biomass; somecomments and explorations [J]. Archiv für Hydrobiologie1985,105:11–29.
    [278] Walton C.P. and Lee G.F. A biological evaluation of the molybdenum blue method fororthophosphate analysis [J]. Verhandlungen Internationale Vereinigung Limnologie,1972,18:676-684.
    [279] Wang S, Liu G, Luo Q, et al. Research advance in phosphorous accumulation and its losspotential in paddy soils [J]. Acta Agriculturae Jiangxi,2012;24:98-103.
    [280] Wang, X. M., Jie, X. L., Zhu, Y. G., et al. Relationships between agronomic and environmentalsoil test phosphorus in three typical cultivated soils in China [J]. Pedosphere.2008,18(6):795-800.
    [281] Waugh D L, Cate R B, Nelson L A. Discontinuous models for rapid correlation, interpretation,and utilization of soil analysis and fertilizer response data [C]. Technology Bulliton.7.International Soil Fertility Evaluation and Improvement Program. North Carolina State University,Raleigh, NC,1973.
    [282] Weld J L, Sharpley A N, Beegle1D B, et al. Identifying critical sources of phosphorus exportfrom agricultural watersheds [J]. Nutrient Cycling inAgroe-cosystems.2001,59:29–38.
    [283] Wildung R.E. and Thomas G.W. The phosphorus status of eutrophic lake sediments as related tochanges in limnological conditions total, inorganic phosphorus [J]. Journal of environmentalquality,3:133-138.
    [284] Xu N, Christodoulatos C, Braida W. Adsorption of molybdate and tetrathiomolybdate ontopyrite and goethite: Effect of pH and competitive anions [J]. Chemosphere,2006,62:1726-1735.
    [285] Yuan Yongping, Ronald L. Bingner, Martin A. Locke, et al. Assessing the Long Term Impact ofPhosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS [J]. J. Environ. Res. PublicHealth2011,8,2181-2199.
    [286] Zhang F, Chen X, Vitousek P. Chinese agriculture: An experiment for the world [J]. Nature,2013;497:33-5.
    [287] Zhou H P, Gao C. Assessing the Risk of Phosphorus Loss and Identifying Critical Source Areasin the Chaohu Lake Watershed, China [J]. Environmental Management,2011,48:1033-1043.
    [288] Zhu Bo, Zhenhua Wang, Xinbao Zhang. Phosphorus fractions and release potential of ditchsediments from different land uses in a small catchment of the upper Yangtze River [J]. J SoilsSediments,2012a,12:278–290.
    [289] Zhu Q, Schmidt J P, Bryant R B. Hot moments and hot spots of nutrient losses from a mixed landuse watershed [J]. Journal of Hydrology,2012b,414:393-404.
    [290] Zhu Q, Schmidt J P, Buda A R, et al. Nitrogen loss from a mixed land use watershed asinfluenced by hydrology and seasons [J]. Journal of Hydrology,2011,405(3):307-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700