用户名: 密码: 验证码:
表面活性剂对土壤中氮磷迁移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂可通过污染物排放和修复剂添加等方式进入土壤,而目前的相关研究多集中在表面活性剂自身的迁移转化、表面活性剂对土壤基本理化特性的影响以及对有机污染与重金属的修复方面,而较少涉及表面活性剂对土壤氮磷等植物营养物质的迁移影响。
     论文选取阴离子型的十二烷基苯磺酸钠(SDBS)和非离子型的聚乙二醇辛基苯基醚(TX-100),采用吸附试验、培养试验、土柱试验、植物盆栽试验,从土壤颗粒吸附、微生物转化、水流扩散和植物吸收等角度,初步探讨了表面活性剂对土壤氮磷迁移的影响,对比分析了在无植物时,表面活性剂与酸雨淋洗、阴离子表面活性剂与非离子表面活性剂淋洗对氮磷迁移的影响;对比分析了表面活性剂对紫色土与黄壤中氮磷的迁移的影响;对比分析了在植物生长条件下,外源表面活性剂与残留表面活性剂对土壤中氮磷迁移行为的影响,以期为提高植物的氮磷利用率、减少氮磷迁移造成的潜在水环境风险提供科学依据。
     试验结果如下:
     (1)吸附试验表明:①高浓度SDBS促进了铵态氮的吸附,且以紫色土更为显著,而TX-100无显著影响。当SDBS浓度增大到3210mg/L时,黄壤对铵态氮的吸附量比无SDBS时增加了10.50%,紫土则增加了14.20%。②SDBS和TX-100抑制了土壤对磷的吸附,且以紫色土更为显著。黄壤中SDBS和TX-100处理对磷的吸附量无明显差异;而紫色土中,SDBS处理对磷的吸附的抑制作用更强。当SDBS浓度增大到3210mg/L时,黄壤对磷的吸附量比无SDBS时降低了3.29%,紫土中则降低了7.91%;而TX-100浓度增大到3210mg/L时,黄壤对磷的吸附量比无TX-100时降低了3.49%,紫土中则降低了4.44%。③当表面活性剂处理相同时,黄壤对铵态氮和磷的吸附量均大于紫色土。
     (2)培养试验表明:①低浓度表面活性剂促进两种土壤的硝化作用,且以SDBS的促进作用更强;高浓度表面活性剂则反之。②当表面活性剂处理相同时,紫色土的硝化作用强于黄壤。
     (3)土柱淋洗试验表明:①土壤氮磷淋出总量随着表面活性剂浓度和酸雨酸性增加而增加。当淋洗的SDBS溶液浓度在0~100mg/L时,SDBS淋洗增大了紫色土硝态氮的淋出总量而减少了了钕态氮的淋出总量,淋出液中的氮以硝态氮为主,氮磷的淋出总量均随SDBS溶液浓度的增大而增大。当土壤中SDBS的初始浓度在0~100mg/kg时,酸雨淋洗下,氮磷的淋出总量也均随紫色土中SDBS初始浓度的增大而增大。当表面活性剂处理相同时,酸雨的pH值越小,氮磷的淋出总量越大。②SDBS和TX-100淋洗均促进了土壤中氮磷的垂直迁移和淋出。当表面活性剂处理相同时,氮磷淋出总量紫色土均大于黄壤,同时SDBS和TX-100对氮磷淋出的促进作用在紫色土中也比黄壤中更加明显。淋出液中的氮以硝态氮为主,SDBS对硝态氮和总氮淋出的促进作用强于TX-100。SDBS对铵态氮的淋出表现为先促进后抑制的作用,而TX-100则始终表现为促进作用。SDBS和TX-100促进了磷的淋出,黄壤中两者的促进作用相近,而紫色土中SDBS的促进作用更大。淋洗12次后,SDBS处理使黄壤和紫色土中的总氮淋出总量分别增大13.05%和16.36%,硝态氮分别增大17.60%和19.49%,铵态氮分别降低了7.22%和8.50%,总磷分别增大11.69%和19.00%;TX-100处理则使总氮分别增大9.47%和10.77%,硝态氮分别增大9.12%和11.03%,铵态氮分别增大4.12%和9.34%,总磷分别增大11.18%和12.61%。
     (4)盆栽试验表明:①两种存在方式的表面活性剂(以污灌水源添加的表面活性剂和土壤中残留的表面活性剂)均不利于植物的生长,抑制了植物对氮磷的吸收,促进了氮磷的淋出,且后者的促进作用更强。②两种存在方式的SDBS对莴笋吸收氮磷的抑制作用强于TX-100。当SAA以污灌水源形式添加时,SDBS淋洗使黄壤中莴笋的总氮量、总磷量分别减小了23.06%和20.25%,TX-100则分别减小了14.62%和13.72%,SDBS淋洗使紫色土中莴笋的的总氮量、总磷量分别减小了12.27%和12.70%,TX-100则分别减小了8.98%和9.14%。土壤中残留的表面活性剂对植物氮磷的吸收量也有类似影响,黄壤中的SDBS使莴笋的总氮量、总磷量分别减小了20.79%和15.21%;TX-100则分别减小了15.89%和10.44%。紫色土中的SDBS使莴笋的的总氮量、总磷量分别减小了9.68%和11.34%;TX-100则分别减小了7.12%和9.48%。③两种存在方式的SDBS对总氮和硝态氮淋出的促作用均较TX-100更强。当表面活性剂以污灌水源形式添加时,表面活性剂淋洗10周后,SDBS处理使黄壤和紫色土中总氮的淋出总量分别增大了32.52%和35.79%,硝态氮分别增大36.06%和36.41%;而TX-100则使总氮分别增大23.14%和25.62%,硝态氮分别增大21.77%和25.76%。土壤中残留的表面活性剂对总氮和硝态氮淋出总量也有类似影响,以模拟配制的雨水淋洗10周后,黄壤和紫色土中的SDBS分别使总氮淋出总量增大67.59%和70.72%,硝态氮淋出总量分别增大65.04%和66.72%,黄壤和紫色土中的TX-100则使总氮淋出总量分别增大31.76%和46.04%,硝态氮淋出总量分别增大31.22%和41.79%。④两种存在方式的TX-100均促进了铵态氮的淋出,且这种促进作用在紫色土中更显著。10周后,以污灌水源形式添加的TX-100使黄壤和紫色土中的铵态氮淋出总量分别增大了12.58%和18.49%,而土壤中残留的TX-100则使铵态氮淋出总量分别增大了42.80%和45.78%。⑤以污灌水源形式添加的SDBS对铵态氮的淋出表现为先促进后抑制的作用;而土壤中残留的SDBS则始终表现为促进作用。10周后,以污灌水源形式添加的SDBS使黄壤和紫色土中铵态氮的淋出总量分别减少了7.11%和7.55%,而土壤中残留的SDBS使黄壤和紫色土中铵态氮淋出总量分别增大68.16%和64.28%。⑥对总磷的淋出,紫色土中两种存在方式的SDBS的促进作用均大于TX-100,而黄壤中两者的促进作用相近。当表面活性剂以污灌水源形式添加时,SDBS和TX-100淋洗使黄壤总磷的淋出总量分别增大22.50%和22.25%,而紫色土中分别增大27.64%和23.52%。土壤中残留的表面活性剂对总磷的淋出总量也有类似影响,黄壤中的SDBS和TX-100使总磷淋出总量分别增大25.98%和25.16%,紫色土中的SDBS和TX-100分别增大32.85%和28.95%。⑦当表面活性剂处理相同时,氮磷淋出总量紫色土均大于黄壤,且两种表面活性剂对氮、磷淋出的促进作用在紫色土中也比黄壤中更显著。
     综上所述,①不论有无植物生长,SDBS和TX-100均促进土壤氮磷的淋出,增大了氮磷迁移造成的潜在水环境风险。植物生长条件下,SDBS和TX-100均抑制植物对氮磷的吸收利用,间接增大了氮磷的淋出量。②两种表面活性剂相比,SDBS比TX-100更不利于植物对氮磷肥的吸收利用,也更易促进土壤中氮磷的淋出。③表面活性剂的两种存在方式相比,土壤中残留的表面活性剂比以污灌水源添加的表面活性剂对氮磷淋出的促进作用更强。④两种土壤相比,紫色土中氮磷的淋出量大于黄壤,且紫色土中的氮磷迁移比黄壤更易受到表面活性剂的影响。
Surfactants can get into the soil through a variety of ways. Surfactants in soils are pollutants but also a remediation agent. Most of previous studies on surfactants of soils were mainly concentrated on transferring and transformation of surfactant, the effect of surfactants on soil structure, and also soil remediation of organic pollution or heavy metals. Only little studies on the effect of surfactants on migration of nitrogen (N) and phosphorus (P) are reported.
     In this study, two types of surfactants including anion SDBS and non-ionic TX-100were both used for investigation. Through adsorption, soil column, incubation and vegetation plantation experiments, from four aspects of soil adsorption, biotransformation, water-proliferation and plant uptake, the effect of surfactants on N and P migration in yellow and purple soils were investigated. Without plants, the effects on N and P migration of SAA with acid rain, and anionic surfactant with nonionic surfactant leaching were compared. Effects of surfactants on N and P migration in purple soils were compared with in yellow soils. When plants existed, the effects on N and P migration of two types of surfactants existence forms including additions as wastewater and forms as residuals in soils were compared, which may be used for providing scientific basis to increase utilization rate of N and P and prevent to water eutrophication by leaching and migrating of N and P.
     The results are as follows:
     (1) The results of adsorption experiments showed:①Higher concentrations of SDBS increase adsorption of NH4+-N, and the most significant increasing was observed in purple soil. Additionally no clearly effect was observed in TX-100treatment. When concentrations of SDBS increased to3210mg/L, the adsorption of NH4+-N on yellow soils was higher10.50%than no SDBS treatment, as compared with in purple soil of14.20%increasing.②Both of SBDS and TX-100inhibit adsorption of P in two types of soils, and the most significant inhibiting was observed in purple soil. In yellow soils, there were no significantly differences of P adsorption. But in purple soils, SDBS showed a lower P adsorption rather than TX-100.When SDBS concentrations increased to3210mg/L, P adsorption of yellow and purple soils decreased by3.29%and7.91%respectively as compared with control treatment (without SDBS addition). However when TX-100concentration increased3210mg/L, P adsorption decreased by3.49%in yellow soils, and by4.44%in purple soils. ③When the same surfactant applied, NH4+-N and P adsorption was higher in yellow soils than purple soils.
     (2) The results of soil incubation experiments showed:①Low concentrations of surfactant enhance nitrification process of soils with the greater effect observed in SDBS treatment. As a comparison, high concentrations of surfactant inhibited nitrification.②When the surfactant applied was the same, nitrification rate were higher in purple soil rather than in yellow soil.
     (3) The results of soil column experiments showed:①Higher total leaching of N and P were observed in treatments of higher SDBS concentrations and lower pH values of acid rain.SDBS leaching treat increased total leaching of nitrate nitrogen, but decreased total leaching of ammonium nitrogen leaching. Nitrate nitrogen was the main form of nitrogen in the leaching liquid. Leaching of N and P increased with the increase of SDBS solution concentrations when the concentrations of SDBS solution were between0mg/L and100mg/L. When the initial concentrations of SDBS in soil were between0mg/kg and100mg/kg, effect of SDBS in purple soil under acid rain leaching on total leaching of N and P was similar to SDBS solution leaching. When the same surfactant applied, total leaching of N and P was higher under lower pH of acid rain.②Both of SDBS and TX-100leaching enhanced N and P vertical migration and leaching. When the same surfactant applied, total leaching amount of N and P was higher in purple than yellow soils. More significant enhancement of SDBS and TX-100was observed in purple soil rather than in yellow soil. Nitrate nitrogen was the main form of nitrogen in the leaching liquid. SDBS and TX-100enhanced nitrate N and TN leaching, which SBDS showed a better performance. Effects on ammonium N leaching of SDBS change from enhancement to inhibition, and TX-100enhanced ammonia N cumulative leaching. SDBS and TX-100enhanced total P leaching, and similar effect of both types of surfactants were observed in yellow soils, but higher enhancement in purple soils was found with SDBS additions than adding TX-100. After12times leaching, in SDBS treatment, total leaching amount of TN leaching from purple and yellow soils both increased by13.05%and16.36%respectively, and by17.60%and19.49%for nitrate N, and by11.69%and19.00%for TP, but total leaching amount of ammonium N decreased by4.12%and9.34%in yellow and purple soils respectively.On the other hand, in TX-100treatment, in purple and yellow soils, total leaching amount of TN leaching increased by9.47%and10.77%, by9.12%and11.03%for nitrate N, by4.12%and9.34%for ammonium N, and byll.18%and 12.61%for TP.
     (4) The results of vegetation plantation experiment showed:①Two types of SSA existence forms including additions as wastewater and forms as residuals in soils, both enhances N and P leaching, especially higher enhancement was observed in P leaching.②Two kinds existing ways of SBDS showed a better inhibiting effect on the absorption of nitrogen and phosphorus of lettuce than TX-100. SDBS leaching treatment decreased the total nitrogen content and total phosphorus content of lettuce by23.06%and20.25%respectively in yellow soils, and by12.27%and12.70%in purple soils. TX-100leaching treatment decreased the total nitrogen content and total phosphorus content of lettuce by14.62%and13.72%respectively in yellow soils, and by8.98%and9.14%in purple soils. SDBS of soil treatment decreased the total nitrogen content and total phosphorus content of lettuce by20.79%and15.21%respectively in yellow soils, and by9.68%and11.34%in purple soils. TX-100of soil treatment decreased the total nitrogen content and total phosphorus content of lettuce by15.89%and10.44%respectively in yellow soils, and by7.12%and9.48%in purple soils.③Two kinds existing ways of surfactant enhanced nitrate N and TN leaching, which SBDS showed a better performance. After10weeks, total leaching amount of TN from yellow and purple soils both increased by35.52%and35.79%respectively in SDBS leaching treatment, and by36.06%and36.41%for nitrate N. On the other hand, in TX-100leaching treatment, in yellow and purple soils, total cumulative N leaching increased by23.14%and25.62%, and increasing by21.77%and25.76%for nitrate N. After10weeks, total cumulative leaching of TN from yellow and purple soils both increased by67.59%and70.72%respectively in SDBS of soil treatment, and by65.04%and66.72%for nitrate N. On the other hand, in TX-100of soil treatment, in yellow and purple soils, total cumulative N leaching increased by31.76%and46.04%, and increasing by31.22%and41.79%for nitrate N.④Two kinds existing ways of TX-100enhanced ammonium N leaching, and more significant enhancement was observed in purple soil rather than in yellow soil. After10weeks, total cumulative leaching of ammonium N from yellow and purple soils both increased by12.58%and18.49%respectively in TX-100leaching treatment, and by42.08%and45.76%in TX-100of soil treatment.⑤Effects of SDBS leaching treatment on ammonium N leaching changed from enhancement to inhibition, but SDBS of soil treatment enhanced invariably ammonia N cumulative leaching. After10weeks, total cumulative leaching of ammonium N from yellow and purple soils both decreased by7.11%and 7.55%respectively in SDBS leaching treatment, but increased by68.16%and64.28%respectively in SDBS leaching treatment.⑥Two kinds of current ways of surfactant application both enhanced total P leaching. Similar effects of both types of surfactants were observed in yellow soils, but higher enhancement in purple soils was found with SDBS than TX-100. SDBS and TX-100leaching treatment increased total cumulative leaching of TP by22.50%and22.25%respectively in yellow soils, and by27.64%and23.52%respectively in purple soils. SDBS and TX-100of soil treatments increased total cumulative leaching of TP in leaching by25.98%and25.16%in yellow soils respectively, and by32.85%and28.95%in purple soils respectively.⑦When the same surfactant applied, total leaching amount of N and P was higher in purple than yellow soils. More significant enhancement of SDBS and TX-100was observed in purple soil rather than in yellow soil.
     In conclusion,①SDBS and TX-100both enhanced N and P leaching to aggravate the risk of water eutrophication, which was independent of whether plants existed.②In sum, compared with TX-100, SDBS has more negative impact on utilization for N and P uptake of plants and showed better promoting effects on N and P leaching.③The comparison of effects on migration of N and P affected by two kinds existing ways of surfactant showed that enhancement of total N and nitrate N leaching were observed in the two kinds existing ways of surfactant. Surfactants in soil showed a better performance than surfactants solution leaching.④The comparison of two soils showed that total leaching amount of N and P was higher in purple than yellow soils. More significant enhancement of surfactants was observed in purple soil rather than in yellow soil.
引文
[1]Abdul A S, Gibson T L'Rai D N. Selection of surfactants for the removal of petroleum products from shallow sandy aquifers [J]. Ground Water,1991,28(6):920-926
    [2]Chang M, Mcbroom M W, Scott B R. Roofing as a source of nonpoint water pollution [J]. Journal of Environmental Management,2004,73:307-315
    [3]Chen Y C,Xiong Z T, Dong S Y. Chemical behavior of cadmium in purple soil as affected by surfactants and EDTA[J]. Pedosphere,2006,16(1):91-99
    [4]Chiel C, Tessa P, Tim G.The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-B-cyclodextrin and Triton X-100 extraction techniques [J]. Chemosphere,2002, 46:1235-1245
    [5]Chu W, Chan K H, Kwan C Y, et al. Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials [J]. Environmental Science and Technology, 2005,39(23):9211-9216
    [6]Chu W, Kwan C Y. Remediation of contaminated soil by a solvent/surfactant system [J]. Chemosphere,2003,53:9-15
    [7]Chu W. Remediation of contaminated soils by surfactant aided soil washing [J]. Pract Periodical of Haz, Toxic, and Radioactive Waste Manage,2003,7:19-24
    [8]Ding X W, Shen Z Y, Hong Q, et al. Development and test of the export coefficient model in the upper reach of the Yangtze River [J]. Journal of Hydrology,2010,383:233-244
    [9]Dong Y, Wu D, Chen X C, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite[J] Journal of Colloid and Interface Science,2010,348(2):585-590
    [10]Doong R, Lei W. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant [J]. Journal of Hazardous Materials,2003, 96:15-27
    [11]Dorland E, Van Den Berg L J L, Van De Berg A J, et al.The effects of sod cutting and additional liming on potential net nitrification in heathland soils [J]. Plant and Soil,2004, 65(1/2):267-277
    [12]Duan L, Wang W K, Sun Y Q. Ammonium Nitrogen Adsorption-Desorption Characteristics and Its Hysteresis of Typical Soils from Guanzhong Basin, China [J]. Asian journal of chemistry,2013,25(7):3850-3854
    [13]Edwards A C, Withers P J. Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK [J]. Journal of Hydrology,2008,350: 144-153
    [14]ElSayed, Eman M., Prasher, Shiv O., Patel, Ramanbhai M. Effect of nonionic surfactant Brij 35 on the fate and transport of oxytetracycline antibiotic in soil [J]. Journal of environmental management,2013,116:125-134.
    [15]Gao B, Wang X R, Zhao J C, et al. Sorption and cosorption of organic contaminant on surfactant-modified soils [J]. Chemosphere,2001,43(8):1095-1102
    [16]Gao Y Z, Ling W T, Zhu L Z, et al. Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants:potential and assessment [J]. Pedosphere, 2007,17(4):409-418
    [17]Hai W J,Wen J Z,Li Z Z. Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system [J]. Journal of Environmental Sciences, 2013,25(7):1355-1360
    [18]Han M, Ji G D, Ni J R. Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside [J]. Chemosphere,2009,76(5): 579-586
    [19]Hao W, Jia J C. Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam:Effect of partition coeffcient and sweep effciency [J]. Journal of Environmental Sciences,2012,24(1):116-123
    [20]Hernandez S M, Pena A, Dolores M M. Release of Metals from Metal-Amended Soil Treated with a Sulfosuccinamate Surfactant:Effects of Surfactant Concentration, Soil/Solution Ratio, and pH [J]. Journal of environmental quality,2010,39(4):1298-1305.
    [21]Hou L J. Liu M. Amnonium adsorption by tidal flat surface sediment from the Yanglze Estuary[J].Envirorunental Geology,2003,45:72-78
    [22]Huber C, Baier R, Gottlein A, et al. Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Hoglwald, Germany [J]. Forest Ecology and Management,2006,233(1):11-20
    [23]Hussein, T.A., Ismail Z Z. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system [J]. Environmental technology,2013, 34(3):351-361.
    [24]J. A. Carreira, R. Gareia-Ruiz, J. Lietor, A. F. Harrison. Changes in soil phosphatase activity and P transformation rates induced by application of N-and S-containing acid-mist to a forest canopy. Soil Biology & Biochemistry,2000,32:1857-1865
    [25]Jain V, Demond A H. Conductivity reduction due to emulsification during surfactant enhanced-aquifer remediation [J]. Emulsion Transport. Environ. Sci. Technol.,2002,36: 5426-5433
    [26]Ji S X. Enhance the ability of independent innovation tomake sure detergent industry develops placidly andquickly [A]. The 9th international conference on surfactant & detergent proceedings [C]. Shanghai Cassdi& Ridci,2006:1-5
    [27]Juan C M, Kams J, Torrents A. Influence of rhamnolipids TX100 on the desorption of pesticides from soil. Environ. Sci. Technol,2002,36:4669-4675
    [28]Khalladi R, Benhabiles O, Bentahar F, et al. Surfactant remediation of diesel fuel polluted soil [J]. Journal of hazardous materials,2009,164(2-3):1179-1184.
    [29]Kim I S, Park J S, Kim K W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry [J]. Applied Geochemistry,2001,16:1419-1428.
    [30]L. R. W, N. D. M. Cmiparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and monlenite [J].WaterResearch,2004,38(20):4305-4312
    [31]Law J P, Bloodworth M E, Runklers JR.Reacrions of surfactants with montmorillonitic soils.Soil Sci.Soc.Am.Prose.1996,30:327-332
    [32]Lee D H, Cody R D, Kim D J. Surfactant recycling by solvent extraction in surfactant aided remediation [J]. Separation and Purification Technology,2002,27:77-82
    [33]Li H X, Zhang X M, Liu Y J. Soil components affecting phosphatesorption parameters of acid paddy soils in Guangdong province [J].Pedosphere,2000,10:317-321
    [34]Li Z X, Cai C F, Shi Z H, et al. Aggregate stability and its relationship with some chemical properties of red soils in subtropical China [J]. Pedosphere,2005,15(1):129-136
    [35]Liang J, Chen H H, XU Ji-sheng, et al. Research on the adsorption states of ammonium nitrogen in a sandy soil[J].Agricultural Science & Technology,2011,12 (12):1864-1868
    [36]Lopez P, Garcia N A. Phosphorous fractions and availability in vertisols of southwestern Spain [J].SoilSci,2001,1668:548-565
    [37]Msagati T.A. M., Mamba B B. Influence of Micellar Non-Ionic Surfactant Solutions in the Release of Sorbed Hydrophobic Polycyclic Aromatic Hydrocarbons in Soil Slurry [J]. Asian journal of chemistry,2013,25(1):257-260.
    [38]Mulligan C N, Eftekhari F. Remediation with surfactant foam of PCP-contaminated soil [J]. Engineering Geology,2003,70:269-279
    [39]Mulligan C N, Yong R N, GIBBS B F.Surfactant-enhanced remediation of contaminated Soil: a review [J]. Engineering Geology,2001,60:371-380
    [40]Ongley E D, Zhang X L, Yu T. Current status of agricultural and rural non-point source pollution assessment in China [J].Environment Pollution,2010,158:1159-1168
    [41]Park S K, Bielefeldt A R. Non-ionic surfactant flushing of pentachlorophenol from NAPL-contaminated soil [J]. Water research,2005,39:1388-1396
    [42]Pei X H, Zhan X H, Zhou L X. Effect of biosurfactant on the sorption of phenanthrene onto original and H2O2-treated soils [J]. Journal of Environmental Sciences,2009,21(10):1378-1385
    [43]Pena, A., Palma, R., Mingorance M. D. Transport of dimethoate through a Mediterranean soil under flowing surfactant solutions and treated wastewater [J]. Colloids and surfaces A-physicochemical and engineering aspects,2011,384(1):507-512.
    [44]Peng W, Arturo A. Keller M. Partitioning of hydrophobic organic compounds within soil water surfactant systems [J]. Water Research,2008,42:2093-2101.
    [45]Pennell K D, Abriola L M, Weber W J. Surfactant-enhanced solubilization of residual dodceane in soil columns.1. Experimental Investigation [J]. Environ. Sci. Technol.,1993, 27(12):2332-2340
    [46]Rakhshandehroo G R, Wallace R A, Zhao X, Boyd S A, Voice T C. Hydraulic conductivities of cationic surfactant modified soil mixtures [J]. J. Environ. Eng.2001,127(8):724-729
    [47]Ramamurthy A S.Surfactant-Enhanced Removal of Cu (II) and Zn (II) from a ontaminated Sandy Soil [J]. Water Air Soil Pollut,2008,190:197-207
    [48]Rodriguez-Cruz M S, Sanchez-Martin M J, Sanchez-Camazano M. Surfactant-enhanced desorption of atrazine and linuron residues as affected by aging of herbicides in soil [J]. Arch Environ Contain Toxic,2006,50:128-137
    [49]Rosen M J, Li F. Adsorptation of Gemini and conventional surfactants onto some soil solids and the removal of 2-Naphthol by the soil surfaces [J]. J, Colloid. Interf. Sci.,2007,234: 418-424
    [50]Sanchez-Martin M J, Rodriguez-Cruz M S, Sanchez-Camazano M. Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soill-water system [J]. water Research,2003,37(13):3110-3117
    [51]Seng K, Angl, Lar. Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil [J]. Water Research,2003,37(19):4663-4672
    [52]Sha A A, Kiriti V D. Bioremediation of multi-metal contaminated soil using biosurfactant-a novel approach [J]. Indian J Microbiol,2008,48:142-146
    [53]Shen Z Y, Hong Q, Chu Z, et al. A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD MAodel in Fujiang Watershed, China [J]. Agricultural Water Management,2011,98:977-989
    [54]Sivaram H, Cumaraswamy V. Solubilization and degradation of perchloroethylene (PCE) in cationic and nonionic surfactant solutions [J]. Journal of Environmental Sciences,2011,23(8): 1240-1248.
    [55]Sjoberg M, Bergstrom L, Larsson A, et al.The effect of polymer and surfactant adsorption on the colloidal stability and rheology of kaolin dispersions [J].Colloids Surf. A,1999, 159:197-208
    [56]Stanish I, Monouquette H G. Selective, carrier-mediated uptake of dilute aqueous heavy metal ions by metal-sorbing vesicles in the presence of excess Mg2- and Ca2+. J. Membrane Sci.2000, 179:127
    [57]TomL H,Keizer A de,et al. Mixed adsorption of poly and sodiam dodecyl benzene sulfonate on kaolinite[J]. Colocid. Lnterf, Sci.,2009,260:1-8
    [58]Verma S, Nadeem U, Chattopadhyaya M. C. Remediation of cadmium from soil by surfactant Triton X-100 [J]. Journal of the Indian chemical society,2010,87(6):757-759.
    [59]Wang Y. F, L in F, Pang W. Q. Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite [J]. Hazard Mater,2007,142(1-2):160-164
    [60]Wang Z H, Shi Z. Kinetic and mechanistic study of photo dechlorination of 2,2',4, 4'-tetrachlorobiphenyl in surfactant solutions [J]. Bulletin of Environ-mental Contamination and Toxicology,2007,78(2):162-165
    [61]Williams A, Xing B S, Veneman P. Effect of cultivation on soil organic matter and aggregate stability [J]. Pedosphere,2005,15(2):255-262
    [62]Yingjie L, Senlin T, Hong M, et al. Reversibly enhanced aqueous solubilization of volatile organic compounds using a redox-reversible surfactant [J]. Journal of Environmental Sciences, 2011,23(9):1486-1490.
    [63]Yokoyama K, Ohama T. Effect of inorganic N composition of fertilizers on nitrous oxide emission associated with nitrification and denitrification [J]. Soil Science and Plant Nutrition, 2005,51(7):967-972.
    [64]Yu Z, Yedier A, Yang M. Leaching behavior of enrofloxacin in three different soils and the influence of a surfactant on its mobility [J]. Journal of environmental sciences-China,2012, 24(3):435-439.
    [65]Zhang J, Zeng J H, He M C. Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil [J]. Journal of Environmental Sciences,2009,21(5):667-674
    [66]Zhang W, Li J B, Huang G H. An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils [J]. Journal of environmental sciences and health part A-toxic/hazardous substances & environmental engineering,2011,46(3):306-313.
    [67]Zhang Y, Peng B Z, Gao X, et al. Degradation of soil properties due to erosion on sloping land in southern Jiangsu province, China[J].Pedosphere,2004,14(1):17-26
    [68]Zheng G Y, Selvam A, Wong J W. C. Enhanced Solubilization and Desorption of Organochlorine Pesticides (OCPs) from Soil by Oil-Swollen Micelles Formed with a Nonionic Surfactant [J]. Environmental science & technology,2012,46(21):12062-12068.
    [69]Zhu L, Chen B L, Tao S, et al. Interactions of organic contaminants with mineral-adsorbed surfactants [J]. Environmental Science & Technology,2003,37(17):4001-4006
    [70]Zhou W J, Zhu L Z. Influence of surfactant sorption on the removal of phenanthrene from contaminated soils [J]. Environmental Pollution,2008,152(1):99-105
    [71]Zhu L, Chen B, Shen X. Sorption of phenol, p-nitro phenol and aniline to dual-cation organo bentonites from water [J]. Environmental Science & Technology,2000,34:468-475
    [72]Zhu L, Feng S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactant [J]. Chemosphere,2003,53:459-467.
    [73]鲍俊丹,石美,张妹婷,等.中国典型土壤硝化作用与土壤性质的关系[J].中国农业科学,2011,44(7):1390-1398
    [74]曹琳,吉芳英,林茂,等.有机质对三峡库区消落区沉积物磷释放的影响[J].环境科学研究,2011,24(2):185-190
    [75]曹晓燕,景建宁,杨桂朋,等.表面活性剂对DDT在胶州湾沉积物上吸附行为的影响[J].环境科学,2011,32(11):3327-3333
    [76]陈宝梁,李菱,朱利中SDBS在潮土/膨润土上的吸附行为及影响因素[J].浙江大学学报(理学版),2007,34(2):214-218
    [77]陈宝梁,马战宇,朱利中.表面活性剂对苊的增溶作用及应用初探[J].环境化学,2003,22(1):53-58
    [78]陈波浪,盛建东,蒋平安,等.不同质地棉田土壤对磷吸附与解吸研究[J].十壤通报,2010,41(2):303-306
    [79]陈锋,傅敏.表面活性刘修复重金属污染土壤的研究[J].四川环境,2012,31(4):61-64
    [80]陈宏伟,邵影,曹泽红,等.LAS高抗菌株的降解性能研究[J].安徽农业科学,2007,35(7):1885-1888.
    [81]陈宏伟,朱蕴兰,倪世峰,等.LAS对土壤微生物生物学指标的影响及降解条件的正交实验分析[J].农业环境科学学报.2006,25(4):908-912
    [82]陈静,王学军,胡俊栋,等.LAS对土壤中多环芳烃吸附行为的影响[J].环境污染治理技术与设备,2006,7(1):26-29.
    [83]陈庆华,陈玉成,蒋玲.酸雨对表面活性剂促进土壤氮素垂向迁移的强化效应.水土保持学报,2010,24(5):10-13
    [84]陈庆华.合成型阴离子表面活性剂在水土环境中的降解[D].重庆:西南大学,2006:5-6
    [85]陈蓉蓉.羟丙基二甲胺基丙烯酸与PAM的共聚及其在矿棉纤维造纸中的应用[D].沈阳:东北大学,2008.
    [86]陈世军,潘文杰,孟玉山,等.石灰和聚丙烯酰胺对氮素在酸性土壤中吸附-解吸和迁移的影响[J].西南农业学报,2012,25(6):2198-2202
    [87]陈淑玲,谭芸,闫宁,等.表面活性剂对茭白生长影响及十壤残留分析[J].环境科学学报,2010,30(9):1854-1860
    [88]陈涛,王斯佳,马慧,等.表面活性剂对土壤中多氯联苯的洗脱研究[J].环境科学与技术,2012,35(9):11-15
    [89]陈伟伟,王国庆,章瑞英,等Tween80对DDTs污染场地土壤的增溶洗脱效果研究[J].农业环境科学学报,2010,29(2):276-281
    [90]陈秀红,吴国星,饶志坚,等.表面活性剂对农药雾滴在小白菜叶面上扩展面积和蒸发时间的影响[J].云南农业大学学报(自然科学版),2011,26(5):612-615
    [91]陈亚东,梁成华,王延松.氧化还原条件对湿地土壤磷吸附与解吸特性的影响[J].生态学杂志,2010,29(4):724-729
    [92]陈玉成,杨志敏,蒋玲,等.表面活性剂影响下的紫色土氮素垂向迁移风险[J].环境科学,2010,31(7):1614-1618
    [93]程宁.2010年度全国表面活性剂原料及产品产销统计分析[J].日用化学品科学,2011,34(4):1-3
    [94]储超,刘红玉,周仁华,等.表面活性剂对紫背浮萍吸收氮磷的影响[J].环境工程学报,2010,4(7):1571-1575
    [95]戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为[J].中国环境科学,1999,19(5):392-396.
    [96]邓丽莉,江韬,何丙辉,等.聚丙烯酰胺与儿种强化剂联合作用对土壤氮素吸附-解吸和迁移释放的影响[J].水土保持学报,2009,23(3):120-124
    [97]丁洪,郑祥洲,雷俊杰,等.除草剂对尿素氮在土壤中转化的影响[J].生态环境学报,2011, 21(3):551-554.
    [98]丁艳平.多环芳烃和表面活性剂及其联合毒性对青岛大扁藻的影响[D].山东:曲阜.曲阜师范大学,2012
    [99]窦培谦,王晓燕,王丽华.非点源污染中氮磷迁移转化机理研究进展[J].首都师范大学学报(自然科学版),2006,27(2):93-96.
    [100]冯月,蒋建新,朱莉伟,等.表面活性齐(?)Tween80及皂荚皂素对纤维素酶活力促进作用的研究[J].林产化学与工业,2009,29(S1):154-158
    [101]付海曼,贾黎明.土壤对氮、磷吸附/解吸附特性研究进展[J].中国农学通报,2009,25(21):198-203
    [102]傅丽,石元亮,苏壮,等.不同硝化抑制剂的复配施用对尿素转化及土壤中氮的影响[J].土壤通报,2011,42(4):923-925.
    [103]高志农,许东华,吴晓军.新型低聚表面活性剂研究进展[J].武汉大学学报,2004,50(6):691-697
    [104]弓晓峰,张静,张振辉,等.鄱阳湖南矶山自然保护区沼泽湿地土壤对铵态氮吸附能力的研究[J].农业环境科学学报,2006,25(1):179-181
    [105]龚道新,汪传刚,胡湘望,等.噻吩磺降在上壤中的吸附及表面活性剂对吸附的影响[J].农业环境科学学报.2007,26(5):1689-1693
    [106]龚宁.表面活性剂对蔬菜生长及食用安全的影响研究[D].陕西:西北农林科技大学,2010
    [107]郭锋.二元驱表面活性剂在固液界面吸附规律的研究[D].济南:山东大学,2007
    [108]郭松松.三峡库区消落带磷赋存形态及吸附/释放规律研究[D].重庆:重庆大学,2012
    [109]郭伟,李培军,赵天宏,等.LAS对人工快滤系统去除总氮的影响[J].辽宁工程技术大学学报,2008,27(5):792-794.
    [110]韩文炎.茶园土壤微生物量、硝化和反硝化作用研究[D].浙江:浙江大学,2012
    [111]韩旭,吴东洋,王新刚.不同土壤对磷的吸附特性研究[J].现代农业科技,2011,20:285-286.
    [112]杭小帅,王伟,张镭,等.红色粘土对模拟及畜禽养殖废水中磷的去除[J].环境科学学报,2012,32(6):1399-1450
    [113]胡晨璐.生物表面活性剂在固态发酵中对木质纤维素生物降解的影响研究[D].长沙:湖南大学,2010
    [114]胡浩,曾清如,杨海君,等.两株表面活性剂降解菌株的分离、鉴定及降解特性[J].中国环境科学,2008,28(1):43-48
    [115]胡浩.非离子表面活性剂降解及对土壤的影响研究[D].长沙:湖南农业大学,2008:26-27
    [116]胡随喜,巴雅尔,张建平,等.表面活性剂对土壤中镉的吸附解析的研究[J].江苏环境科技,2007,20:4-6
    [117]黄恩慧.直链烷基苯磺酸钠(LAS)的生产及现状分析[J].中国洗涤用品工业,2006,(3):40-44
    [118]黄敏,谭丽泉,余梅,等.表面活性剂对白腐真菌降解石油的影响[J].石油炼制与化工,2012,43(8):77-81
    [119]黄文岳,袁辉.表而活性剂对Cd2-在沉积物上吸附行为的影响[J].环境污染与防治,2010,32(7):71-74
    [120]贾兴永.土壤性质对外源磷有效性及吸附解吸的影响研究[D].北京:中国农业科学院,2011
    [121]江燕斌.表面活性剂生物降解能力的比较及其在纺织洗涤剂中的应用[D].广东:华南理工大学,2012.
    [122]姜桂华.铵态氮在土壤中吸附性能探讨[J].长安大学学报,2004,21(2):32-34
    [123]姜霞,高学晟,应佩峰,等.表面活性剂的增溶作用及在土壤中的行为[J].应用生态报,2003,14(11):2072-2076
    [124]姜霞,王秋娟,王书航,等.太湖沉积物氮磷吸附/解吸特征分析[J].环境科学,2011,32(5):1285-1291
    [125]蒋红梅.酸沉降对土壤-蔬菜系统及其氮、磷周转的影响[D].重庆:西南农业大学,2002
    [126]蒋玲.表面活性剂对紫色土营养物质与重金属淋溶迁移的影响[D].重庆:西南大学,2009
    [127]康欧,李廷轩,陈小琴,等.不同土壤和供肥模式对磷在肥际微域中的迁移和转化的影响[J].水土保持学报,2010,24(4):22-26
    [128]匡丽,张学佳,王宝辉,等.表面活性剂在土壤中的环境行为及其危害性分析[J].东北林业大学学报,2008,36(2):53-55
    [129]李法虎.土壤物理化学[M].北京:化学工业出版社,2006
    [130]李会合,王正银,李宝珍.施肥对酸性菜园土壤莴笋硝酸盐和叶片养分形态的效应[J].植物营养与肥料学报,2004,10(5):504-510
    [131]李慧琳,韩勇,蔡祖聪.不同反应条件下太湖地区水稻土对NH4+的等温吸附特性[J].土壤通报,2009,40(1):89-94
    [132]李隋,赵勇胜,徐巍,等.吐温80对硝基苯的增溶作用和无机电解质作用机理研究[J].环境科学,2008,29(4):920-924
    [133]李伟娜,刘志红,谢皓雪.表面活性剂的结构特点及应用研究进展[J].长春医学,2008,6(2):68-70
    [134]李伟年.我国洗涤用品行业的回顾及可持续发展[J].日用化学品科学,2008,31(1):3-7
    [135]李祥英,赵丽静,陈召亮.两种季铵盐阳离子表面活性剂对番茄灰霉病菌的毒理效应[J].植物保护学报,2011,38(3):265-270
    [136]李映廷,刘双营,赵秀兰,等.秸秆-膨润土-聚丙烯酰胺对砂质土壤吸附氮素的影响[J].农业工程学报,2012,28(7):111-115
    [137]李志安,林永标,沈承德.华南不同人工林土壤铵吸附特征以及其吸附动力学研究[J].土壤学报,2003,28(3):383-389
    [138]梁美英,卜玉山,张广峰,等.石灰性土壤吸磷差异及其与土壤性质的关系[J].山西农业科学,2011,39(6):564-571
    [139]廖伯寒.表面活性剂对重金属在十壤-植物系统中环境化学行为的影响[D].湖南:湖南农业大学,2007
    [140]廖中建,黎理.土壤氮素矿化研究进展[J].湖南农业科学,2007,1:56-59
    [141]凌慧.免耕与秸秆施用对农田土壤呼吸、硝化和反硝化作用的影响[D].江苏:南京信息工程大学,2012
    [142]刘彩娟.表面活性剂的应用与发展[J].河北化工,2007,30(4):20-21
    [143]刘建玲,张凤华.土壤磷素化学行为及影响因素研究进展[J].河北农业大学学报,2000,23(3):40-41
    [144]刘婕丝,刘红玉,曾光明.等.表而活性剂对二嗦磷在不同上壤中吸附迁移的影响[J].环境科学学报,2009,29(1):2118-2125
    [145]刘敏,候立军,许世远,等.长江河口潮滩表层沉积物对铵态氮的吸附特征[J].海洋学报,2005,27(5):60-65
    [146]刘魏魏,尹睿,林先贵,等.生物表面活性剂强化微生物修复多环芳烃污染土壤的初探[J].土壤学报,2010,47(6):1118-1120
    [147]刘艳丽,胡锋,张斌.长期施钾肥水稻土对铵离子吸附特征及影响因素的研究[J].土壤,2008,40(4):575-579
    [148]刘有,马满英,施周.生物表面活性剂鼠李糖脂对PCBs污染土壤的修复作用研究[J].生态环境学报,2012,21(3):559-563
    [149]刘有势,马满英,邓燕.生物与化学表面活性剂协同洗脱十壤中PCBs的研究[J].环境工程学报,2012,6(2):641-645
    [150]卢晓霞,李秀利,马杰,等.焦化厂多环芳烃污染土壤的强化微生物修复研究[J].环境科学,2011,32(3):864-869
    [151]陆祖军,田娜娜,韦妮妮,等.一株吐温-80降解真菌的分离及其降解特性研究[J].环境科学与技术,2010,33(8):11-15
    [152]罗艺.长江上游典型紫色丘陵区面源污染模型[D].四川:四川农业大学,2010
    [153]罗在波.PAM对紫色土坡地氮素迁移淋失的控制效应[D].重庆:西南大学,2008
    [154]马国霞,於方,曹东,等.中国农业面源污染物排放量计算及中长期预测[J].环境科学学报,2012,32(2):489-497
    [155]毛华军,巩宗强,方振东,等.多环芳烃污染土壤表面活性剂清洗及生物柴油强化[J].农业环境科学学报,2011,30(9):1847-1852
    [156]潘根兴,韩永镜,诸清河.太湖地区土壤环境中SAS的分布和降解特点[J].应用生态学报,2002,13(2):171-174
    [157]潘根兴,韩永镜.LAS对土壤环境理化性状和生物活性的影响[J].环境科学,2001,22(1):57-61
    [158]钱晓莉,王定勇.不同施肥条件下酸雨对土壤硝态氮淋失的影响[J].贵州工业大学学报,2005,34(1):101-102
    [159]钱晓雍.上海淀山湖区域农业面源污染特征及其对淀山湖水质的影响研究[D].上海:复旦大学,2011
    [160]曲蛟,罗春秋,丛俏,等.表面活性剂对土壤中重金属清洗及有效态的影响[J].2012,31(5):620-624
    [161]饶品华,徐菁利,张文启,肖稳发.表面活性刘在土壤粒子上的吸附及影响因素综述[J].安徽农业科学,2009,37(14):6542-6545
    [162]饶品华.表面活性剂在土壤中的吸附行为及其对土壤物理特性的影响[D].上海:上海交通大学,2006
    [163]任海燕,纪树兰,彭跃莲,等.阳离子表面活性剂对1,2-二氯乙烷的增溶作用[J].北京工业大学学报,2004,30(4):478-482
    [164]沙晓,王西志,魏新燕,等.磷对不同玉米幼苗生长及根际磷素转化的影响[J].河北农业大学学报,2011,34(2):13-17
    [165]施明.阳离子表面活性剂作为塑料抗静电添加剂的研究应用[D].广东:广州大学,2012
    [166]施占领.土壤颗粒表面电场对酸性土壤硝化作用影响的初步研究[D].重庆:西南大学,2008
    [167]宋金梅,张玉秀,朱书全,等.表面活性剂在电池材料中的应用[J].现代化工,2011,31(1):28-30
    [168]孙大志,文华中,孟凡宇.铵态氮在土壤中吸附影响因素的研究[J].吉林化工学院学报,2007,24(4):31-33
    [169]孙军益.三峡库区紫色土氮磷淋溶试验研究[D].重庆:重庆大学,2012.
    [170]孙璐.阴-非离子混合表面活性剂强化黑麦草吸收PAHs[D]杭州:浙江大学,2008
    [171]孙晓慧,卢瑛莹,陈曙光,等.膨润土对复合污染中表面活性剂的吸附及机理[J].环境科学,2007,28(4):838-842
    [172]汤奕昕,寿森炎.影响LAS吸附和生物降解的环境因素分析[J].北方园艺,2008,8:49-52
    [173]陶亮亮,胡瑞.生物表面活性剂的应用及其发展趋势概述[J].中国洗涤用品工业,2011,6:63-65
    [174]滕玲玲,罗在波,江韬,等.聚丙烯酰胺对紫色土中磷素吸附特征的影响[J].生态环境,2008,17(1):382-392
    [175]万卷敏,杨亚提,刘霞,等.(?)土对阴-非离子表面活性剂的吸附特征研究[J].农业环境科学学报,2011,30(4):690-696
    [176]王宝辉,张学佳,纪魏,等.表面活性剂环境危害性分析[J].化工进展,2007,26(9):1263-1267
    [177]王超,韩璐,潘力.无机离子和非离子表面活性剂对酸性纤维素酶活性的影响[J].现代食品科技,2009,25(2):152-156
    [178]王而力,王嗣淇,杨立伟.西辽河流域沙土对磷的吸附行为[J].环境科学研究,2011,24(2):222-227
    [179]王艮梅.孙成.马爱军.表而活性剂及水溶性有机物对菲生态毒性的影响[J].生态环境.2008,17(5):1764-1768
    [180]王吉秀,祖艳群,陈海燕,等.表面活性剂对小花南芥(Arabis alpina L.var.parviflora Franch)累计铅锌的促进作用[J].生态环境学报,2010,19(8):1923-1929
    [181]王静,郭熙盛,王允青.巢湖流域不同耕作和施肥方式下农田养分径流流失特征[J].水土保持学报,2012,26(1):6-10
    [182]王黎明.表明活性剂(?)JSDBS、SDS和CTMAB对十壤酸性磷酸酶的影响及机理研究[D].杭州:浙江大学,2004
    [183]王立民,王宏燕,赵伟,等.影响黑土氮素转化主要因索的探讨[J].国十与自然资源研究,2008,3:29-30
    [184]王帘里,孙波.培养温度和土壤类型对土壤硝化特性的影响[J].土壤学报,2011,48(6):1173-1179
    [185]王荣萍,黄建国,袁玲,等.重庆市主要土壤类型硝态氮淋失及其影响因素[J].水土保持学报,2004,18(5):35-38
    [186]王书航,姜霞,钟立香,等.巢湖沉积物不同形态氮季节性赋存特征[J].环境科学,2010,31(4):946-953.
    [187]王婷婷,陈薇薇,张迎新,等.土壤及其组分对表面活性剂Tween80的吸附作用及影响因素[J].吉林大学学报(理学版),2011,49(3):559-564
    [188]王彦,张进忠,王振华,等.四川盆地丘陵区农田土壤对磷的吸附与解吸特征[J].农业环境科学学报,2011,30(10):2068-207
    [189]王艳玲,章永辉,何园球,等.红壤基质组分对磷吸持指数的影响[J].土壤学报,2012,49(3):552-557
    [190]王永涛.浅谈表面活性剂在石油化工生产中的应用[J].化学工程与装备,2012,8:159-160
    [191]王振华,朱波,何敏,等.紫色土泥沙沉积物对磷的吸附-解吸动力学特征[J].农业环境科学学报,2011,30(1):154-160
    [192]吴威,姜林,陈家军,等.液固比对土壤洗涤去除多环芳烃效果的影响[J].环境科学,2012,33(3):965-970
    [193]夏建国,仲雨猛,曹晓霞.干湿交替条件下土壤磷释放及其与土壤性质的关系[J].水土保持学报,2011,25(4):237-248
    [194]谢红梅,朱波,朱仲麟.紫色土NH4+、NO3的吸附解吸特性研究[J].土壤肥料,2006,(2):19-22
    [195]信晶,王婷,黎娜,等.阳离子表面活性剂对沉积物及其主要组分吸附双酚A的影响[J].生态环境学报,2009,18(3):885-890
    [196]熊丽文,饶品华,周晓英,等.土壤理化特性对土壤吸附阴离子表面活性剂的影响[J].上海交通大学学报(农业科学版),2005,23(4):387-391
    [197]熊叶辉,曾鑫年,刘承兰.表面活性剂对辛硫磷在土壤中解吸附的影响[J].华中农业大学学报,2011,30(2):214-218
    [198]徐星喜.阴离子表面活性剂的应用与创新[J].中国洗涤用品工业,2012(8):46-50
    [199]徐兆明,王宝辉,张学佳,等.烷基苯磺酸钠在土壤中的迁移特性[J].油气田地面工程,2010,29(2):30-31
    [200]许中坚,陈津瑞.表面活性剂对土壤粘粒絮凝-分散的影响[J].环境科学研究,2003,16(3):62-64
    [201]闫佰忠,唐国林,宋亚路.氮在土壤中的迁移与转化研究[J].中国环境管理,2009,2:42-44
    [202]阎佳,杨军.表面活性剂在家用洗涤剂中的应用[J].河北化工,2009,32(8):17-18
    [203]阳春,郑向勇,严立,等.几种土壤改良材料磷/态氮吸附和硝化作用特性的研究[J].农业环境科学学报,2008,27(5):2013-2017
    [204]杨苞梅,姚丽贤,张政勤,等.广西和福建两省荔枝园土壤养分吸附特性[J].水土保持学报,2012,26(3):39-48
    [205]杨锋伟PAMST无皂乳液及其改性产物在造纸中的应用研究[D].福建:福建师范大学,2011.
    [206]杨建成.表面活性剂对有机农药在土壤/沉积物上吸附的影响研究[D].长沙:湖南农业大学,2006
    [207]杨娴.土壤环境中粘土的分散凝聚行为及其影响因素[D].上海:上海交通大学,2007
    [208]尹杰.不同有机肥与化肥配施对土壤磷转化与迁移的影响[D].长春:吉林农业大学,2008
    [209]袁玲,王容萍,黄建国.三峡库区典型农耕地的氮素淋溶与评价[J].土壤学报,2010,47(4):674-681
    [210]袁平夫.表面活性剂在土壤中的吸附解吸行为及其对土壤微生物和酶活性的影响[D].长沙:湖南农业大学,2005
    [211]袁兴中.鼠李糖脂二糖脂对堆肥中木质纤维素酶解的影响[D].长沙:湖南大学,2009
    [212]曾泽彬.施肥对川中丘陵区紫色土微生物活性及N2O排放的影响[D].四川:四川农业大学,2011
    [213]翟丽华,刘鸿亮,徐红灯,等.浙江某农场土壤和沟渠沉积物对铵态氮的吸附研究[J].环境科学,2007,28(8):1770-1773
    [214]詹艳慧,王里奥,焦艳静.三峡库区消落带土壤氮素吸附释放规律[J].重庆大学学报(自然科学版),2006,29(8):10-13
    [215]张旦麒.长期不同施肥对稻-麦轮作紫色土麦季N2O排放的影响[D].重庆:西南大学,2012
    [216]张登峰,鹿雯,王盼盼,等.沉积磷在不同pH水平下的释放与转化规律[J].安全与环境学报,2011,8(1):1-4
    [217]张宏忠,闫铨钊,方少明,等.组合膜-表面活性剂法处理垃圾渗滤液中的铵态氮[J].化学工程,2008,36(4):37-40
    [218]张华,杨永奎,谢德体,等.酸雨对紫色土氮磷淋失的影响[J].水土保持学报,2007,21(1):32-43
    [219]张景环,曾溅辉.表面活性剂在北京碱性土壤中的吸附行为研究[J].环境污染与防治,2007,29(8):571-582
    [220]张群,朱友益,马德胜.聚合表面活性剂的合成及其应用[J].日用化学工业,2010,40(3):199-203
    [221]张文星,韩向丽,牛金平.低聚型磺酸盐表面活性剂的性能与应用[J].中国洗涤用品工业, 2012,2:56-58
    [222]张晓建,李兆君,何俊瑜,等.土壤水分对玉米根际磷素组分的影响[J].西南农业学报,2011,24(2):654-657
    [223]张杨珠,黄顺红,邹应斌.稻田土壤对铵的矿物固定对十壤保氮作用的贡献[J].生态环境,2006,15(4):807-810
    [224]张勇.表面活性剂对重金属在土壤-植物系统中环境化学行为的影响[D].长沙:湖南农业大学,2007
    [225]章燕平.环境因素对菜地土壤氮素转化及其生物学特性的影响[D].杭州:浙江大学,2010
    [226]郑家春,杨晓军,雷永平,等.表面活性剂在助焊剂中的应用及展望[J].中国石油和化标准与质量,2011,30(4):57-60.
    [227]郑晶晶,王彦玲,常玉丽,等.磺基甜菜碱型氟碳表面活性剂在蒙脱土上的吸附性能[J].化工学报,2011,62(11):3186-3191
    [228]周溶冰,陈建军,尤胜武,等.混合表面活性剂对植物吸收有机氯农药的影响[J].环境科学学报,2011,31(9):2042-2047
    [229]朱清清.表面活性对土壤中重金属污染的去除研究[D].沈阳:东北大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700