用户名: 密码: 验证码:
PET基柔性太阳能电池薄膜电极的制备及其光电转换性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性有机太阳能电池由于其重量轻、成本低、容易加工、适于大面积生产等特点已经引起人们的广泛关注。但是传统的机械脆性较高的透明导电电极,比如ITO薄膜等,其制备过程需要较高的热处理温度,难以满足在热敏感性的柔性聚合物基底上制备有机太阳能电池的薄膜电极的需要。另一方面,有机太阳能电池的稳定性和能量转换效率与传统的无机太阳能电池相比也还是有一定的差距。因此众多的研究者致力于研究光电性能好,柔韧性高,更适合于制备在热敏感性的聚合物基底上的透明导电薄膜电极;同时,结合改善电极的结构与形貌特点来进一步提高电极性能,从而提高有机太阳能电池等光电器件的重要工作参数,如能量转化率,工作稳定性等,为柔性光电器件的发展,奠定重要的实验与技术基础。本文通过室温磁控溅射的方式,通过表面改性,微量掺杂,溅射参数控制等手段,实现了OMO表面结构、形貌、性能的优化控制,结合透明导电薄膜电极的微观结构特性,光电性能,机械性能,以及光电转换特性的研究,探索了透明电极光电性能与薄膜微观结构,表面形貌的相关性,揭示了其内在联系,并确立了几种OMO结构薄膜的最佳性能,为柔性太阳能电池等柔性光电器件的发展奠定技术基础。主要的研究内容包括:
     第一,通过制备OMO(oxide-metal-oxide)三明治结构的ITO-AgQxITO(IAOI)电极,有效地降低了薄膜电极的厚度,从而极大地改善了电极的柔韧性。本研究在OMO结构的基础上,对于中间层M (metal)进行了改进,即通过对纯Ag纳米中间金属层掺杂微量的O,使金属Ag薄膜发生极微小的氧化成为AgOx薄膜,在极大地改善了中间层金属Ag薄膜的透光性的同时,保持了金属Ag的良好导电性能。相比于传统的OMO电极和单层ITO电极,透光性能得到了大幅度提高,保持了相当的导电性,从而采取此种电极作为有机太阳能电池的透明导电电极,将有机太阳能电池的能量转换效率从由ITO为电极的4.72%提高到以IAOI为电极的5.88%,将效率提高了25%。通过弯曲实验证实了这种IAOI薄膜电极具有和ITO-Ag-ITO(IAI)电极相似的柔韧性,适于柔性太阳能电池的电极制备。
     第二,在ITO作为外层氧化物的OMO电极研究的基础上,用ZnO代替ITO,从而制备出了不含In、透明导电性优于传统OMO结构的2ZnO-Ag-ZnO(ZAZ)电极的ZnO-AgOx-ZnO(ZAOZ)电极。并且弯曲实验表明,其柔韧性远远好于传统单层ITO电极。由于ZnO与光活性聚合物层的能级匹配性,采用ZAOZ电极作为倒置结构太阳能电池不仅光电转换效率(6.34%)高于传统ITO电极的太阳能电池(5.76%)和用ZnO-Ag-ZnO(ZAZ)作电极制备的太阳能电池(5.65%),而且由于采用了倒置结构,相比于传统结构的柔性有机太阳能电池的5天有效期,其稳定性也得到了提高,在30天之后能量转换效率依然高于初始效率的85%。
     第三,在ITO-AgOx-ITO电极的基础上,采用了纳米颗粒阵列的三维结构,制备了三维ITO-AgOx-ITO纳米颗粒阵列(IAOI-NPA)电极。由于采取了三维结构,这样不仅由于降低了颗粒间连续薄膜层的厚度而使电极的柔韧性得到了很大的提高,而且通过调节纳米颗粒间的距离,从而改进了薄膜的减反射性,极大地降低了薄膜电极对于入射光的反射率,直接提高了透光性能。将此三维结构的薄膜用于有机太阳能电池,相比于二维的ITO电极和ITO-Ag-ITO电极,不仅具有更优异的光电性能,而且增大了电极和光活性聚合物的接触面积,从而有效解决了尽量减小光活性层厚度以减小激子传输距离和增大光活性层厚度以增大光吸收的矛盾,同时垂直于基底方向的ITO纳米颗粒阵列也为电荷的传输和收集提供了直接的路径,从而大大地提高了电荷的传输和收集效率,从而提高了能量转换效率,将传统的平面ITO电极的太阳能电池转换效率提高了22%。
     通过以上内容的研究,不仅解决了传统OMO结构中间金属层厚度与光电性能之间的矛盾,加深了人们对于纳米光电薄膜光学特性调控机理,电荷传递机制的理论认识,而且有效地改善了ITO结构电极的机械脆性,为实现柔性有机太阳能电池提供了技术支撑。而且通过对PET柔性基底简单有效的表面改性,实现了三维透明薄膜电极的制备,为提高柔性有机太阳能电池的光电转换效率提供了新思路。
Flexible organic solar cells have attracted a lot of attention due to their light weight, low cost, easy processing, and availability for large-scale production. However, the traditional transparent conductive electrodes which have been studied maturely, such as ITO film, cannot meet the requirement as a transparent conducting electrode prepared on the heat-sensitive substrate for flexible organic solar cells, because of its inherent mechanical brittleness and the high processing or heat treatment temperature of preparing high-quality ITO films. On the other hand, compared with traditional inorganic solar cells, the poor stability and low energy conversion efficiency need to be improved. Therefore, more and more researchers are trying to fabricate the electrode, which have better flexibility and more suitable to be transparent conducting films prepared on heat-sensitive polymer substrates. Meanwhile, researchers are trying to optimize the structure and morphology characteristics to further enhance the properties of the electrode, in order to improve the working parameters of the photovoltaic devices, such as power conversion efficiency and stability. The improvement of the transparent conductive electrode will contribute to the development of the flexible photovoltaic devices and provide the experimental and technological support.
     In this research, the structure, morphology and properties of the electrode were optimized by surface modification, minimal dopant and control of the sputtering parameter using magnetron sputtering. The photoelectric properties, mechanical properties and the photoelectric conversion characteristic were studied with the characterization of the microstructure. In this way, the relations between the structure and morphology and the photoelectric properties were revealed. And the properties of several electrodes were optimized in order to provide technological support to the development of the flexible photovoltaic devices, such as flexible organic solar cell. In this research, we studied:
     Firstly, ITO-AgOx-ITO (IAOI) electrode using an OMO (oxide-metal-oxide) sandwich structure effectively reduced the thickness of the electrode, which greatly improved the flexibility of the electrode. Here, the traditional OMO structure was applied and the interlayer AgOx was obtained by doping a small amount of02. After the metallic Ag film was extremely slightly oxidized, the optical transmittance of Ag films was greatly improved while maintaining good electrical conductivity. Compared to the traditional single-layer ITO electrode and the ITO-Ag-ITO (IAI) electrode, transmittance had been greatly improved while a relatively good conductivity was kept. Thus, when such an electrode was applied as a transparent conductive electrode of the organic solar cell, the energy conversion efficiency was increased from4.72%using conventional ITO electrode to5.88%based on IAOI electrode. In this way, the power conversion efficiency has been improved by25%. And the bending test result indicated that IAOI film electrode exhibited the similar flexibility as IAI electrodes, which was much better than the traditional single-layer ITO electrodes.
     Secondly, ZnO was applied as the oxide in OMO structure instead of ITO in order to prepare an indium-free electrode, ZnO-AgOx-ZnO(ZAOZ) electrode. The electrode was more transparent and conductive than ZnO-Ag-ZnO (ZAZ) and single-layer ITO electrode. And it was found that ZAOZ electrode was much more flexible than conventional traditional single-layer ITO electrodes. Since the energy matching between ZnO and the photoactive polymer layer, a ZAOZ electrode was applied to prepare inverted organic solar cell. Due to the good electrical and optical performance of the electrode, the organic solar cell based on ZAOZ electrode exhibited much higher power conversion efficiency (6.34) compared to the organic solar cells based on ITO electrode (5.76) and ZAZ electrode (5.65%). What's more, the stability of the organic solar cell was improved a lot because of the inverted structure. The power conversion efficiency remained more than85%of the initial value while the solar cell using conventional structure failed after5days.
     Thirdly, based on ITO-AgOx-ITO electrode, nanoparticle arrays of three-dimensional structure were applied to prepare a three-dimensional ITO-AgOx-ITO nanoparticle array (IAOI-NPA) electrode. As a result, the flexibility has been greatly improved due to the reduced thickness of the continuous film layer between the nanoparticles and because the antireflection of the film could be controlled by adjusting the distance between the nanoparticles. Therefore, greatly reduction of the reflection of incident light directly leaded to increase of the light transmittance. This three-dimensional structure electrode for an organic solar cell, compared to the two-dimensional ITO electrode and ITO-Ag-ITO electrode, not only had superior optical performance, but also increased the contact area of the electrode and the photoactive polymer. In this way, an effective solution was found to the tradeoff between minimizing the thickness of the photoactive layer in order to reduce the transport distance of excitons and increasing the optical thickness of the active layer to increase light absorption. Simultaneously, vertical ITO nano-particles provided direct paths for the transfer and collection of charges. Therefore, power conversion efficiency of the organic solar cells was improved by22%.
     In this research, the tradeoff between thickness of the metallic interlayer and the photoelectric properties has been resolved. Also, the understanding of mechanism of the transport and the control of the photovoltaic properties of the nano-films was improved. The brittleness of the ITO electrode was improved a lot in order to provide technological support for the fabrication of solar cell. The3D transparent conductive electrode was prepared and it provided a new idea for the improvement of the power efficiency of flexible organic solar cell.
引文
[1]Granqvist C G, in:C.G Granqvist(Ed.), Materials Science for Solar Energy Conversion Systems, Pergamon, Oxford,1991, pp.106-167
    [2]Granqvist C G, Appl. Phys. A 1993,5:719
    [3]Baedeker K, Ann. Phys. (Leipzig),1907,22:7491951
    [4]Hiesinger L, Konig H, Festschrift Heraeus W C,1951, p.376
    [5]Helwig G, Z. Physik 1952,132:621
    [6]Thelen A, Konig H, Jubilaumsschrift Geratebau-Anstalt Balzers, Wissenschaftl. Verlagsgesellschaft, Stuttgart,1956
    [7]Thelen A, Konig H, Naturwissenschaften 1956,13:297
    [8]Haacke G, Ann. Rev. Mater. Sci.1977,7:73
    [9]Gordon R G. Materials Research Society Symposium Proceedings,1996,419-429
    [10]Ginley D S, Perkins J D, Handbook of Transparent Conductors. Chapter 1:Transparent conductors. Springer science,2010, New York.
    [11]Betz U, Kharrazi, Olsson M, Marthy J, Escola M F, Atamny F. Surf. Coat. Technol.2006,200: 5751
    [12]Kim D H, Park M R, Lee H J, Lee G H, Applied Surface Science 2006,253:409-411
    [13]Hao L, Diao X, Xu H, Gu B, Wang T, Applied Surface Science,2008,254:3504-3508
    [14]Kim D. Journal of Non-Crystalline Solids,2003,331:41-47
    [15]Wang L M, Chen Y J, Liao J W, Kim D, Journal of Non-Crystal line Solids 2003,331:41-47
    [16]Boehme M, Charton C, Surface & Coatings Technology 2005,200:932-935
    [17]Alam M J, Cameron D C, Thin Solid Films 2000,377-378:455-459
    [18]Kong B H, Choi M K, Cho H K, Kim J H, Baek S, Lee J H, Electrochem. Solid-State Lett. 2010,13:K12
    [19]Hagiwara Y, Nakada T, Kunioka A, Sol. Energy Mater. Sol. Cells.2001,67:267
    [20]Makino H, Yamamoto N, Miyake A, Yamada T, Hirashima Y, Lwaoka H, Itoh T, Hokari H, Aoki H, Yamamoto T, Thin Solid Films.2009,518:1386
    [21]Zhao J W, Qin L R, Zhang L D. Physica E.2008,40:795
    [22]Jiang M F, Wang Z N, Ning Z Y. Thin Solid Films.2009,517:6717
    [23]Zheng K B, Gu L L, Sun D L, Mo X L, Chen G R, Materials Science and Engineering B. 2010,166:104
    [24]Lv M S, Xiu X W, Pang Z Y, Dai Y, Han S H. Appl. Surf. Sci.2006,252:5687
    [25]Xiu X W, Pang Z Y, Lv M S, Dai Y, Ye L N, Han S H. Applied Surface Science 2007,253: 3345-3348
    [26]Sharma R, Sehrawat K, Mehra R M, Curr. Appl. Phys.2010,10:164
    [27]Yoon H S, Lee K S, Lee T S, Cheong B, Choi D K, Kim D H, Kim W M. Sol. Energy Mater, Sol. Cells 2008,92:1366
    [28]Minami T, Sato H, Sonoda T, Nanto H, Takata S. Thin Solid Films.1989,171:307-311
    [29]Minami T, Sato H, Ohashi K, Tomofuji T, Takata S. Journal of Crystal Growth.1992,117: 370-374
    [30]Jeong S H, Lee J W, Lee S B, Boo J H. Thin Solid Films.2003,435:78-82
    [31]He B, Xu J, Xing H Z, Wang C R, Zhang X D. Superlattices and Microstructures.2013,64: 319-330
    [32]Jeon H J, Jeon M K, Kang M T, Lee S G, Lee Y L, Hong Y K, Choi B H. Materials Letters 2005,59:1801-1810
    [33]Dua L K, De A, Chakraborty S, Biswas P K. Materials Characterization.2008,59:578-56
    [34]Kim H, Auyeung R C Y, Pique A, Thin Solid Films.2008,516:5052-5056
    [35]Dutta J, Perrin J, Emeraud T. Joumal of Material Science.1995,30:53-62
    [36]Zhu Y, Sun Z, Yan Z, Jin Z, Tour J M, ACS Nano.2011,5:6472-6479
    [37]Huang Y L, Baji A, Tien H W, Yang Y K, Yang S Y, Wu S Y, Ma C C, Liu H Y, Mai Y W, Wang N H. Carbon.2012,50:3473-3481
    [38]Lee J Y, Connor S T, Cui Y, Peumans P. Nano Lett.2008,8:689-692
    [39]Azulai D, Belenkova T, Gilon H, Barkay Z, Markovich G. Nano Lett.2009,9:4246-4249
    [40]De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N. ACS Nano.2009,3:1767-1774
    [41]Scardaci V, Coull R, Lyons P E, Rickard D, Coleman J N. Small.2011,7:2621-2628
    [42]Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J P. Nanotechnology.2013,24: 452001
    [43]Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G Science.2004,305:1273-1276
    [44]Hu L, Hecht D S, Grulner G. Nano letters.2004,4:2513-2517
    [45]Dan B, Irvin G C. Matteo Pasquali. ACS Nano.2009,3:835-843
    [46]Hu L, Hecht D S, Grulner G. Nano letters.2004,4:2513-2517
    [47]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. ACS Nano.2008,2:463-470
    [48]Eda G, Lin Y Y, Miller S, Chen C W, Su W F, Chhowalla M. Appl. Phys. Lett.2008,92: 233305
    [49]Jang S, Jang H, Lee Y, Suh D, Baik S, Hong B H, Ahn J H. Nanotechnology 2010,21: 425201
    [50]Leem D S, Edwards A, Faist M, Nelson J, Bradley D D C, Mello J C. Adv. Mater.2011,23: 4371
    [51]Hecht D S, Hu L, Irvin G. Adv. Mater.2011,23:1482
    [52]Elechiguerra J L, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman M J. Chem. Mater.2005,17:6042
    [53]Guillen C, Herrero J. Optics Communications.2009,282:574-578
    [54]Lewis J, Grego S, Chalamala B, Vick E, Temple D. Applied Physics Letter.2004,85: 3450-3452
    [55]Li Y, Wang L, Chang C, Duan L, Qiu Y. Chin. Sci. Bull.2004,49:1328-1331
    [56]Kim T H, Choi B H, Park J S, Lee S M, Lee Y S, Lee S P. Mol. Cryst. Liq. Cryst.2010,520: 209-214
    [57]Chakarouna M, Amrania A E, Lucasa B, Ratiera B, Aldissi M. Eur. Phys. J. Appl. Phys.2010, 51:33206
    [58]Sahu D R, Lin S Y, Huang J L. Applied Surface Science.2006,252:7509-7514
    [59]Sahu D R, Huang J L. Materials Science and Engineering B 2006,130:295-299
    [60]Sahu D R, Huang J L. Thin Solid Films.2006,515:876-879]
    [61]Hajj A E, Lucas B, Chakaroun M, Antony R, Ratier B, Aldissi M. Thin Solid Films.2012, 520:4666-4668
    [62]Song S, Yang T, Xin Y, Jiang L, Li Y, Pang Z, Lv M, Han S. Current Applied Physics.2010, 10:452-456
    [63]Guillen C, Herrero J. Phys. Status Solidi A.2010,207:1563-1567
    [64]Cho S W, Jeong J A, Bae J H, Moon J M, Choi K H, Jeong S W, Park N J, Kim J J, Lee S H, Kang J W, Yi M S, Kim H K. Thin Solid Films.2008,516:7881-7885
    [65]Tseng C H, Wang W H, Chang H C, Chou C P, Hsu C Y. Vacuum.2010,85:263-267
    [66]Montero J, Guillen C, J. Herrero. Thin solid films.2011,519:7564-7567
    [67]Lu L, Shen H, Jiang F, Yang C, Lin L. Physica B.2010,405,3320-3323
    [68]Chen D Y, Hsu C Y. Superlattices and Microstructures.2008,44:742-753
    [69]Yoo B, Kim K, Lee S H, Kim W M, Park N G. Solar Energy Materials & Solar Cells.2008, 92:873-877
    [70]Mattox D M. The Foundations of Vacuum Coating Technology. Norwich, N.Y.:Noyes Publications/William Andrew Pub,2003
    [71]Arnell R D, Kelly P J. Surface and Coatings Technology,1999,112:170-176
    [72]Movchan B A, Demchishin A V. Phys. Met. Metallogr,1969,28:83-90
    [73]Dong L, Srolovitza D J. Journal of Applied Physics,1998,84:5261-5269
    [74]Song J S, Lee S, Cha G C, Jung S H, Choi S Y, Kim K H, Mun M S. Journal of Applied Polymer Science,2005,96:1095-1101
    [75]Stramel A A, Gupta M C, Lee H R, Yu J, Edwards W C. Optics and Lasers in Engineering, 2010,48:1291-1295
    [76]Lowndes D H., Geohegan D B, Puretzky A A, Norton D P, Rouleau C M. Science,1996,273: 898-903
    [77]Kathirvel D, Suriyanarayanan N, Prabahar S, Srikanth S. International Journal Of Graphics and Multimedia,2011,2:30-36
    [78]Zhang Y, Zhang L, Zhou C. Accounts of Chemistry Research,2013,46:2329-2339
    [79]Hench L L, West J K. Chemical Reviews,1990,90:33-72
    [80]Chamberlin R R, Skarman J S, Electrochem J. Soc.1966,40:123-127
    [81]郑伟涛.薄膜材料与薄膜技术-2版,化学工业出版社(北京),2007
    [82]Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Jpn. J. Appl. Phys.2006,45: 26 L638-L640
    [83]Ito S, Ha N L C, Rothenberger G, Liska P, Comte P, Zakeeruddin S M, Pechy P, Nazeeruddin MK, Gratzel M. Chem. Commun.2006,38:4004-4006
    [84]Hino T, Ogawa Y, Kuramoto N. Fullerenes Nanotubes Carbon Nanostruct.2006,14:607-619
    [85]Granqvist C G. Solar Energy Materials & Solar Cells.2007,91:1529-1598
    [86]Mwamburi M, Wackelgard E. Sol. Energy.2000,68:371-378
    [87]Mwamburia M, Wackelgard E, Roos A. Thin Solid Films.2000,374:1-9
    [88]Mwamburi M, Wackelgard E, Roos A, Kivaisi R. Appl. Opt.2002,41:2428-2434
    [89]Lan J H, Kanicki J, Catalano A, Keane J, Boer W D, Gu T, Electron J. Mater.1996,25:1806.
    [90]The Surface Science of Metal Oxides, Cambridge University Press, Cambridge,1994
    [91]Kloppel A, et al. SID Symposium Digest of Technical Papers.2000,31:1084-1087
    [92]Seo M, Kim G, Kim H. Computer-Aided Design and Applications,2005,2:359-366
    [93]Roos A. Unpublished Data; [Hamberg I, Svensson J S E M, Eriksson T S, Granqvist C G W, Arrenius P, Norin F. Appl. Opt.1987,26:2131-2136
    [94]郝晓涛,马瑾,马洪磊,杨莺歌,王卿璞,黄树来.液晶与显示.2002,17(3):169-171
    [95]吴博任.环境,2007,10:18-19.
    [96]陈伟立.中国石化,2007,3:35-37
    [97]Kim K, Bae S H, Toh C T, Kim H, Cho J H, Whang D, Lee T W, Ozyilmaz B, Ahn J H. Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization, ACS Applied Materials & Interfaces,2014,6:3299-3304
    [98]You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun.2013,4:1446
    [99]Dou L, You J, Yang J, Chen C C, He Y, Murase S, Moriarty T, Emery K, Li Gang, Yang Y. Nature Photonics,2012,6:180-185
    [100]Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nature Photonics 2009,3:297-302
    [1]Ishii K.. High-rate low kinetic energy gas-flow-sputtering system. Journal of Vacuum Science and Technology A 1989,7:256-258
    [2]Ay F, Aydinli A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials,2004,26:33-46
    [3]Ansbaek T, Petersen D H, Hansen O, Larsen J B, Hansen T M, B(?)ggild P. Microelectronic Engineering 2009,86:987
    [4]Adrian M. The Hall Effect and Properties of Semiconductors. Experiments in Modern Physics, pp.80-98,1966, Academic Press Ginley D S, Perkins J D, Handbook of Transparent Conductors. Chapter 1:Transparent conductors. Springer science,2010, New York.
    [5]Skoog D A, Holler F J, Crouch S R, Principles of Instrumental Analysis (6th ed.). pp.169-173, Thomson Brooks/Cole,2007, Belmont, CA
    [6]Bragg W L. The Structure of Some Crystals as Indicated by their Diffraction of X-rays. Proc. R. Soc. Lond. A89,1913,610:248-277
    [7]Wang W, Yuan Y, Zhang L, Min G, Ceramics International 2012,38:4313
    [8]Elmas S, Korkmaz S, Journal of Non-Crystalline Solids 2013,359:69
    [9]Akhavan O, Abdolahad M, Current Applied Physics 2010,10:1203
    [10]Legros M, Gianola D S, Hemker K J. Acta Materialia 2008,56:3380
    [11]Yan H, Okuzaki H. Synthetic Metals 2009,159:2225
    [12]Kawabata S, Ishihara K, Hoshi Y, Fukazawa T. Thin Solid Films 1998,313-314:516
    [13]Mitsugi F, Matsuoka A, Umeda Y, Ikegami T, Thin Solid Films 2010,518:6330
    [14]Sarwar J, Georgakis G, LaChance R, Ozalp N. Solar Energy 2014,100:179
    [1]Lewis J, Grego S, Chalamala B, Vick E, Temple D, Appl. Phys. Lett.2004,85:3450.
    [2]Han H, Theodore N D, Alford T L, J. Appl. Phys.2008,103:013708.
    [3]Indiuru A, Alford T L, J. Appl. Phys.2009,105:123528.
    [4]Sivaramakrishnan K, Alford T L, Appl. Phys. Lett.2009,94:052104.
    [5]Park Y S, Choi K H, Kim H K, J. Phys. D:Appl. Phys.2009,42:235109.
    [6]Guillen C, Herrero J, Phys. Status Solidi A 2010,207:1563.
    [7]Chakaroun M, Amrani A, Lucas B, Ratier B, Aldissi M, Eur. Phys. J. Appl. Phys.2010,51: 33206.
    [8]Kuang P, Park J M, Leung W, Mahadevapuram R C, Nalwa K S, Kim T G, Chaudhary S, Ho K M, Constant K, Adv. Mater.2011,23:2469.
    [9]Lee J Y, Connor S T, Cui Y, Peumans P, Nano Lett.2008,8:689.
    [10]Azulai D, Belenkova T, Gilon H, Barkay Z, Markovich G, Nano Lett.2009,9:4246.
    [11]Hu L, Kim H S, Lee J Y, Peumans P, Cui Y, ACS Nano 2010,4:2955.
    [12]Wu Z C, Chen Z H, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G, Science 2004,305:1273.
    [13]Hu L, Hecht D S, Gruner G, Nano Lett.2004,4:2513.
    [14]Dan B, Irvin G C, Pasquali M, ACS Nano 2009,3:835.
    [15]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y, ACS Nano 2008,2:463.
    [16]Eda G, Lin Y Y, Miller S, Chen C W, Su W F, Chhowalla M, Appl. Phys. Lett.2008,92: 233305.
    [17]Wang X, Zhi L J, Mullen K, Nano Lett.2008,8:323.
    [18]Wan Q, Dattoli E N, Fung W Y, Guo W, Chen Y, Pan X, Lu W, Nano Lett.2006,6:2909.
    [19]O'Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb S B, Sotomayor Torres C M, Nature Nanotech.2009,4:239.
    [20]Yu H K, Dong W J, Jung G H, Lee J L, ACS Nano 2011,5:8026.
    [21]Tominaga J, J. Phys.:Condens. Matter 2003,15:R1101.
    [22]Barik U K, Srinivasan S, Nagendra C L, Subrahmanyam A, Thin Solid Films 2003,429:129.
    [23]Abe Y, Hasegawa T, Kawamura M, Sasaki K, Vacuum 2004,76:1.
    [24]Pierson J F, Wiederkehr D, Billard A, Thin Solid Films 2005,478:196.
    [25]Rivers S B, Bernhardt G, Wright M W, Frankel D J, Steeves M M, Lad R J, Thin Solid Films 2007,515:8684.
    [26]Al-Kuhaili M F, J. Phys. D:Appl. Phys.2007,40:2847.
    [27]Park S I, Ahn J H, Feng X, Wang S, Huang Y, Rogers J A, Adv. Funct. Mater.2008,18:2673.
    [28]Leterrier Y, Medico L, Demarco F, Manson J A E, Betz U, Escola M F, Olsson M K, Atamny F, Thin Solid Films 2004,460:156.
    [29]Guillen C, Herrero J, Thin Solid Films 2011,520:1.
    [1]Lee J Y., Connor S T, Cui Y, Peumans P, Nano Lett.2008,8:689.
    [2]Azulai D, Belenkova T, Gilon H, Barkay Z, Markovich G, Nano Lett.2009,9:4246.
    [3]De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Balu W J, et al, ACS Nano 2009, 3:1767.
    [4]Hu L, Kim H S, Lee J Y, Peumans P, Cui Y, ACS Nano,2010,4:2955.
    [5]Scardaci V, Coull R, Lyons P E, Rickard D, J. N. Coleman, Small 2011,7:2621.
    [6]Leem D S, Edwards A, Faist M, Nelson J, Bradley D D C, Mello J C, Adv. Mater.2011,23: 4371.
    [7]Wu Z, Chen Z H, Du X. Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G, Science 2004,305:1273.
    [8]Hu L, Hecht D S, Gruner G, Nano Lett.2004,4:2513.
    [9]Dan B, Irvin G C, Pasquali M, ACS Nano 2009,3:835.
    [10]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y, ACS Nano 2008,2:463.
    [11]Eda G, Lin Y Y, Miller S, Chen C W, Su W F, Chhowalla M, Appl. Phys. Lett.2008,92: 233305.
    [12]Wang X, Zhi L J, Mullen K, Nano Lett.2008,8:323.
    [13]Hecht D S, Hu L, Irvin G, Adv. Mater.2011,23:1482.
    [14]Elechiguerra J L, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman M J, Chem. Mater.2005,17:6042.
    [15]L ewis J, Grego S, Chalamala B, Vick E, Temple D S, Appl. Phys. Lett.2004,85:3450.
    [16]Han H, Theodore N D, Alford T L, J. Appl. Phys.2008,103:013708.
    [17]Indiuru A, Alford T L, J. Appl. Phys.2009,105:123528.
    [18]Sivaramakrishnan K, Alford T L, Appl. Phys. Lett.2009,94:052104.
    [19]Park Y S, Choi K H, Kim H K, J. Phys. D:Appl. Phys.2009,42:235109.
    [20]Guillen C, Herrero J, Phys. Status Solidi A 2010,207:1563.
    [21]Schubert S, Hermenau M, Meiss J, Muller-Meskamp L, Leo K, Adv. Funct. Mater.2012,22: 4993.
    [22]Kundu S, Hazra S, Banerjee S, Sanyal M K, Mandal S K, Chaudhuri S, Pal A K, J. Phys. D: Appl. Phys.1998,31:L73.
    [23]Campbell C T, Surf. Sci. Rep.1997,27:1.
    [24]Lazzari R, Jupille J, Surf. Sci.2001,482:823.
    [25]Logeeswaran V J, Kobayashi N P, Islam M S, Wu W, Chaturvedi P, Fang N X, Wang S Y, Williams R S, Nano Lett.2009,9:178.
    [26]Anders A, Byon E, Kim D H, Fukuda K, Lim S H N, Solid State Commun.2006,140:225.
    [27]Liu H, Wang B, Leong E S P, Yang P, Zong Y, Si G, Teng J, Maier S A, ACS Nano 2010,4: 3139.
    [28]Ham J, Kim S, Jung G H, Dong W J, Lee J L, J. Mater. Chem. A 2013,1:3076.
    [29]Jenkins R, Snyder R L. Introduction to X-Ray Powder Diffractometry. New York:John Wiley & Sons, Inc.,1996:
    [30]Tominaga J, J. Phys.:Condens. Matter.2003,15:R1101.
    [31]Barik U K, Srinivasan S, Nagendra C L, Subrahmanyam A, Thin Solid Films 2003,429:129.
    [32]Abe Y, Hasegawa T, Kawamura M, Katsutaka S, Vacuum 2004,76:1.
    [33]Pierson J F, Wiederkehr D, Billard A, Thin Solid Films 2005,478:196.
    [34]Rivers S B, Bernhardt G, Wright M W, Frankel D J, Steeves M M, Lad R J, Thin Solid Films 2007,515:8684.
    [35]Al-Kuhaili M F, J. Phys. D:Appl. Phys.2007,40:2847.
    [36]Tjeng L H, Meinders M B J, Elp J, Ghijsen J, Sawatzky G A, Johnson R L, Phys. Rev. B 1990, 41:3190-3199.
    [37]Weaver J F, Hoflund G B, J. Phys. Chem.1994,98:8519.
    [38]Chiu Y, Rambabu U, Hsu M, Shieh H, Chin C Y, Lin H H, J. Appl. Phys.2003,94:1996.
    [39]Boronin A I, Koscheev S V, Murzakhmetov K T, Avdeev V I, Zhidomirov G M, Appl. Phys. Sci.2000,165:9.
    [40]Bielmann M, Schwaller P, Ruffieux P, Groning O, Schlapbach L, Groning P, Phys. Rev. B 2002,65:235431.
    [41]Lim D C, Kim K D, Park S Y, Hong E M, Seo H O, Lim J H, Lee K H, Jeong Y, Song C, Lee E, Kim Y D, Cho S, Energy Environ. Sci.2012,5:9803.
    [42]Schmidt H, Winkler T, Baumann Ⅰ, Schmale S, Flugge H, Johannes H H, Hamwi S, Rabe T, Riedl T, Kowalsky W, Appl. Phys. Lett.2011,99:033304.
    [43]Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P, Adv. Mater.2012,24:728.
    [44]Kim C, Kim J S, Opt. Express 2008,16:19987.
    [45]Long Y, Appl. Phys. Lett.2011,98:033301.
    [46]Park S Ⅰ, Ahn J H, Feng X, Wang S, Huang Y J, Rogers A, Adv. Funct. Mater.2008,18:2673.
    [47]Reese M O, Gevorgyan S A, Jorgensen M, Bundgaard E, Kurtz S R, Ginley D S, et al, Sol. Energy Mater. Sol. Cells,2011,95:1253.
    [1]Huynh W U, Dittmer J J, Alivisatos A P, Science 2002,295:2425.
    [2]Ma W, Yang C, Gong X, Lee K, Heeger A J, Adv. Funct. Mater.2005,15:1617.
    [3]Yan R, Gargas D, Yang P, Nat. Photonics 2009,3:569.
    [4]Cheng C, Fan H J, Nano Today 2012,7:327.
    [5]Coakley K M, McGehee M D, Appl. Phys. Lett.2003,83:3380.
    [6]Coakley K M, Liu Y, McGehee M D, Frindell K L, Stucky G D, Adv. Funct. Mater.2003,13: 301.
    [7]Baek W H, Seo I, Yoon T S, Lee H H, Yun C M, Kim Y S, Sol. Energ. Mat. Sol. C.2009,93: 1587.
    [8]Tseng P C, Hsu M H, Tsai M A, Chu C W, Kuo H C, Org. Electron.2011,12:886.
    [9]Olson D C, Piris J, Collins R T, Shaheen S E, Ginley D S, Thin Solid Films 2006,496:26.
    [10]Wei Q, Hirota K, Tajima K, Hashimoto K, Chem. Mater.2006,18:5080.
    [11]Ravirajan P, Peira A M, Nazeeruddin M K, Graetzel M, Bradly D D C, Durrant J R, Nelson J, J. Phys. Chem. B 2006,110:7635.
    [12]Greene L E, Law M, Yuhas B D, Yang P, J. Phys. Chem. C 2007,111:18451.
    [13]Lin Y Y, Chen C W, Chu T H,Su W F, Lin C C, Ku C H, Wu J J, Chen C H, J. Mater. Chem. 2007,17:4571.
    [14]Yu H K, Dong W J, Jung G H, Lee J L, ACS Nano 2011,5:8026.
    [15]Choulis S A, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant J R, Bradley D D C, Appl. Phys. Lett.2003,83:3812.
    [16]Mihailetchi V D, Xie H, Boer B, Koster L J A, Blom P W M, Adv. Funct. Mater.2006,16: 699.
    [17]Bierman M J, Jin S, Energy Environ. Sci.2009,2:1050.
    [18]Wagner R S, Ellis W C, Appl. Phys. Lett.1964,4:89.
    [19]Wan Q, Dattoli E N, Fung W Y, Guo W, Chen Y, Pan X, Lu W, Nano Lett.2006,6:2909.
    [20]Chiquito A J, Lanfredi A J C, Leite E R, J. Phys. D:Appl. Phys.2008,41:045106.
    [21]O'Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb S B, Sotomayor Torres C M, Nat. Nanotechnol.2009,4:239.
    [22]Savu R, Joanni E, Scripta Mater.2006,55:979.
    [23]Dattoli E N, Lu W, MRS Bull.2011,36:782.
    [24]Yu H K, Kim S, Koo B, Jung G H, Lee B, Ham J, Lee J L, Nanoscale 2012,4:6831.
    [25]Munir M M, Iskandar F, Yun K M, Okuyama K, Abdullah M, Nanotechnology 2008,19: 145603.
    [26]Wang H W, Ting C F, Hung M K, Chiou C H, Liu Y L, Liu Z, Ratinac K R, Ringer S P, Nanotechnology 2009,20:055601.
    [27]Kovtyukhova N I, Mallouk T E, Nanoscale 2011,3:1541.
    [28]Yun J, Lee S, Bae T S, Yun Y, Lee S, Kwon J D, Lee G H, Plasma Process. Polym.2011,8: 815.
    [29]Yun J, Bae T S, Kwon J D, Lee S, Lee G H, Nanoscale 2012,4:7221.
    [30]Yun J, Park Y H, Bae T S, Lee S, Lee G H, ACS Appl. Mater. Interfaces 2013,5:164.
    [31]Guillen C, Herrero J, Thin Solid Films 2011,520:1.
    [32]Refractive Index Database, http://refractiveindex.info (accessed 07,2013)
    [33]Mihailetchi V D, Blom P W M, Hummelen J C, Rispens M T, J. Appl. Phys.2003,94:6849.
    [34]Moliton A, Nunzi J M, Polym. Int.2006,55:583.
    [35]Park S I, Ahn J H, Feng X, Wang S, Huang Y J, Rogers A, Adv. Funct. Mater.2008,18:2673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700