用户名: 密码: 验证码:
生化抑制剂对稻田氮素转化的影响及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥在稻田易于损失,其当季利用率低。施用缓/控释肥是提高稻田氮肥利用率的有效途径,然而适宜的缓/控释肥料种类少。本文以脲酶抑制剂(N-丁基硫代磷酰三胺,NBPT)和硝化抑制剂(3,4-二甲基吡唑磷酸盐,DMPP)为实验对象,采用15N示踪的微区试验研究了生化抑制剂对稻田氮素损失的影响;采用田间试验研究了添加脲酶抑制剂时稻田氮肥的减施潜力、稻田适宜的脲酶抑制剂施用比例、脲酶抑制剂与硝化抑制剂配施下的土壤氮素供应特征;采用分子生态学方法研究了脲酶抑制剂与硝化抑制剂对土壤微生物群落结构以及功能微生物多样性的影响。研究取得以下进展:
     (1)15N示踪微区试验表明,添加NBPT或NBPT与DMPP配施可以显著提高水稻地上部氮素回收率和土壤残留氮量。与单施尿素处理相比,添加NBPT处理的氨挥发速率峰值降低27.04%,累积氨挥发损失量降低21.65%;NBPT与DMPP配施时,氨挥发速率峰值降低12.95%,累积氨挥发损失量降低13.58%;而添加DMPP时,氨挥发速率峰值增加23.61%,累积氨挥发损失量与单施尿素的差异不显著。对于降低稻田氨挥发损失,添加NBPT或NBPT与DMPP配施的两个处理效果较为理想,硝化抑制剂不宜单独添加。
     (2)研究发现,N2O排放通量主要集中在施肥后的7天内,添加DMPP显著降低了N2O的排放通量,但水稻生长后期排放通量剧增,尤其是添加抑制剂的处理增加幅度更大;添加DMPP或NBPT与DMPP配施可以显著减少施肥后21天内的N2O排放量,而对总排放量无明显影响。
     (3)大田试验表明,施氮量为135kg N/hm2时,NBPT添加比例小于1%时,增产不显著,而在1%~1.5%时可以显著提高籽粒产量以及地上部氮素回收率;稻田添加1%的NBPT时,施氮量为135kg N/hm2的籽粒产量最高,与农民习惯施氮(单施尿素180kg N/hm2)相比,早、晚稻分别增产8.54%和12.87%,氮肥利用率分别提高6.78%和9.46%,节约氮肥25%;研究发现,添加1%的DMPP则增产不显著;而NBPT与DMPP配施时,对于增产与提高氮素回收率的效果显著。
     (4)与单施尿素相比,添加NBPT时显著降低了分蘖期土壤中的脲酶活性与铵态氮含量,而显著提高了孕穗期土壤中的铵态氮含量,对此时的脲酶活性则无显著影响,可见基施的NBPT主要在孕穗期之前起作用;逐步回归分析发现,水稻分蘖期与孕穗期土壤中的铵态氮含量对水稻产量影响显著,而且孕穗期的影响大于分蘖期,因此,添加NBPT可以节约氮肥、显著增产的主要原因可能是其保持孕穗期较高的土壤铵态氮含量。
     (5)磷脂脂肪酸(phospholipid fatty acid,PLFA)分析表明,添加NBPT或DMPP显著减少了分蘖期土壤PLFA总量以及部分饱和脂肪酸和羟基脂肪酸含量,其中包括部分细菌的标记脂肪酸;然而在孕穗期,NBPT和DMPP的这种生化抑制作用不明显,而且NBPT与DMPP配施处理的PLFA总量显著高于其余处理的,可见两种生化抑制剂对微生物的影响主要集中在孕穗期之前。
     (6)利用定量PCR研究发现,尽管土壤氨氧化古菌(AOA)的amoA基因拷贝数是氨氧化细菌(AOB)的6~10倍,然而DMPP主要影响AOB的amoA基因丰度,AOA在分蘖期与孕穗期均保持相对稳定,表明DMPP主要通过限制AOB的生长来抑制稻田土壤硝化过程;DGGE(Denaturing Gradient Gel Electrophoresis,变性梯度凝胶电泳)图谱分析表明,亚硝化单胞菌和亚硝化螺菌均是施肥土壤中AOB的优势菌群,施用氮肥显著提高了土壤AOB与反硝化菌的群落结构多样性,NBPT和DMPP对AOB群落结构的影响小于施氮效应。
Nitrogen (N) fertilizer is easily lost in paddy fields, leading to a low efficiency. The application ofslow/controlled release fertilizer is considered an effective measure to solve the problem. At present,however, the types of slow/controlled release fertilizer are scarce for paddy fields. Taking the ureaseinhibitor (N-(n-butyl) thiophosphric triamide, NBPT) and nitrification inhibitor (3,4-dimethylpyrazolePhosphate, DMPP) as the experimental materials, the effects of biological inhibitors on Ntransformation in paddy field was investigated using15N tracer method. We also studied the potential ofreducing N fertilizer application when urease inhibitor was present, and the reasonable proportion ofurease inhibitor to N fertilizer, and the characteristics of soil N supply when combined application ofthe urease inhibitor and nitrification inhibitor. In addition, the influences of NBPT and DMPP on soilmicrobial community and the diversity of the functional organisms involving N cycling are alsoexplored by using molecular ecology methods and techniques. The main findings are as follows:
     (1) The results of stable isotope15N-traced urea showed that the addition of NBPT or combinedaddition of NBPT and DMPP can significantly increased the recovery of applied N in the above-groundparts and soil residual N. Compared to the urea treatment, the peak of volatilization and cumulative lossof NH3from the treatment added with NBPT were significantly reduced by27.04%and21.65%,respectively, and those from the treatment added with combination of NBPT and DMPP were markedlydecreased by12.95%and13.58%, respectively. On the contrast,adding DMPP alone enhanced thepeak of NH3volatilization by23.61%, the NH3losses did not increase significantly. In summary, theeffects of urea added with urease inhibitor or combination of urease and nitrification inhibitors are betterthan urea added with nitrification inhibitor alone, in view of reduction of NH3volatilization in paddyfields.
     (2) The results showed that N2O flux was higher in the first7days after fertilization, and theapplication of DMPP markedly reduced the N2O flux. However, the flux sharply increased after63dayspost-fertilization at mature stage of rice, especially in the treatment where inhibitor was present. Thetwo treatments added with DMPP can significantly reduce the N2O emission in the first21days afterfertilization, but cannot change total emission.
     (3) The results of field experiment reveal that urea of135kg N/ha added with <1%NBPT did notmarkedly increase the yield, but the addition of NBPT ranged from1%to1.5%could significantlyimprove the rice yield and recovery of applied N in the above-ground parts. Compared with the normalurea rate of180kg N/ha, the grain yields are increased by8.54%and12.87%in early and late rice, therecovery of applied N improved by6.78%and9.46%, respectively, and25%of N fertilizer can besaved as a result. Our results showed that addition of DMPP (1%) did not markedly increase the yield.But combined application of NBPT and DMPP could significantly improve rice yield and nitrogenrecovery efficiency.
     (4) Compared to urea treatment, the addition of NBPT notably reduced urease activity and NH+4-Ncontent at tillering stage, but enhanced the NH+4-N content and maintained the a similar activity ofurease at booting stage, revealing that the role of urease inhibitor NBPT was active before booting stage.Stepwise regressions analysis revealed that grain yield of rice was significantly associated with soilNH+4-N content at tillering and booting stage, especially the latter. Therefore, the remarkableimprovement of soil NH+4-N content at booting stage seemed to a key factor which leaded to decreaseof N fertilizer by25%and a significant yield increase in the treatment added NBPT.
     (5) The PLFA analysis showed that addition of NBPT or DMPP significantly decreased the totalPLFA and content of saturated fatty acids and hydroxy fatty acids, some of which were bacteria markers.However, this inhibiting effect of biological inhibitors was not found at booting stage, and a higher totalPLFA was obversed when both NBPT and DMPP were added to urea. Thus, the influence of biologicalinhibitors on microbial community mainly focused on the period before booting stage.
     (6) The result of quantitative PCR showed that archaeal amoA gene copy numbers were moreabundant than AOB by6~10times. However, nitrification inhibitor (DMPP) mainly affected theabundance of AOB. The abundance and community of AOA were not affected by N fertilizer at bothtillering and booting stage. These data showed that DMPP inhibited the soil nitrification throughlimiting the growth of AOB. The profile of DGGE indicated that Nitrosomonas and Nitrosospira wasdominant flora of AOB in paddy soil. N fertilizer increased the diversity of AOB and denitrifyingbacteria. The effects of NBPT and DMPP on the community of AOB were smaller than that of Nfertilizer.
引文
1.白震,何红波,张威,等.磷脂脂肪酸技术及其在土壤微生物研究中的应用[J].生态学报,2006,26(7):2387~2394.
    2.蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32(增刊2):128~135.
    3.蔡祖聪.尿素和KNO3对水稻土无机氮转化过程和产物的影响Ⅰ无机氮转化过程[J].土壤学报,2003,40(2):239~245.
    4.陈春兰,吴敏娜,魏文学.长期施用氮肥对土壤细菌硝化基因多样性及组成的影响[J].环境科学,2011,32(5):1489~1496.
    5.陈建成.氮素肥料的氨挥发[J].土壤肥料,1987,4:40~43.
    6.陈利军,史奕,李荣华,等.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N2O排放的影响[J].应用生态学报,1995,6(4):368~372.
    7.陈哲,陈春兰,秦红灵,等.化肥对稻田土壤细菌多样性及硝化,反硝化功能菌组成的影响[J].生态学报,2009,29(11):6142~6147.
    8.陈哲,袁红朝,吴金水,等.长期施肥制度对稻田土壤反硝化细菌群落活性和结构的影响[J].生态学报,2009,29(11):5923~5929.
    9.封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35~40.
    10.郭丽芸,时飞,杨柳燕.反硝化菌功能基因及其分子生态学研究进展[J].微生物学通报,2011,38(4):583~590.
    11.郭天财,宋晓,马冬云,等.施氮量对冬小麦根际土壤酶活性的影响[J].应用生态学报,2008,19(1):110~114.
    12.郝永俊,吴松维,吴伟祥,等.好氧氨氧化菌的种群生态学研究进展[J].生态学报,2007,27(4):1573~1582.
    13.和文祥,朱铭莪,张一平.汞、镉对土壤脲酶活性影响的研究Ⅰ.尿素浓度[J].应用生态学报.2002,13(2):191~193.
    14.贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406~415.
    15.贺纪正,张丽梅.土壤氮素转化的关键微生物过程及机制[J].微生物学通报,2013,40(1):98~108.
    16.黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,2004,10(6):579~583.
    17.巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192~197.
    18.柯爱飞,王趁义,牛习,等.脲酶抑制剂的研究现状与展望[J].安徽农业科学,2009,37(23):1088~1088.
    19.李成芳,曹凑贵,展茗,等.稻鸭共作生态系统中氧化亚氮排放及温室效应评估[J].中国农业科学,2008,41(9),2895~2901.
    20.李东坡,梁成华,武志杰,等.玉米苗期施用缓/控释氮素肥料养分释放特点与土壤生物活性研究[J].沈阳农业大学学报,2006,37(1):48~52.
    21.李菊梅,李冬初,徐明岗,等.红壤双季稻田不同施肥下的氨挥发损失及其影响因素[J].生态环境,2008,17(4):1610~1613.
    22.李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51~56.
    23.李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99~104.
    24.梁国庆,周卫,夏文建,等.优化施氮下稻-麦轮作体系土壤N2O排放研究[J].植物营养与肥料学报,2010(2):304~311.
    25.梁治齐.微胶囊技术及应用[M].中国轻工业出版社,北京:1999,362~389.
    26.刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报,2004,10(4):521~525.
    27.卢婉芳,陈苇.稻田服酶抑制剂的应用效果及其与环境条件的关系[J].中国水稻科学,1992,6(3):135~138.
    28.鲁如坤(主编).土壤农业化学分析法[M].北京:中国农业科技出版社,2000.
    29.吕婧.脲酶结构与功能的动力学研究及其抑制剂的设计筛选[博士学位论文].杭州:浙江大学,
    2011.
    30.吕云峰.脲甲醛缓释肥料[J].磷肥与复肥,2009,6:8~10.
    31.马晓霞,王莲莲,黎青慧,等.长期施肥对玉米生育期土壤微生物生物量碳氮及酶活性的影响[J].生态学报,2012,32(17):5502~5511.
    32.倪吾钟,沈仁芳,朱兆良.不同氧化还原电位条件下稻田土壤中15N标记硝态氮的反硝化作用.中国环境科学,2000,20(6)519~523.
    33.倪秀菊,李玉中,徐春英,等.土壤脲酶抑制剂和硝化抑制剂的研究进展[J].中国农学通报,2009,25(12):145~149.
    34.裴雪霞.典型种植制度下长期施肥对土壤微生物群落多样性的影响[博士学位论文].北京:中国农业科学院,2010.
    35.彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095~1103.
    36.齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用[J].生态学报,2003,23(8).
    37.齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报,1999,5(6):534~542.
    38.沈菊培.不同施肥处理下土壤氨氧化微生物丰度和群落多样性研究[博士学位论文].北京:中国科学院,2008.
    39.史奕,徐星凯,周礼恺,等.抑制剂及其组合对尿素15N在小麦土壤系统中的行为和归宿的影响[J].应用生态学报,1998,9(2):168~170.
    40.宋亚娜,林智敏,林艳.氮肥对稻田土壤反硝化细菌群落结构和丰度的影响[J].中国生态农业学报,2012,20(1):7~12.
    41.宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240~244.
    42.苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11):1884~1888.
    43.孙庆元,张雪崧,王艳红.土壤脲酶抑制剂正丁基硫代磷酰三胺的作用基团研究[J].土壤,2007,39(3):492~495
    44.田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响[J].土壤与环境,2002,11(3):294~298.
    45.王淳,李祖章,周卫,等.不同施氮量下双季稻连作体系土壤氨挥发损失研究[J].植物营养与肥料学报,2012,18(2):349~358.
    46.王海云,邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报,2009,28(12):2631~2636.
    47.王小彬,辛景峰.尿素与脲酶抑制剂配用对春小麦植株氮吸收的影响[J].干旱地区农业研究,1998,16(3):6~9.
    48.王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[博士学位论文].北京:中国农业科学院,2009.
    49.王智平,曾江海,张玉铭.农田土壤N2O排放的影响因素[J].农业环境保护,1994,13(1):40~42.
    50.吴萍萍,刘金剑,杨秀霞,等.不同施肥制度对红壤地区双季稻田氨挥发的影响[J].中国水稻科学,2009,23(1):85~93.
    51.武志杰,陈利军.缓释/控释肥料:原理与应用[M].北京:科学出版社,2003.
    52.武志杰,史云峰,陈利军.硝化抑制作用机理研究进展[J].土壤通报,2008,9(4):962~970.
    53.徐星凯,周礼恺.脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响[J].土壤学报,2000,37(3):339~345.
    54.徐星凯,周礼恺.脲酶抑制剂/硝化抑制剂对植稻土壤中尿素N行为的影响.生态学报[J],2001,21(10):1682~1686.
    55.续勇波,蔡祖聪,雷宝坤,等.土壤反硝化作用及其环境效应研究进展[M]//段昌群,生态科学进展.北京:高等教育出版社,2008,4:19~46.
    56.颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):851~859.
    57.杨扬,孟德龙,秦红灵,等.硝化抑制剂对蔬菜土硝化和反硝化细菌的影响[J].生态学报,2012,32(21):6803~6810.
    58.叶世超,林忠成,戴其根,等.施氮量对稻季氨挥发特点与氮素利用的影响[J].中国水稻科学,2011,25(1):71~78.
    59.叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征[J].农业环境科学学报,2005,24(6):1186~1191.
    60.尹娟,勉韶平.稻田中氮肥损失途径研究进展[J].农业科学研究,2005,26(2):76~84.
    61.雍太文,杨文钰,向达兵,等.不同种植模式对土壤氮素转化及酶活性的影响[J].应用生态学报.2011,22(12):3227~3235.
    62.张宝林.新型缓释型复合肥-包裹型复合肥.化肥工业,1995,2(6):9~16.
    63.张民,杨越超,宋付朋,等.包膜控释肥料研究与产业化开发[J].化肥工业,2005,32(2):7~17.
    64.张庆忠,陈欣.农田土壤硝酸盐积累与淋失研究进展[J].应用生态学报,2002,13(2):233~238.
    65.张树兰,杨学云,吕殿青,等.温度,水分及不同氮源对土壤硝化作用的影响[J].生态学报,2002,22(12):2147~2153.
    66.张维理,林葆,李家康.西欧发达国家提高化肥利用率的途径[J].土壤肥料,1998(5):3~9.
    67.张文辉,丁巍巍,张勇,等.脲甲醛缓释肥料的研究进展[J].化工进展,2011,30(增刊):437~441.
    68.赵略,孙庆元,于英梅,等.脲酶抑制剂nBPT对土壤脲酶活性和脲酶产生菌的影响[J].大连轻工业学院学报,2007,26(1):24~27.
    69.周礼恺,徐星凯,陈利军,等.氢醌和双氰胺对种稻土壤N2O和CH4排放的影响.应用生态学报,1999,10(2):189~192.
    70.周礼恺,赵晓燕,李荣华,等.脲酶抑制剂氢醌对土壤尿素氮转化的影响[J].应用生态学报,1992,3(1):36~41.
    71.周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162~171.
    72.朱德峰,陈惠哲,徐一成,张玉屏.我国双季稻机械化制约因子与发展对策[J].中国稻米,2013,19(4):1~4.
    73.朱小红,马中文,马友华,等.施肥对巢湖流域稻季氨挥发损失的影响[J].生态学报,2012,32(7):2119~2126.
    74.朱兆良,贵信,徐银华,等.种稻下氮肥的氨挥发及其在氮素损失中的重要性的研究[J].土壤学报,1985,22(4):320~328.
    75.朱兆良,蔡贵信,徐银华,等.种稻下氮肥的氨挥发及其在氮素损失中的重要性的研究[J].土壤学报,1985,2(4):320~328.
    76.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6.
    77.朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报,1994,9:15~18.
    78.朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1992.
    79. Abdelmagid H. M., Tabatabai M. A. Nitrate reductase activity of soils [J]. Soil Biology andBiochemistry,1987,19(4):421~427.
    80. Ai C., Liang G., Sun J., et al. Responses of extracellular enzyme activities and microbialcommunity in both the rhizosphere and bulk soil to long-term fertilization practices in afluvo-aquic soil [J]. Geoderma,2012,173:330~338.
    81. Aguilera E., Lassaletta L., Sanz-Cobena A., et al. The potential of organic fertilizers and watermanagement to reduce N2O emissions in Mediterranean climate cropping systems. A review [J].Agriculture, Ecosystems&Environment,2013,164:32~52.
    82. Ajwa H. A., Dell C. J., Rice C. W. Changes in enzyme activities and microbial biomass of tallgrassprairie soil as related to burning and nitrogen fertilization [J]. Soil Biology and Biochemistry,1999,31(5):769~777.
    83. Alberto S. C., Laura S. M., Lourdes G. T., et al. Gaseous emissions of N2O and NO and NO3leaching from urea applied with urease and nitrifcation inhibitors to a maize (Zea mays) crop [J].Agriculture, Ecosystems and Environment,2012,149:64~73.
    84. Arkoun M., Jannin L., La néP., et al. A physiological and molecular study of the effects of nickeldeficiency and phenylphosphorodiamidate (PPD) application on urea metabolism in oilseed rape(Brassica napus L.)[J]. Plant and Soil,2013,362(1-2):79~92.
    85. Arp D. J., Sayavedra-Soto L. A., Hommes N. G. Molecular biology and biochemistry of ammoniaoxidation by Nitrosomonas europaea [J]. Archives of microbiology,2002,178(4):250~255.
    86. Arth I., Frenzel P., Conrad R. Denitrification coupled to nitrification in the rhizosphere of rice [J].Soil Biology and Biochemistry,1998,30(4):509~515.
    87. Arth I., Frenzel P. Nitrification and denitrification in the rhizosphere of rice: the detection ofprocesses by a new multi-channel electrode [J]. Biology and Fertility of Soils,2000,31(5):427~435.
    88. Balasubramanian A., Ponnuraj K. Crystal structure of the first plant urease from jack bean:83years of journey from its first crystal to molecular structure [J]. Journal of Molecular Biology,2010,400(3):274~283.
    89. Ba uls J., Serna M. D., Qui ones A., et al. Optimización de la fertilización nitrogenada con elinhibidor de la nitrificación (DMPP) con riego por goteo en cítricos [J]. Levante Agricola,2000b,351:117~121.
    90. Bardgett R. D., Hobbs P. J., Frosteg rd. Changes in soil fungal: bacterial biomass ratiosfollowing reductions in the intensity of management of an upland grassland [J]. Biology andFertility of Soils,1996,22(3):261~264.
    91. Bardgett R. D., Mawdsley J. L., Edwards S., et al. Plant species and nitrogen effects on soilbiological properties of temperate upland grasslands [J]. Functional Ecology,1999,13(5):650~660.
    92. Basten M., Brynildsen P., Belzen R. Stabilized urea for enhanced nitrogen use efficiency [C]. IFAInternational workshop on enhanced-efficiency Fertilizers. Paris, France:.International FertilizerIndustry Association (IFA),2005.
    93. Benini S., Rypniewski W. R., Wilson K. S., et al. A new proposal for urease mechanism based onthe crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why ureahydrolysis costs two nickels [J]. Structure,1999,7(2):205~216.
    94. Bhattacharyya P., Chakrabarti K., Chakraborty A. Microbial biomass and enzyme activities insubmerged rice soil amended with municipal solid waste compost and decomposed cow manure [J].Chemosphere,2005,60(3):310~318.
    95. Bossio D. A., Scow K. M., Gunapala N., et al. Determinants of soil microbial communities: effectsof agricultural management, season, and soil type on phospholipid fatty acid profiles [J]. MicrobialEcology,1998,36(1):1~12.
    96. Bossio D., Scow K., Gunapala N., Graham K. Determinants of soil microbial communities: effectsof agricultural management, season, and soil type on phospholipid fatty acid profiles [J]. MicrobialEcology,1998,36(1):1~12.
    97. Boyle S.A., Yarwood R. R., Bottomley P. J., et al. Bacterial and fungal contributions to soilnitrogen cycling under Douglas fir and red alder at two sites in Oregon [J]. Soil Biology andBiochemistry,2008,40(2):443~451.
    98. Bremner J. M., Douglas L. A. Inhibition of urease activity in soils [J]. Soil Biology andBiochemistry,1971,3(4):297~307.
    99. Broadbent F. E., Tusneem M E. Losses of nitrogen from some flooded soils in tracer experiments[J]. Soil Science Society of America Journal,1971,35(6):922~926.
    100. Brookes P. C., Landman A., Pruden G., et al. Chloroform fumigation and the release of soilnitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. SoilBiology and Biochemistry,1985,17(6):837~842.
    101. Bundy L. G. Managing Urea-Containing Fertilizers [M]. Area Fertilizer DealerMeetings, Madison:University of Wisconsin-Madison.2001.
    102. Buresh R. J., Austin E. R. Direct measurement of dinitrogen and nitrous oxide flux in flooded ricefields [J]. Soil Science Society of America Journal,1988,52(3):681~688.
    103. Buresh R. J., Patrick Jr W. H. Nitrate reduction to ammonium and organic nitrogen in an estuarinesediment [J]. Soil Biology and Biochemistry,1981,13(4):279~283.
    104. Byrnes B. H, Vilsmeier K., Austin E., et al. Degradation of the urease inhibitor phenylphosphorodiamidate in solutions and floodwaters [J]. Journal of Agricultural and Food Chemistry,1989b,37(2):473~477.
    105. Byrnes B. H. The degradation of the urease inhibitor phenyl phosphorodiamidate in soil systemsand the performance of N-(n-butyl) thiophosphoric triamide in flooded rice culture [M].Weihenstephan, Germany: Technical University of Munich,1988.
    106. Byrnes B. H., Freney J. R. Recent developments on the use of urease inhibitors in the tropics[M]//Nitrogen Economy in Tropical Soils. Springer Netherlands,1996:251~259.
    107. Cai G. X., Zhu Z. L., Trevitt A. C. F., et al. Nitrogen loss from ammonium bicarbonate and ureafertilizers applied to flooded rice [J]. Fertilizer Research,1986,10(3):203~215.
    108. Cantarella H., Bolonhezi D., Gallo P. B., et al. Ammonia volatilization and yield of maize withurea treated with urease inhibitor [C].16th Nitrogen Workshop, Turin, Italy.2009.
    109. Cantarella H., Quaggio J. A., Gallo P. B., et al. Ammonia losses of NBPT-treated urea underBrazilian soil conditions [M]//International workshop on enhanced-efficiency fertilizers.2005.
    110. Cao Y., Tian Y., Yin B., et al. Assessment of ammonia volatilization from paddy fields under cropmanagement practices aimed to increase grain yield and N efficiency [J]. Field Crops Research,2013,147:23~31.
    111. Carrasco D., Fernández-Valiente E., Ariosa Y., et al. Measurement of couplednitrification-denitrification in paddy fields affected by Terrazole, a nitrification inhibitor [J].Biology and Fertility of Soils,2004,39(3):186~192.
    112. Chaiwanakupt P., Freney J. R., Keerthisinghe D. G., et al. Use of urease, algal inhibitors, andnitrification inhibitors to reduce nitrogen loss and increase the grain yield of flooded rice (Oryzasativa L.)[J]. Biology and Fertility of Soils,1996,22(1-2):89~95.
    113. Chen X. P., Zhu Y. G., Xia Y., et al. Ammonia‐oxidizing archaea: important players in paddyrhizosphere soil?[J]. Environmental Microbiology,2008,10(8):1978~1987.
    114. Chen Y., Xu Z., Hu H., et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogenfertilization and precipitation increment in a typical temperate steppe in Inner Mongolia [J].Applied Soil Ecology,2013,68:36~45.
    115. Chen Z., Liu J., Wu M., et al. Differentiated response of denitrifying communities to fertilizationregime in paddy soil [J]. Microbial Ecology,2012,63(2):446~459.
    116. Chen Z., Luo X., Hu R., et al. Impact of long-term fertilization on the composition of denitrifiercommunities based on nitrite reductase analyses in a paddy soil [J]. Microbial Ecology,2010,60(4):850~861.
    117. Cheyney C. Enhanced fertilizer efficiency products [C].7th Biennial Idaho Nutrient ManagementConference,2014:58.
    118. Chien S. H., Prochnow L. I., Cantarella H. Recent developments of fertilizer production and use toimprove nutrient efficiency and minimize environmental impacts [J]. Advances in Agronomy,2009,102:267~322.
    119. Chien M. M., Savant N. K., Engel N. G. H. Evaluation of cyclohexyl phosphoric andthiophosphoric triamides as sustained-action urease inhibitors in submerged soil. Agron. Abstr..1988:213.
    120. Choudhury A., Kennedy I. R. Nitrogen fertilizer losses from rice soils and control ofenvironmental pollution problems [J]. Communications in Soil Science and Plant Analysis,2005,36(11-12):1625~1639.
    121. Christianson C. B., Byrnes B. H., Carmona G. A comparison of the sulfur and oxygen analogs ofphosphoric triamide urease inhibitors in reducing urea hydrolysis and ammonia volatilization [J].Fertilizer Research,1990,26(1-3):21~27.
    122. Chu H.V., Le B.V. Study on the effects of Agrotain coated urea on high yielding rice in theMekong delta of Vietnam [C]. Report Cuu Long Delta Rice Research Institute,2007,20.
    123. Clay D E, Malzer G L, Anderson J L. Ammonia volatilization from urea as influenced by soiltemperature, soil water content, and nitrification and hydrolysis inhibitors [J]. Soil Science Societyof America Journal,1990,54(1):263~266.
    124. Conrad J.P. The nature of the catalyst causing the hydrolysis of urea in soils. Soil Science1940,50:119~134.
    125. Cui P. Y., Fan F. L., Yin C., et al. Urea-and nitrapyrin-affected N2O emission is coupled mainlywith ammonia oxidizing bacteria growth in microcosms of three typical Chinese arable soils [J].Soil Biology and Biochemistry,2013,66:214~221.
    126. Cui Z. L., Dou Z. X., Chen X. P., et al. Managing Agricultural Nutrients for Food Security inChina: Past, Present, and Future [J]. Agronomy Journal,2014,106(1):191~198.
    127. Dambreville C., Hallet S., Nguyen C., et al. Structure and activity of the denitrifying community ina maize‐cropped field fertilized with composted pig manure or ammonium nitrate [J]. FEMSMicrobiology Ecology,2006,56(1):119~131.
    128. Daniel G., William R. H. Short-term dynamics of soil carbon, microbial biomass, and soil enzymeactivities as compared to longer-term effects of tillage in irrigated row crops [J]. Biology andFertility of Soils,2009,46:65~72.
    129. Das S., Adhya T. K. Effect of combine application of organic manure and inorganic fertilizer onmethane and nitrous oxide emissions from a tropical flooded soil planted to rice [J]. Geoderma,2014,213:185~192.
    130. De Datta S. K. Advances in soil fertility research and nitrogen fertilizer management for lowlandrice [J]. Efficiency of nitrogen fertilizers for rice,1987:27~41.
    131. De Datta S. K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia [J].Fertilizer Research,1986,9(1-2):171~186.
    132. De Datta S. K., Obcemea W. N., Chen R. Y., et al. Effect of water depth on nitrogen use efficiencyand nitrogen-15balance in lowland rice [J]. Agronomy Journal,1987,79(2):210~216.
    133. Decock C. Mitigating nitrous oxide emissions from corn cropping systems in the MidwesternUSA–Potential and data gaps [J]. Environmental Science&Technology,2014.
    134. Di H.J. and Cameron K.C. Reducing environmetal impacts of agriculture by using a fine particlesuspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agriculture,Ecosystems and Environment.2005,109:202~212.
    135. Di H. J., Cameron K. C., Shen J. P., et al. Ammonia‐oxidizing bacteria and archaea grow undercontrasting soil nitrogen conditions [J]. FEMS microbiology ecology,2010,72(3):386~394.
    136. Di H. J., Cameron K. C., Sherlock R. R. Comparison of the effectiveness of a nitrification inhibitor,dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climaticand management conditions [J]. Soil Use and Management,2007,23(1):1~9.
    137. Douglas L. A., Bremner J. M. A rapid method of evaluating different compounds as inhibitors ofurease activity in soils [J]. Soil Biology and Biochemistry,1971,3(4):309~315.
    138. Dow Agro Sciences. N-Serve nitrogen stabilizer.2007.
    139. Duan Y. H., Shi X.J., Li S. L., et al. Nitrogen Use Efficiency as Affected by Phosphorus andPotassium in Long-Term Rice and Wheat Experiments [J]. Journal of Integrative Agriculture,2014,13(3):588~596.
    140. Ebertseder T., Kurpjuweit H. Bewertung der Arbeitsersparnis durch den Einsatz vonENTEC-Düngern(Abstract in English)[J]. In: Düngen mit einer neuen Technologie,1999:83~87.
    141. Enwall K., Philippot L., Hallin S. Activity and composition of the denitrifying bacterial communityrespond differently to long-term fertilization [J]. Applied and Environmental Microbiology,2005,71(12):8335~8343.
    142. Fageria N. K. Comparison of Conventional and Polymer Coated Urea as Nitrogen Sources forLowland Rice Production [J]. Journal of Plant Nutrition,2014.
    143. FAO,2011. Statistical Databases. Food and Agriculture Organization (FAO) of the United Nations,Roma. from http://faostat.fao.org/site/567/default.aspx#ancor.
    144. Francis C. A., Beman J. M., Kuypers M. M. New processes and players in the nitrogen cycle: themicrobial ecology of anaerobic and archaeal ammonia oxidation [J]. International Society forMicrobial Ecology,2007,1(1):19~27.
    145. Franzluebbers A. J., Hons F. M., Zuberer D. A. Seasonal changes in soil microbial biomass andmineralizable C and N in wheat management systems [J]. Soil Biology and Biochemistry,1994,26(11):1469~1475.
    146. Freney J. R., Keerthisinghe D. G., Phongpan S., et al. Effect of urease, nitrification and algalinhibitors on ammonia loss and grain yield of flooded rice in Thailand [J]. Fertilizer Research,1995a,40(3):225~233.
    147. Freney J. R. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture [J].Nutrient cycling in agroecosystems,1997,48(1-2):155~160.
    148. Freney J. R., Denmead O. T., Watanabe I., et al. Ammonia and nitrous oxide losses followingapplications of ammonium sulfate to flooded rice [J]. Crop and Pasture Science,1981,32(1):37~45.
    149. Freney J. R., Peoples M. B., Mosier A. R. Efficient use of fertilizer nitrogen by crops [R]. Foodand Fertilizer Technology Center (FFTC), Taipei, Taiwan.1995b.
    150. Freney J. R., Trevitt A. C. F., De Datta S. K., et al. The interdependence of ammonia volatilizationand denitrification as nitrogen loss processes in flooded rice fields in the Philippines [J]. Biologyand fertility of soils,1990,9(1):31~36.
    151. Frosteg rd., B th E., Tunlio A. Shifts in the structure of soil microbial communities in limedforests as revealed by phospholipid fatty acid analysis [J]. Soil Biology and Biochemistry,1993,25(6):723~730.
    152. Gardner D. Fertilizer Additive Stops Nitrogen Loss [J]. Ag Retailer,1995.
    153. Ghosh S., Majumdar D., Jain M. C. Methane and nitrous oxide emissions from an irrigated rice ofNorth India [J]. Chemosphere,2003,51(3):181~195.
    154. Gioacchini P., Marzadori A. C., Antisari L. V., et al. Influence of urease and nitrification inhibitorson N losses from soils fertilized with urea [J]. Biology and fertility of soils,2002,(36):129~135.
    155. Gong P., Zhang L. L., Wu Z. J., et al. Responses of ammonia-oxidizing bacteria and archaea in twoagricultural soils to nitrification inhibitors DCD and DMPP: A pot experiment [J]. Pedosphere,2013,23(6):729~739.
    156. Gong P., Zhang L., Wu Z., et al. Does the nitrification inhibitor dicyandiamide affect theabundance of ammonia-oxidizing bacteria and archaea in a Hap-Udic Luvisol?[J] Journal of SoilScience and Plant Nutrition,2013,13(1),35~42.
    157. Granli T., Boeckman O. C. Nitrous oxide from agriculture [J]. Norwegian Journal of AgriculturalSciences,1994,12(Supplement):l27~128.
    158. Grant C. A., Ferguson R., Lamond R., et al. Use of urease inhibitors in the Great Plains[M]//Proceedings Great Plains Soil Fertility Conference, Denver, Colorado.1996a.
    159. Grant C. A., Jia S., Brown K. R., et al. Volatile losses of NH3fromsurface-applied urea and ureaammonium nitrate with and without the urease inhibitors NBPT or ammonium thiosulphate [J].Canadian journal of soil science,1996b,76(3):417~419.
    160. Grayston S. J., Prescott C. E. Microbial communities in forest floors under four tree species incoastal British Columbia [J]. Soil Biology and Biochemistry,2005,37(6):1157~1167.
    161. Green C. T., Scow K. M. Analysis of phospholipid fatty acids (PLFA) to characterize microbialcommunities in aquifers [J]. Hydrogeology Journal,2000,8(1):126~141.
    162. Gubry‐Rangin C., Nicol G. W., Prosser J. I. Archaea rather than bacteria control nitrification intwo agricultural acidic soils [J]. FEMS microbiology ecology,2010,74(3):566~574.
    163. Gutser R. Nitrifikationsinhibitoren zur Steuerung der N-freisetzung aus mineralischen undorganischen Düngemitteln [J]. Rationalisierungs-Kuratorium fur die Landwirtschaft (RKL).2006,4,379~396.
    164. Ha N. C., Oh S. T., Sung J. Y., et al. Supramolecular assembly and acid resistance of Helicobacterpylori urease [J]. Nature Structural&Molecular Biology,2001,8(6):505~509.
    165. H hndel R., Wehrmann J. Einflu der Cl‐Ern hrung auf Ertrag und Nitratgehalt von Spinat undKopfsalat [J]. Zeitschrift für Pflanzenern hrung und Bodenkunde,1986,149(3):303~313.
    166. Hamel C., Hanson K., Selles F., et al. Seasonal and long-term resource-related variations in soilmicrobial communities in wheat-based rotations of the Canadian prairie [J]. Soil Biology andBiochemistry,2006,38(8):2104~2116.
    167. Hammel K. E. Fungal degradation of lignin [J]. Driven by nature: plant litter quality anddecomposition,1997:33~45.
    168. Han Y., Fan Y., Yang P., et al. Net anthropogenic nitrogen inputs (NANI) index application inMainland China [J]. Geoderma,2014,213:87~94.
    169. Hansen M., Clough T. J., Elberling B. Flooding-induced N2O emission bursts controlled by pH andnitrate in agricultural soils [J]. Soil Biology and Biochemistry,2014,69:17~24.
    170. Hayatsu M., Tago K., Saito M. Various players in the nitrogen cycle: diversity and functions of themicroorganisms involved in nitrification and denitrification [J]. Soil Science and Plant Nutrition,2008,54(1):33~45.
    171. Hayatsu M., Tago K., Saito M. Various players in the nitrogen cycle: diversity and functions of themicroorganisms involved in nitrification and denitrification [J]. Soil Science and Plant Nutrition,2008,54(1):33~45.
    172. He J. Z., C X., Zhang L.M., et al. Ammonia-oxidizing bacteria and archaea in different paddy soilsof China [M]//Proceedings of the19th World Congress of Soil Science: Soil solutions for achanging world, Brisbane, Australia,1-6August2010. International Union of Soil Sciences (IUSS),c/o Institut für Bodenforschung, Universit t für Bodenkultur,2010:9~12.
    173. He J. Z., Shen J. P., Zhang L. M., et al. Quantitative analyses of the abundance and composition ofammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil underlong‐term fertilization practices [J]. Environmental Microbiology,2007,9(9):2364~2374.
    174. He Y. P., Yang S. H., Xu J. Z., et al. Ammonia volatilization losses from paddy fields undercontrolled irrigation with different drainage treatments [J]. The Scientific World Journal,2014,2014:1~7. http://www.hindawi.com/journals/tswj/2014/417605/
    175. H gberg M. N., H gberg P., Myrold D. D. Is microbial community composition in boreal forest soilsdetermined by pH, C-to-N ratio, the trees, or all three?[J]. Oecologia,2007,150(4):590~601.
    176. Hommes N. G., Sayavedra-Soto L. A., Arp D. J. Transcript Analysis of Multiple Copies ofamo(Encoding Ammonia Monooxygenase) and hao (Encoding Hydroxylamine Oxidoreductase) inNitrosomonas europaea [J]. Journal of Bacteriology,2001,183(3):1096~1100.
    177. Hou J., Dong Y., Fan Z. Effects of Coated Urea amended with biological inhibitors onphysiological characteristics, yield and quality of peanut [J]. Communications in Soil Science andPlant Analysis,2014,45(7):896~911.
    178. Hu Y., Schraml M., von Tucher S., et al. Influence of nitrification inhibitors on yields of arablecrops: A meta-analysis of recent studies in Germany [J]. International Journal of Plant Production,2014,8(1):33~50.
    179. Huang L., Dong H., Wang S., et al. Diversity and abundance of ammonia-oxidizing archaea andbacteria in diverse chinese paddy soils [J]. Geomicrobiology Journal,2014,31(1):12~22.
    180. Huijsmans J. F. M., Hol J. M. G., Vermeulen G. D. Effect of application method, manurecharacteristics, weather and field conditions on ammonia volatilization from manure applied toarable land [J]. Atmospheric Environment,2003,37(26):3669~3680.
    181. Hussain Q., Liu Y., Jin Z., et al. Temporal dynamics of ammonia oxidizer (amoA) and denitrifier(nirK) communities in the rhizosphere of a rice ecosystem from Tai Lake region, China [J].Applied Soil Ecology,2011,48(2):210~218.
    182. Jabri E., Carr M. B., Hausinger R. P., et al. The crystal structure of urease from Klebsiellaaerogenes [J]. Science,1995,268(5213):998~1004.
    183. Junejo N., Khanif M. Y., Dharejo K. A., et al. A field evaluation of coated urea with biodegradablematerials and selected urease inhibitors [J]. African Journal of Biotechnology,2014,10(85):19729~19736.
    184. Keeney D. R., Sahrawat K. L.2. Nitrogen transformations in flooded rice soils [J]. FertilizerResearch,1986,9(1-2):15~38.
    185. Khalil M. A. K., Rasmussen R. A., Wang M. X., et al. Emissions of trace gases from Chinese ricefields and biogas generators: CH4, N2O, CO, CO2, chlorocarbons, and hydrocarbons [J],Chemosphere,1990,20(1):207~226.
    186. Kincheloe S., Sutton A. R. The manufacture, agronomics and marketing of Agrotain. Book ofAbstracts [C]//212th ACS National Meeting. Washington, DC: American Chemical Society,1996.
    187. Kirk G. J. D., Greenway H., Atwell B. J., et al. Adaptation of rice to flooded soils[M]//Progress inBotany. Springer Berlin Heidelberg,2014:215~253.
    188. Kiss S., Simihaian M. Improving efficiency of urea fertilizers by inhibition of soil urease activity[M]. Springer,2002.
    189. Kleineidam K., Ko mrlj K., Kublik S., et al. Influence of the nitrification inhibitor3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphereand bulk soil [J]. Chemosphere,2011,84(1):182~186.
    190. Kudo Y., Noborio K., Shimoozono N., et al. The effective water management practice formitigating greenhouse gas emissions and maintaining rice yield in central Japan [J]. Agriculture,Ecosystems&Environment,2014,186:77~85.
    191. Kudo Y., Noborio K., Shimoozono N., et al. The effective water management practice formitigating greenhouse gas emissions and maintaining rice yield in central Japan [J]. Agriculture,Ecosystems&Environment,2014,186:77~85.
    192. Li H., Liang X., Chen Y., et al. Effect of nitrification inhibitor DMPP on nitrogen leaching,nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system [J]. Journal ofEnvironmental Sciences,2008,20(2):149~155.
    193. Li J., Shi Y., Luo J., et al. Use of nitrogen process inhibitors for reducing gaseous nitrogen lossesfrom land-applied farm effluents [J]. Biology and Fertility of Soils,2014,50(1):133~145.
    194. Li X. B., Xia L. L., Yan X. Y. Application of membrane inlet mass spectrometry to directlyquantify denitrification in flooded rice paddy soil [J]. Biology and Fertility of Soils,2014:1~10.
    195. Li Y. J., Chen X., Shamsi I. H., et al. Effects of irrigation patterns and nitrogen fertilization on riceyield and microbial community structure in paddy soil [J]. Pedosphere,2012,22(5):661~672.
    196. Lin D. X., Fan X. H., Hu F., et al. Ammonia volatilization and nitrogen utilization efficiency inresponse to urea application in rice fields of the Taihu Lake Region, China [J]. Pedosphere,2007,17(5):639~645.
    197. Lin Z., Dai Q., Ye S., et al. Effects of nitrogen application levels on ammonia volatilization andnitrogen utilization during rice growing season [J]. Rice Science,2012,19(2):125~134.
    198. Linzmeier W., Gutser R., Schmidhalter U. Nitrous oxide emission from soil and from anitrogen-15-labelled fertilizer with the new nitrification inhibitor3,4-dimethylpyrazole phosphate(DMPP)[J]. Biology and Fertility of Soils,2001,34(2):103~108.
    199. Luo Q. X., Freney J. R., Keerthisinshe D. G., et al. Inihibition of urease activity in flooded soils byphenylphosphorodiamidate and N–(n–Butyl)thiophosphoricariamides [J]. Soil Biology andBiochemistry.1994,26(8):1059~1065.
    200. Mahmood T., Ali R., Hussain F., et al. Seasonal changes in soil microbial biomass carbon under awheat-maize cropping system receiving urea and farmyard manure in different combinations [J].Pakistan Journal of Botany,2005,37(1):105~117.
    201. Mandal A., Patra A K., Singh D., et al. E. Effect of long-term application of manure and fertilizeron biological and biochemical activities in soil during crop development stages [J]. BioresourceTechnology,2007,98:3585~3592.
    202. Marchesan E., Grohs M., Walter M., et al. Agronomic performance of rice to the use of ureaseinhibitor in two cropping systems [J]. Revista Ciência Agron mica,2013,44(3):594~603.
    203. Marking S. No Need to Sweat Urea Losses Anymore. Urease inhibitor delays nitrogenvolatilization [J]. Soybean Digest,1995.
    204. McCarty G. W., Bremner J. M., Chai H. S. Effect of N-(n-butyl) thiophosphoric triamide onhydrolysis of urea by plant, microbial, and soil urease [J]. Biology and Fertility of Soils,1989,8(2):123~127.
    205. Migliorati M. D. A., Scheer C., Grace P. R., et al. Influence of different nitrogen rates and DMPPnitrification inhibitor on annual N2O emissions from a subtropical wheat–maize cropping system[J]. Agriculture, Ecosystems&Environment,2014,186:33~43.
    206. Mikkelsen D. S., De Datta S. K., Obcemea W. N. Ammonia volatilization losses from flooded ricesoils [J]. Soil Science Society of America Journal,1978,42(5):725~730.
    207. Minami K. Emission of nitrous oxide (N2O) from agro-ecosystem [J]. literatures,1987,21(1):22~27.
    208. Moir J. L., Cameron K. C., Di H. J. Effects of the nitrification inhibitor dicyandiamide on soilmineral N, pasture yield, nutrient uptake and pasture quality in a grazed pasture system [J]. SoilUse and Management,2007,23(2):111~120.
    209. Montemurro F., Capotorti G., Lacertosa G., et al. Effects of urease and nitrification inhibitorsapplication on urea fate in soil and nitrate accumulation in lettuce [J]. Journal of Plant Nutrition,1998,21(2):245~252.
    210. Moyo C. C., Kisseli D. E., Cabrera M. L. Temperature effects on soil urease activity [J]. SoilBiology and Biochemistry.1989,21(7):935~938.
    211. Myers R. T., Zak D. R., White D. C., et al. Landscape-level patterns of microbial communitycomposition and substrate use in upland forest ecosystems [J]. Soil Science Society of AmericaJournal,2001,65(2):359~367.
    212. Nicol G. W., Schleper C. Ammonia-oxidising Crenarchaeota: important players in the nitrogencycle?[J]. Trends in Microbiology,2006,14(5):207~212.
    213. Nuti M. P., Neglia R. G., Verona O. Azione del solfato di diciandiamidina sul metabolismochemoautotrofo di Nitrosomonas europea [J]. Agricoltura Italiana,1975.
    214. Okano Y., Hristova K. R., Leutenegger C. M., et al. Application of real-time PCR to study effectsof ammonium on population size of ammonia-oxidizing bacteria in soil [J]. Applied andEnvironmental Microbiology,2004,70(2):1008~1016.
    215. Pasda G., H hndel R., Zerulla W. The new nitrification inhibitor DMPP (ENTEC)—Effects onyield and quality of agricultural and horticultural crops [J]. Plant Nutrition: Food security andsustainability of agro-ecosystems through basic and applied research,2002:758~759.
    216. Patrick Jr W. H. Nitrate reduction rates in a submerged soil as affected by redox potential [C].Transactions7th internal Congress Soil Science,1960,2:494~500.
    217. Peacock A. D., Mullen M. D., Ringelberg D. B., et al. Soil microbial community responses to dairymanure or ammonium nitrate applications [J]. Soil Biology and Biochemistry,2001,33(7):1011~1019.
    218. Pennanen T., Str mmer R., Markkola A., et al. Microbial and plant community structure across aprimary succession gradient [J]. Scandinavian Journal of Forest Research,2001,16(1):37~43.
    219. Petersen S. O., Klug M. J. Effects of sieving, storage, and incubation temperature on thephospholipid fatty acid profile of a soil microbial community [J]. Applied and EnvironmentalMicrobiology,1994,60(7):2421~2430.
    220. Phongpan S., Freney J. R., Keerthisinghe D. G., et al. Use of phenyl phosphorodiamidate andN–(n–butyl) thiophosphoric triamide to reduce ammonia loss and increase grain yield followingapplication of urea to flooded rice [J]. Fertilizer Research,1995,41:59~66.
    221. PrieméA., Braker G., Tiedje J. M. Diversity of nitrite reductase (nirK and nirS) gene fragments inforested upland and wetland soils [J]. Applied and Environmental Microbiology,2002,68(4):1893~1900.
    222. Rachhpal S., Nye P. H. The effect of soil pH and high urea concentrations on urease activity in soil[J]. Journal of Soil Science.1984,35(4):519~527.
    223. Ramirez K. S., Craine J. M., Fierer N. Consistent effects of nitrogen amendments on soil microbialcommunities and processes across biomes [J]. Global Change Biology,2012,18(6):1918~1927.
    224. Rao P. S. C., Jessup R. E., Reddy K. R. Simulation of Nitrogen Dynamics in Flooded Soils [J]. SoilScience,1984,138(1):54~62.
    225. Reddy K. R., Patrick Jr W. H.5. Denitrification losses in flooded rice fields [J]. Fertilizer research,1986,9(1-2):99~116.
    226. Rochette P, Angers D A, Chantigny M H, et al. Ammonia Volatilization and Nitrogen Retention:How Deep to Incorporate Urea?[J]. Journal of Environmental Quality,2013,42(6):1635~1642.
    227. Sanz-Cobena A, Abalos D, Meijide A, et al. Soil moisture determines the effectiveness of twourease inhibitors to decrease N2O emission [J]. Mitigation and Adaptation Strategies for GlobalChange,2014:1~14.
    228. Sayavedra-Soto L. A., Hommes N. G., Arp D. J. Characterization of the gene encodinghydroxylamine oxidoreductase in Nitrosomonas europaea [J]. Journal of Bacteriology,1994,176(2):504~510.
    229. Serna M. D., Banuls J., Quinones A., et al. Evaluation of3,4-dimethylpyrazole phosphate as anitrification inhibitor in a Citrus-cultivated soil [J]. Biology and Fertility of Soils,2000,32(1):41~46.
    230. Shen J. P., Zhang L. M., Zhu Y. G., et al. Abundance and composition of ammonia‐oxidizingbacteria and ammonia‐oxidizing archaea communities of an alkaline sandy loam [J].Environmental Microbiology,2008,10(6):1601~1611.
    231. Sinsabaugh R. L., Gallo M. E., Lauber C., et al. Extracellular enzyme activities and soil organicmatter dynamics for northern hardwood forests receiving simulated nitrogen deposition [J].Biogeochemistry,2005,75(2):201~215.
    232. Smith C. J., Brandon M., Patrick Jr W. H. Nitrous oxide emission following urea-N fertilization ofwetland rice [J]. Soil Science and Plant Nutrition,1982,28(2):161~171.
    233. Soares J. R., Cantarella H., Campos Menegale M. L. Ammonia volatilization losses fromsurface–applied urea with urease and nitrifcation inhibitors. Soil Biology and Biochemistry,2012,52:82~89.
    234. Subbarao G. V., Ito O., Sahrawat K. L., et al. Scope and strategies for regulation of nitrification inagricultural systems—challenges and opportunities [J]. Critical Reviews in Plant Sciences,2006,25(4):303~335.
    235. Trenkel M. E. Slow-and controlled-release and stabilized fertilizers [M]//an option for enhancingnutrient efficiency in agriculture, Paris, France: International Fertilizer Industry Association2ndedition,2010.
    236. Turpeinen R., Kairesalo T., H ggblom M. M. Microbial community structure and activity inarsenic‐, chromium‐and copper‐contaminated soils [J]. FEMS Microbiology Ecology,2004,47(1):39~50.
    237. Vance E. D., Brggke P. C., Jenkinson D.S. An extraction method for measuring soil microbialbiomass C [J]. Soil Biology and Biochemistry.1987,19(6):703~707.
    238. Varel V. H., Nienaber J. A., Freetly H. C. Conservation of nitrogen in cattle feedlot waste withurease inhibitors [J]. Journal of Animal Science,1999,77(5):1162~1168.
    239. Vestal J. R., White D. C. Lipid analysis in microbial ecology [J]. Bioscience,1989:535~541.
    240. Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soilfungal and bacterial biomass in three long-term experiments [J]. Forest Ecology and Management,2006,222(1):459~468.
    241. Wang P., Zhang X., Kong C. The response of allelopathic rice growth and microbial feedback tobarnyardgrass infestation in a paddy field experiment [J]. European Journal of Soil Biology,2013,56:26~32.
    242. Wang Y., Ke X., Wu L., et al. Community composition of ammonia-oxidizing bacteria andarchaea in rice field soil as affected by nitrogen fertilization [J]. Systematic and appliedmicrobiology,2009,32(1):27~36.
    243. Watson C. J. Urease inhibitors [M]//Frankfurt: IFA International Workshop onEnhanced-Efficiency Fertilizers,.Paris,France: International Fertilizer Industry Association,.2005.
    244. Watson C. J., Akhonzada N. A., Hamilton J.T. G., et al. Rate and mode of application of theurease inhibitor N‐(n‐butyl) thiophosphoric triamide on ammonia volatilization from surface‐applied urea [J]. Soil use and management,2008,24(3):246~253.
    245. Watson C. J., Miller H., Poland P., et al. Soil properties and the ability of the ureaseinhibitorN-(n-butyl) thiophosphoric triamide (nBTPT) to reduce ammonia volatilizationfromsurface-applied urea [J]. Soil Biology and Biochemistry,1994,26(9):1165~1171.
    246. Watson C. J., Poland P., Allen M. B. D. The efficacy of repeated applications of the ureaseinhibitor N-(n-butyl) thiophosphoric triamide for improving the efficiency of urea fertilizerutilization on temperate grassland [J]. Grass and forage science,1998,53(2):137~145.
    247. Wiemken V., Laczko E., Ineichen K., et al. Effects of elevated carbon dioxide and nitrogenfertilization on mycorrhizal fine roots and the soil microbial community in beech-spruceecosystems on siliceous and calcareous soil [J]. Microbial Ecology,2001,42(2):126~135.
    248. Wozniak H, Fuchs M, Michel H J, et al. The efficacy of the new nitrifiction inhibitor DCD+1H-1,2,4triazole in agriculturalcrops in China [M]//12th World Fertilizer Congress of CIEC,2001,.
    249. Wrage N., Velthof G. L., Van Beusichem M. L., et al. Role of nitrifier denitrification in theproduction of nitrous oxide [J]. Soil Biology and Biochemistry,2001,33(12):1723~1732.
    250. Wu J., Joergensen R. G., Pommerening B., et al. Measurement of soil microbial biomass C byfumigation-extraction automated procedure [J]. Soil Biology and Biochemistry.1990,22(8):167~169.
    251. Xiang S. R., Doyle A., Holden P. A., et al. Drying and rewetting effects on C and N mineralizationand microbial activity in surface and subsurface California grassland soils [J]. Soil Biology andBiochemistry,2008,40(9):2281~2289.
    252. Xu J., Peng S., Yang S., et al. Ammonia volatilization losses from a rice paddy with differentirrigation and nitrogen managements [J]. Agricultural Water Management,2012,104:184~192.
    253. Xu X. K., Boeckx P., Van Cleemput O., et al. Mineral nitrogen in a rhizosphere soil in standingwater during rice (Oriza sativa L.) growth: effect of hydroquinone and dicyandiamide [J].Agriculture, Ecosystems&Environment,2005,109(1):107~117.
    254. Xue D., Yao H.Y., Ge D. Y., et al. Soil microbial community structure in diverse land use systems:A comparative study using Biolog, DGGE, and PLFA analyses [J]. Pedosphere,2008,18(5):653~663.
    255. Yan X., Du L., Shi S., et al. Nitrous oxide emission from wetland rice soil as affected by theapplication of controlled-availability fertilizers and mid-season aeration [J]. Biology and fertility ofsoils,2000,32(1):60~66.
    256. Yang S. H, Peng S. Z, Hou H. J., et al. Controlled irrigation and drainage of a rice paddy fieldreduced global warming potential of its gas emissions [J]. Archives of Agronomy and Soil Science,2014,60(2):151~161.
    257. Yao H., Gao Y., Nicol G. W., et al. Links between ammonia oxidizer community structure,abundance, and nitrification potential in acidic soils [J]. Applied and Environmental Microbiology,2011,77(13):4618~4625.
    258. Ying J. Y., Zhang L. M., He J. Z. Putative ammonia‐oxidizing bacteria and archaea in an acidicred soil with different land utilization patterns [J]. Environmental Microbiology Reports,2010,2(2):304~312.
    259. Yoshida M., Ishii S., Otsuka S., et al. Temporal shifts in diversity and quantity of nirS and nirK ina rice paddy field soil [J]. Soil Biology and Biochemistry,2009,41(10):2044~2051.
    260. Yoshida T., Padre B. C. Nitrification and denitrification in submerged Maahas clay soil [J]. SoilScience and Plant Nutrition,1974,20(3):241~247.
    261. Zaman M., Saggar S., Blennerhassett J. D., et al. Effect of urease and nitrification inhibitors on Ntransformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake ingrazed pasture system [J]. Soil Biology and Biochemistry,2009,41(6):1270~1280.
    262. Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation ofmicrobial communities in soil: a review [J]. Biology and Fertility of Soils,1999,29(2):111~129.
    263. Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities [J].Chemosphere,1997,35(1):275~294.
    264. Zerulla W., Barth T, Dressel J., et al.3,4-Dimethylpyrazole phosphate (DMPP)–a newnitrification inhibitor for agriculture and horticulture[J]. Biology and fertility of soils,2001a,34(2):79~84.
    265. Zerulla W., Knittel H. Ertrag und Qualit t von Hackfrüchten nach Anwendung vondicyandiamid-haltigen Düngern.1. Mitteilung: Einfluss auf Kartoffeln.(German)(Yield and qualityof root crops after application of dicyandiamide-containing fertilizers.1. Influence on potatoes)[J].Agribiological Research,1991a,44(4):278~281.
    266. Zerulla W., Knittel H. Ertrag und Qualit t von Hackfrüchten nach Anwendung vondicyandiamid-haltigen Düngern.2. Mitteilung: Einfluss auf Zuckerrüben).(German).(Yield andquality of root crops after application of dicyandiamide-containing fertilizers.2. Influence onsugarbeet)[J]. Agribiological Research,1991b,44(4):282~288.
    267. Zerulla, W., Barth, Th., Dressel, J., et al.3,4-dimethylpyrazole phosphate (DMPP)–a newnitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils.2001a,34:79~84.
    268. Zerulla W., Pasda G., H hndel R., et al. The new nitrification inhibitor DMPP (ENTEC) for use inagricultural and horticultural crops—an overview [M]//Plant Nutrition. Springer Netherlands,2001b:754~755.
    269. Zhang J. F., Han X. G. N2O emission from the semi-arid ecosystem under mineral fertilizer (ureaand superphosphate) and increased precipitation in northern China [J]. Atmospheric Environment,2008,42:291~302.
    270. Zhang L. M., Hu H. W., Shen J. P., et al. Ammonia-oxidizing archaea have more important rolethan ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils [J]. InternationalSociety for Microbial Ecology,2012,6(5):1032~1045.
    271. Zhang Q., Wang G., Yao H. Phospholipid fatty acid patterns of microbial communities in paddysoil under different fertilizer treatments [J]. Journal of Environmental Sciences,2007,19(1):55~59.
    272. Zhao X., Xie Y., Xiong Z., et al. Nitrogen fate and environmental consequence in paddy soil underrice-wheat rotation in the Taihu lake region, China [J]. Plant and soil,2009,319(1-2):225~234.
    273. Zhong W. H, Cai Z. C., Zhang H. Effects of Long-term application of inorganic fertilizers onbiochemical properties of a rice-planting red soil [J]. Pedosphere,2007,17(4):419~428.
    274. Zhu Z. L., Cai G. X., Simpson J. R., et al. Processes of nitrogen loss from fertilizers applied toflooded rice fields on a calcareous soil in north-central China [J]. Fertilizer Research,1988,18(2):101~115.
    275. Zumft W. G. Cell biology and molecular basis of denitrification [J]. Microbiology and MolecularBiology Reviews,1997,61(4):533~616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700