用户名: 密码: 验证码:
笼状氧化物纳米粒子的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有中空结构的笼状纳米粒子因为具有比表面大、表面活性位点丰富、密度低等优点,被广泛用作锂离子电池电极材料、纳米催化剂、吸附剂、药物载体等。如何利用简单有效的合成方法制备出具有优异性能的空心笼状纳米粒子一直是人们研究的热点。本论文主要以普鲁士蓝类化合物钴氰酸钴纳米粒子作为基础,研究了以其为模板制备不同组分和结构的笼状纳米粒子的方法,对得到的纳米粒子进行了储锂、催化等性能的测试,探索了其具有优异性能的原因。此外还探讨了空心结构的铁氧体-碳复合材料在锂离子电池电极材料和吸附材料方面的应用。具体内容如下:
     1.通过在不同温度下煅烧普鲁士蓝类化合物钴氰酸钴纳米粒子得到了具有不同形貌和结构的四氧化三钴纳米粒子。于450、550、650、750、850℃下煅烧得到的样品在作为锂离子电池电极材料时,以50mA gJ的放电电流循环了三十次以后分别拥有800、970、828、854、651mAh g-1的放电容量。其中,在550℃下煅烧得到的四氧化三钴纳米笼表现出最优异的储锂性能。通过比较发现,四氧化三钴纳米笼的优异充放电性能得益于其纳米尺度的晶粒组成、中空的结构、多孔的外壳和大的比表面。当煅烧温度高于650℃时,可以得到晶粒尺寸更大、结晶性更强而比表面下降的四氧化三钴纳米粒子。通过对样品的研究表明,材料的尺寸、结晶性、形貌都对其充放电性能有影响。良好的结晶性有助于提高材料的初始放电量,同时多孔的结构可以减少容量衰减,保持循环稳定性。因此,正是由于550℃下获得的四氧化三钴纳米笼有着最为合适的尺寸、结晶性和笼状形貌,才能表现出最突出的储锂性能。由于合成方法简便,性能优异,这种四氧化三钴纳米笼有作为商业锂离子电池电极材料的前景。
     2.使用钴氰酸钴纳米粒子作为模板,经过两步去除模板法得到了空心多孔二氧化硅纳米立方块,并测试了其作为锂离子电池电极材料的性能。在经过30次循环后,仍然保留有919mAh g-1的循环容量。这种优异的性能可以归因于粒子的空心结构和表面的大量不规则裂痕,在嵌锂和脱锂过程中可以容纳粒子的体积变化和适应结构应力,同时保证在循环过程中锂离子可以快速地进出粒子。研究发现在循环过程中锂离子与二氧化硅可以可逆或不可逆地反应生成锂硅酸盐。而锂离子在空心多孔二氧化硅纳米立方块里的快速迁移有利于生成氧化锂与硅,因此可以提高循环容量。
     3.通过使用钴氰酸钴-二氧化硅核壳结构纳米粒子分别在空气和氮气下热分解得到摇铃状的四氧化三钴-二氧化硅和钴-二氧化硅纳米粒子。首先在钴氰酸钴纳米立方块外包覆上一层多孔二氧化硅,然后利用钴氰酸钴在高温下发生分解,在二氧化硅外壳内生成四氧化三钴或单质钻纳米晶。四氧化三钴-二氧化硅摇铃状纳米粒子表现出优异的催化一氧化碳氧化性能,当温度为150℃时就可以将一氧化碳完全转化。研究表明通过这种方法得到的四氧化三钴具有高清洁的表面。同时多孔的二氧化硅外壳可以保护四氧化三钴纳米晶不受外界污染,从而表现出高催化活性。另外,通过这种方法得到的钻-二氧化硅摇铃状纳米粒子拥有六方相钴和立方相钴的复合结构,可以考虑作为贵金属纳米催化剂的替代品。这种纳米粒子在催化还原对硝基苯酚时表现出高催化活性和循环稳定性。初次进行催化时,反应的速率常数为0.815min-1,放置一个月以后再次用来作为催化剂时,反应的速率常数依然保持在0.565min-1,这一催化活性要优于一些贵金属催化剂。
     4.分别在真空和超临界二氧化碳中分解二茂铁,处理后得到了由多壁碳纳米管包覆的不连续分布的三氧化二铁纳米粒子和海胆状碳包覆的四氧化三铁微粒。当三氧化二铁-碳纳米管复合材料(碳纳米管质量分数为29.68%,三氧化二铁质量分数为29.68%)用作为锂离子电池电极材料时,在放电电流为100mA g的情况下,50次循环后保留有515mAh g-1的可逆放电容量。根据计算,其中三氧化二铁的放电容量为1147mAh g-1。其优异的性能可以归结于三个原因:(1)碳纳米管的内部空心提供了三氧化二铁纳米粒子在充放电时体积膨胀的空间;(2)碳纳米管提高了电极材料的导电性;(3)在碳纳米管表面可以形成一层稳定的固体电解质界面膜,减少循环过程中的容量衰减。由于表面存在大量的非极性基团和内部小尺寸的四氧化三铁,海胆状碳包覆的四氧化三铁微粒具有超疏水性和超顺磁性,与水的接触角为150°,饱和磁化强度为19.4emu g-1。当把这种粒子涂覆在海绵表面时,可以将海绵改性为具有超疏水性和超顺磁性的吸附材料。这种海绵具有优异的吸附性能,并且可以通过磁场进行回收和重复利用。
Because of the advantages of large specific surface area, abundant surface active sites and low density, the cage-like nanoparticles with hollow structure have been applied as electrode materials for Lithium-ion battery, nanocatalyst, adsorbent and drug delivery. Researchers have paid close attention to preparing hollow nanocages with excellent properties using simple and efficient ways. The objective of this dissertation is to synthesize cage-like nanoparticles with different compositions and structures using the Prussian blue analogues Co3[Co(CN)6]2nanoparticles as templates. The obtained nanoparticles have been evaluated their lithium storage and catalysis performance. The reason behind their excellent properties were also investigated. Furthermore, the application of iron oxide/carbon composite with hollow structures in Lithium-ion battery and adsorption has been studied. The details are as follows:
     1. Co3O4nanoparticles have been prepared by a facile strategy, which involves the thermal decomposition of nanoparticles of cobalt-based Prussian blue analogues at different temperatures. The nanoparticles prepared at450,550,650,750,850℃exhibited a high discharge capacity of800,970,828,854,651mAhg-1, respectively after30cycles at a current density of50mAg-1. The nanocages produced at550℃shows the highest lithium storage capacity. It is found that the nanocages display nano-size grains, hollow structure, porous shell and large specific surface area. At the temperature higher than650℃, the samples with larger grains, better crystalline and lower specific surface area can be obtained. It is found that the size, crystallinity, morphology of nanoparticles have different effects on electrochemical performance. Better crystallinity is able to enhance the initial discharge capacity, while porous structure can reduce the irreversible loss. Therefore, the optimal size, crystallinity and cage morphology are suggested to be responsible for the improved lithium storage capacity of the sample prepared at550℃. The as-prepared Co3O4nanoparticles also have a potential application as anode material for Li-ion batteries due to their simple synthesis method and large capacity.
     2. Herein, hollow porous SiO2nanocubes have been prepared via a two-step hard-template process and evaluated as electrode materials for lithium-ion batteries. The hollow porous SiO2nanocubes exhibited a reversible capacity of919mAh g-1over30cycles. The reasonable property could be attributed to the unique hollow nanostructure with large volume interior and numerous crevices in the shell, which could accommodate the volume change and alleviate the structural strain during Li ions'insertion and extraction, as well as allow rapid access of Li ions during charge/discharge cycling. It is found that the formation of irreversible or reversible lithium silicates in the anodes determines the capacity of a deep-cycle battery. Fast transportation of Li ions in hollow porous SiO2nanocubes is beneficial to the formation of Li2O and Si, contributing to the high reversible capacity.
     3. Rattle-type Co3O4@SiO2and Co@SiO2nanoparticles were prepared via thermal decomposition of Co3[Co(CN)6]2@SiO2core-shell nanoparticles under air and N2. The uniform Co3[Co(CN)6]2nanocubes were coated with porous silica and then calcined at high temperature to generate large amount of Co3O4and Co nanocrystals in a cube-shape silica nanocapsule via thermal decomposition of a Co3[Co(CN)6]2nanocubic. The Co3O4@SiO2nanorattles exhibit excellent catalytic activity for CO oxidation, the CO conversion rate reaches100%at150℃. It is suggested that the Co3O4nanocrystals with clean surfaces were produced via this approach; moreover, porous silica shell could protect Co3O4nanocrystals from external contamination, which make these novel nanostructures exhibit a remarkable catalytic performance. Co@SiO2nanorattles with the presence of a mixture of hcp-Co and fcc-Co phases were prepared as a substitute of noble metal nanocatalyst. The nanorattles exhibit both superior catalytic activity and high stability for the reduction of p-nitrophenol. The reduction rate nearly follows pseudo-first-order kinetics and the reaction rate constant is as high as0.815min-1, and then maintained at0.565min-1even after storing for one month, which is higher than that reported for noble metal nanocatalysts.
     4. Ferrocene was decomposed in vacuum and supercritical CO2to prepare discontinuous Fe2O3nanoparticles wrapped multi-walled carbon nanotubes and urchin-like carbon coated Fe3O4microparticles. When used as the anode in a Li-ion battery, the hybrid material of Fe2O3nanoparticles and carbon nanotube (70.32wt%carbon nanotubes,29.68wt%Fe2O3) showed a reversible discharge capacity of515mAh g-1after50cycles at a density of100mA g-1and the capacity based on Fe2O3nanoparticles was calculated as1147mAh g-1. Three factors are responsibile for the superior performance:(1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3nanoparticles, which can improving the stability of electrode;(2) The MWCNTs increase the overall conductivity of the anode;(3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading. The urchin-like carbon coated microparticles also exhibit both superhydrophobicity and superparamagnetism due to the surface polar groups and small grain of Fe3O4, showing a contact angle of152°and a saturation magnetization of19.4emu g-1, respectively. When such particles were deposited on a sponge, the sponge was changed into an absorbing material with superhydrophobicity and superparamagnetism. The modified sponge not only displays excellent adsorption property, but also can be recycled using an external magnetic field.
引文
[1]万钢.中国科技产业,2014,J,44.
    [2]Devanathan, R. Energy Environ. Sci.2008,1,101.
    [3]Zhong, C. J.; Luo, J.; Njoki, P. N.; Mott, D.; Wanjala, B.; Loukrakpam, R.; Lim, S.; Wang, L. Y.; Fang B.; Xu, Z. C. Energy Environ. Sci.2008,1,454.
    [4]Etacheri,V.; Marom,R.; Elazari,R.; Salitra, G.; Aurbach, D. Energy Environ. Sci.2011,4,3243.
    [5]Scrosati,B.; Hassoun, J.; Sun, Y. K. Energy Environ. Sci.2011,4,3287.
    [6]Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Renewable Sustainable Energy Rev.2009,13,1513-1522.
    [7]Kamat, P. V. J. Phys. Chem. C2007,111,2834.
    [8](a).Tang, J. A.; Sargent, E. H. Adv. Mater.2011,23,12. (b). Tang, J. A.; Sargent, E. H. Nature Materials 2011,70,765.
    [9]Chen, Z.; Xu, L.; Li, W.; Waje, M.; Yan, Y. Nanotechnology 2006,17,5254.
    [10]Wang, L.; Zhang, L. C.; Lieberwirth, I.; Xu, H. W.; Chen, C. H. Electrochem. Commun.2010,12,52.
    [11]高鹏飞,杨军.化学进展,2011,23,264
    [12]Wu, H. et al. Nat. Nanotech.2012,7,310.
    [13]Liu, N. et al. Nano Lett.2012,12,3315.
    [14]Wu, Z. S.; Zhou, G.; Yin, L. C.; Ren, W.; Li, F.; Cheng, H. M. Nano Energy 2012,1,107.
    [15]Wu, Z. S.; Ren, W.; Wang, D. W.; Li, F.; Liu, B.; Cheng, H. M. ACS Nano 2010,4,3187.
    [16]Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Chem. Mater.2010,22,5306.
    [17]Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; Cui, L. F.; Cui, Y. Proc. NatlAcad. ScL.2009,106,21490.
    [18]Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nature Nanotech.2011,6,232.
    [19]李敏,崔屾.材料导报,2006,20,8.
    [20]Khodakov, A. Y.; Chu, W.; Fongarland, Pascal. Chem. Rev.2007,107,1692.
    [21]Liu, X. W.; Wang, D. S.; Li, Y. D. Nano Today 2012,7,448.
    [22]Chen, M.; Kumar, D.; Yi, C. W.; Goodman, D. W. Science 2005,310,291.
    [23]Firouz, M. M.; Hamdollah, S. Sci. and Eng. B 2007,139,265.
    [24]Xie, X.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. Nature 2009,458,746.
    [25]Zhang, Z.; Wang, C; Zakaria, R. et al. J. Phys. Chem. B 1998,702,10871.
    [26]Wang, H. et al. J. Mater. Chem.2012,22,9230.
    [27]Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Angew. Chem. Int. Ed. 2013,52,2925.
    [28]王辰光.几种金属氧化物和空心纳米结构的形貌控制合成浙江大学博士学位论文2009
    [29]Lou, X. W.; Archer, L. A.; Yang, Z. C. Adv. Mater.2008,20,3987.
    [30]Wang, D. Y.; Caruso, F. Chem. Mater.2002,14,1909.
    [31]Rhodes, K. H.; Davis, S. A.; Caruso, F.; Zhang, B. J., Mann, S. Chem. Mater. 2000,12,2832.
    [32]Chen, G. C.; Kuo, C. Y.; Lu, S. Y. J. Am. Ceram. Soc.2005,88,277.
    [33]Caruso, F.; Shi, X. Y.; Caruso, R. A.; Susha, A. Adv. Mater.2001,13,740.
    [34]Martinez, C. J.; Hockey, B.; Montgomery, C. B.; Semancik, S. Langmuir 2005, 21,7937.
    [35]Liang, Z. J.; Susha, A.; Caruso, F. Chem. Mater.2003,15,3176.
    [36]Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001,13,109.
    [37]Correa-Duarte, M. A.; Kosiorek, A.; Kandulski, W.; Giersig, M.; Liz-Marzan, L. M. Chem. Mater.2005,17,3268.
    [38]Imhof, A. Langmuir 2001,17,3579.
    [39]Eiden, S.; Maret, G. J. Colloid Interface Sci.2002,250,281.
    [40]Kim, T. H.; Lee, K. H.; Kwon, Y. K. J. Colloid Interface Sci.2006,304,370.
    [41]Graf, C. D.; Vossen, L. J.; Imhof, A.; van Blaaderen, A. Langmuir 2003,19, 6693.
    [42]Lu, Y.; McLellan, J. Xia, Y. N. Langmuir 2004,20,3464.
    [43]Chen, M.; Wu, L. M; Zhou, S. X.; You, B.Adv. Mater.2006,18,801.
    [44]Kim, S. W.; Kim, M; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc.2002,124, 7642.
    [45]Sun, X. M.; Li, Y. D. Angew. Chem. Int. Ed.2004,43,3827.
    [46]Sun, X. M.; Liu, J. F. Y. D. Li, Chem. Eur. J.2006,12,2039.
    [47]Li, X. L.; Lou, T. J.; Sun, X. M.; Li, Y. D. Inorg. Chem.2004,43,5442.
    [48]Titirici, M. M.; Antonietti, M.; Thomas, A. Chem. Mater.2006,18,3808.
    [49]Yang, R. Z.; Li, H.; Qiu, X. P.; Chen, L. Q. Chem. Eur. J.2006,12,4083.
    [50]Yin, Y. D; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004,304,711.
    [51]Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J. G.; Mori, H. J. Appl. Phys.2007,101.
    [52]Nakamura, R.; Lee, J. G.; Tokoz & kura, D.; Mori, H.; Nakajima, H. Mater. Lett. 2007,61,1060.
    [53]Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B. Angew. Chem. Int. Ed.2006,45, 1220.
    [54]Chiang, R. K.; Chiang, R. T. Inorg. Chem.2007,46,369.
    [55]Tan, H.; Li, S. P.; Fan, W. Y. J. Phys. Chem. B 2006,110,15812.
    [56]Gao, J. N.; Ren, X. L.; Chen, D.; Tang, F. Q.; Ren, J. Scr. Mater.2007,57,687.
    [57]Sun, Y. G.; Mayers, B. T.; Xia, Y. N. Nano Lett.2002,2,481.
    [58]Yin, Y. D.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. J. Am. Chem. Soc.2006, 128,12671.
    [59]Selvakannan, P. R.; Sastry, M. Chem. Commun.2005,1684.
    [60]Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Angew. Chem. Int. Ed.2004,43,1540.
    [61]Liang, H. P.; Wan, L. J.; Bai, C. L.; Jiang, L.; J. Phys. Chem. B 2005,109, 7795.
    [62]Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.; Wan, L. J.; Bai, C. L. Chem. Commun.2004,1496.
    [63]Collins, A. M.; Spickermann, C.; Mann, S. J. Mater. Chem.2003,13,1112.
    [64]Fujiwara, M.; Shiokawa, K.; Tanaka, Y.; Nakahara, Y. Chem. Mater.2004,16, 5420.
    [65]Li, W. J.; Sha, X. X.; Dong, W. J.; Wang, Z. C. Chem. Commun.2002,38, 2434.
    [66]Miyao, T.; Minoshima, K. Naito, S. J. Mater. Chem.2005,15,2268.
    [67]Park, J. H.; Oh, C.; Shin, S. I.; Moon, S. K.; Oh, S. G. J. Colloid Interface Sci. 2003,266,107.
    [68]Kim, S. S.; Zhang, W. Z.; Pinnavaia, T. J. Science 1998,282,1302.
    [69]Xu, H. L.; Wang, W. Z. Angew. Chem. Int. Ed.2007,46,1489.
    [70]Peng, Q.; Dong, Y. J.; Li, Y. D. Angew. Chem. Int. Ed.2003,42,3027.
    [71]Han, Y. S.; Hadiko, G.; Fuji, M.; Takahashi, M. Chem. Lett.2005,152.
    [72]Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Adv. Mater.2006, 18,2325.
    [73]Xie, Y. Huang, J. X.; Li, B.; Liu, Y. Qian, Y. T. Adv. Mater.2000,72,1523.
    [74]Guo, C. W.; Cao, Y. S.; Xie, H.; Dai, W. L.; Fan, K. N. Chem. Commun.2003, 39,700.
    [75]Wang, W. S.; Zhen, L.; Xu, C. Y.; Zhang, B. Y.; Shao, W. Z. J. Phys.Chem. B 2006,110,23154.
    [76]Liu,J.; Qiao,S. Z.; Chen,J. S.; Lou,X. W.; Xing,X. R.; Lu, G. Q.Chem. Commun.2011,47,12578
    [77]Kamata, K.; Lu, Y.; Xia, Y. N. J. Am. Chem. Soc.2003,125,2384.
    [78]Arnal, P. M.; Comotti, M.; Schuth, F. Angew. Chem. Int. Ed.2006,45,8224.
    [79]Zhang, K.; Zhang, X. H.; Chen, H. T.; Chen, X.; Zheng, L. L.; Zhang, J. H.; Yang, B. Langmuir 2004,20,11312.
    [80]Liu, S. H.; Zhang, Z. H.; Han, M. Y. Adv. Mater.2005,17,1862.
    [81]Kim, M.; Sohn, K.; Na, H. B.; Hyeon, T. Nano Lett.2002,2,1383.
    [82]Ikeda, S. et al. Angew. Chem. Int. Ed.2006,45,7063.
    [83]Zhang, Q.; Lee, I.; Ge, J. P.; Zaera, F.; Yin, Y. D. Adv. Funct. Mater.2010,20, 2201.
    [84]Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Angew. Chem. Int. Ed.2010,49, 4981.
    [85]Li, J.; Zeng, H. C. Angew. Chem., Int. Ed.2005,44,4342.
    [86]Lin, Y. S.; Wu, S. H.; Tseng, C. T.; Hung, Y.; Chang, C; Mou, C. Y. Chem. Commun.2009,3542.
    [87]Wu, S. H.; Tseng, C. T.; Lin, Y. S.; Lin, C. H.; Hung, Y.; Mou, C. Y. J. Mater. Chem.2011,21,789.
    [88]Shmakov, S. N.; Pinkhassik, E. Chem. Commun.2010,46,7346.
    [89]Lou, X. W.; Yuan, C.; Rhoades, E.; Zhang, Q.; Archer, L. A. Adv. Funct. Mater.2006,16,1679.
    [90]Lou, X. W.; Yuan, C.; Zhang, Q.; and Archer, L. A. Angew. Chem. Int. Ed. 2006,45,3825.
    [91]Ding, S. J. et al. J. Am. Chem. Soc.2011,133,21.
    [92]Guo, L. M. et al. Chem.-Asian J.2009,4,1480.
    [93]Yang, H. G.; Zeng, H. C. J. Phys. Chem. B 2004,108,3492.
    [94]Yang, H. G.; Zeng, H. C. Angew. Chem., Int. Ed.2004,43,5206.
    [95]Li, J. Zeng, H. C. J. Am. Chem. Soc.2007,129,15839.
    [96]Liu, B.; Zeng, H. C. Small 2005,1,566.
    [97]Sun, Y.; Wiley, B. J.; Li, Z. Y.; Xia, Y. N. J. Am. Chem. Soc.2004,126,9399.
    [98]Gao, J.; Liang, G.; Zhang, B.; Kuang, Y.; Zhang, X.; Xu, B. J. Am. Chem. Soc. 2007,129,1428.
    [99]Hu, L.; Chen, Q. W. Nanoscale 2014,6,1236.
    [100]Hu, L.; Yan, N.; Chen, Q. W.; Zhang, P.; Zhong, H.; Zheng, X. R.; Li, Y.; Hu, X. Y. Chem.—Eur. J.2012,18,8971.
    [101]Hu, L;. Zhang, P.; Zhong, H.; Zheng, X.; Yan, N.; Chen, Q. W.Chem.-Eur. J. 2012,18,15049.
    [102]Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. W. Nanoscale 2013,5,4186.
    [103]Zhang, W. M.; Hu, J.S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Adv. Mater.2008,20,1160.
    [104]Ma, H. et al. Adv. Mater.2007,19,4067.
    [105]Pan, X. L.; Bao, X. H. Ace. Chem. Res.2011,44,553.
    [106]Arnal, P. M.; Comotti, M.; Schuth, F. Angew. Chem. Int. Ed.2006,45,8224.
    [107]Chen, Z.; Cui, Z. M.; Niu, F.; Jiang, L.; Song, W. G. Chem. Commun.2010, 46,6524.
    [108]Park, J. C. et al. J. Mater. Chem.2010,20,1239.
    [109]Park, J. C. et al. J. Phys. Chem. C 2010,114,6381.
    [110]Park, J. C. et al. ChemCatChem 2011,3,755.
    [111]Hah, H. J. et al. Chem. Commun.2004,1012.
    [112]Anisur, R. M. et al. J. Mater. Chem.2010,20,10615.
    [113]Cheng, K.; Zhou, Y. M.; Sun, Z. Y.; Hu, H. B.; Zhong, H.; Kong, X. K.; Chen, Q. W. Dalton Trans.2012,41,5854.
    [114]Cheng, K.; Sun, Z. Y.; Zhou, Y. M.; Zhong, H.; Kong, X. K.; Xia, P.; Guo, Z.; Chen, Q. W. Biomater. Sci.2013,1,965.
    [115]Zhou, Y. M.; Wang, H. B.; Gong, M.; Sun, Z. Y.; Cheng, K.; Kong, X. K.; Guo, Z.; Chen, Q. W. Dalton Trans.2013,42,9906.
    [116]Hu, L.; Zhang, P.; Chen, Q. W.; Yan, N.; Mei, J. Y. Dalton Trans.2011,40, 5557.
    [117]Hu, L.; Zhang, P.; Chen, Q. W.; Mei, J. Y.; Yan, N. RSCAdv.2011,1,1574.
    [118]Hu, L.; Mei, J. Y.; Chen, Q. W.; Zhang, P.; Yan, N. Nanoscale 2011,3,4270.
    [1]Tarascon,J.M.;Armand,M.Nature.2011,414,359.
    [2]Ji,L.W:;Lin,Z.;Alcoutlabi,M.;Zhang,X.W. Energy Environ.Sci.2011,4, 2682.
    [3]Wei,L.Z.;Yan,N.and Chen,Q.W. Environ.Sci.Technol.2011,45,534.
    [4]Wang,X.H.;Liu,H.W:;Jin,Y and Chen,C.H.J.Phys.Chem.B 2006,110, 10236.
    [5]Wang,X.X.;Wang,J.N.;Chang,H.;Zhang,Y F.Adv.Funct.Mater.2007,17, 3613.
    [6]Bhardwaj,T.;Antic,A.;Pavan,B;Barone,V. and Fahlman,B.D.J.Am.Chem. Soc.2010,132,12556.
    [7]Park,C.M.;Kim,J.H.;Kim,H.;AND Sohn,H.J. Chem.Soc.Rev.2010,39, 3115.
    [8]Gao,J.Lowe,M.A.;Abruna,H.D.Chem.Mater.2011,23,3223.
    [9]Wang,S.Q.;Zhang,J.Y and Chen,C.H.J.Power Sources 2010,195,5379.
    [10]Wang,X.;Wu,X.L.;Guo,Y.G;Zhong,Y T.;Cao,X.Q.;Ma,Y and Yao,J. N.Adv.Funct.Mater.2010,20,1680.
    [11]Lou,X.W:;Deng,D.;Lee,J.Y;Feng,J.;Archer,L.A.Adv.Mater.2008,20, 258.
    [12]Du,N.;Zhang,H.;Chen,B.D.;Wu,J.B.;Ma,X.Y;Liu,Z.H.;Zhang,Q.Y.; Yang,D.R.;Huang.X.H.;Tu.J.P.Adv.Mater.2007,19,4505.
    [13]Liu,J.;Xia,H.;Lu,L.and Xue,D.F.J. Mater.Chem.2010,20,1506.
    [14]Li.W.Y.;Xu,L.N.and Chen,J.Adv.Funct.Mater.2005,15,851.
    [15]Tian,L.;Zou,H.L.;Fu,J.X.;Yang,X.F.;Wang,Y;Guo,H.L.;Fu,X.H.; Liang.C.H.;Wu,M.M.;Shen,P.K.and Gao,Q.M.Adv.Funct.Mater.2010, 20,617.
    [16]Li, Y. G.; Tan, B. and Wu, Y. Y. Nano Lett.2008,8,265.
    [17]Wang, Z. Y.; Chen, J. S.; Zhu, T.; Madhavi. S. and Lou. X. W. Chem. Commun. 2010,46,6906.
    [18]Park, J. C.; Kim, J.; Kwon, H.; Song, H. J. Adv. Mater.2009,21,803.
    [19]Feng,C. Q.; Huang,L. F.; Guo,Z. P. andLiu,H. K. Electrochem. Commun.2007, 9,119.
    [20]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.and Tarascon, J. M. Nature 2000,407,496.
    [21]Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M; Li, F.and Cheng, H. M. ACS. Nano.2010,4,3187.
    [22]Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; and MUllen, K. ChemSusChem 2010,3,236.
    [23]Lou, X. W.; Deng, D.; Lee, J. Y.; and Archer, L. A. J. Mater. Chem.2008,18, 4397.
    [24]a) Ohkoshi, S.; Abe, Y.; Fujishima, A. and Hashimoto, K. Phys. Rev. Lett. 1988,82,1285; b) Hu, L.; Zhang, P.; Chen, Q. W.; Mei, J. Y.; and Yan, N. RSCAdv.2011,/,1574; c) Hu, L.; Zhang, P.; Chen, Q. W.; Yan, N. and Mei, J. Y. Dalton Trans.2011,40,5557; d) Hu, L.; Mei, J. Y.; Chen, Q. W.; Zhang, P. and Yan,.Nanoscale 2011,3,4270.
    [25]Hu, M.; Jiang, J. S. and Zeng, Y. Chem. Commun.2010,46,1133.
    [26]Zhang, F. M.; Geng, B. Y.; and Guo,Y. J.Chem-Eur. J.2009,15,6169.
    [27]Wang, C; Wang, D. L.; Wang, Q. M. and Wang, L.Electrochim. Acta 2010,55, 6420.
    [28]Oh, S. W.; Bang, H. J.; Bae, Y. C. and Sun, Y. K. J. Power Sources 2007,173, 502.
    [29]Yin, Y. D.; Rioux, R. M.;. Erdonmez, C. K; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004,304,711.
    [30]Fan, H. J.; Knez, M.; Scholz, R.;Hesse, D.;Nielsch, K.; Zacharias, M.; Gosele, U. Nano Lett.2007,7,993.
    [31]Ibanez, M.; Fan, J. D.; Li, W. H.; Cadavid, D.; Nafria, R.; Carrete, A. and Cabot, A. Chem. Mater.2011,23,3095.
    [32]Xu, M. W.; Wang, F.; Zhao, M. S.; Yang, S.; Song, X.P.Electrochim. Acta 2011,56,4876.
    [33]Liu, Y.and Zhang, X. G. Electrochim.Acta 2009,54,4180.
    [34]Schenck, C. V.; Dillard, J. G.; Murray, J. W. J. Colloid Interface Sci.1983,95, 398.
    [35]Liao, C. L.; Lee, Y. H.; Chang, S. T. and Fung, K. Z.J. Power Sources 2006,158,1379.
    [36]Guo, B.; Li, C. S.; Yuan, Z. Y. J. Phys. Chem. C.2010,114,12805.
    [1]Tarascon, J. M.; Armand, M. Nature.2001,414,359.
    [2]Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Ed.2008,47,2930.
    [3]Goodenough, J. B.; Kim, Y. Chem. Mater.2009,22,587.
    [4]Whittingham, M. S. MRS Bulletin.2008,33,411.
    [5]Ji, L. W., Lin, Z., Alcoutlabi, M. & Zhang, X. W. Energy Environ. Sci.2011,4, 2682.
    [6]Ge, M. Y., Rong, J. P., Fang, X. & Zhou, C. W. Nano Lett.2012,72,2318.
    [7]Chan, C. K. et al. Nature Nanotech.2008,3,31.
    [8]Chen, D. Y. et al. Angew. Chem. Int. Ed.2012,51,2409.
    [9]Wu, H. et al. Nat. Nanotech.2012,7,310.
    [10]Magasinski, A. et al. Nature Mater.2010,9,353.
    [11]Liu, N. et al. Nano Lett.2012,12,3315.
    [12]Boukamp, B. A., Lesh, G. C.; Huggins, R. A. J. Electrochem. Soc.1981,128, 725.
    [13]Miyachi,M., Yamamoto, H., Kawai, H. Ohta, T.; Shirakata, M. J. Electrochem. Soc.2005,152,2089.
    [14]Gao, B., Sinha, S., Fleming, L.; Zhou, O.Adv. Mater.2001,13,816.
    [15]Sun, Q., Zhang, B.; Fu, Z. W. Applied Surface Science.2008 254,3774.
    [16]Guo, B. K. et al. Electrochem. Commun.2008,70,1876.
    [17]Yao, Y., Zhang, J. J., Xue, L. G., Huang, T.; Yu, A. S. J. Power Sources.2011, 196,10240.
    [18]Sasidharan, M., Liu, D., Gunawardhana, N. D., Yoshio, M.; Nakashima, K. J. Mater. Chem.2011,21,13881.
    [19]Chang, W. S. et al. Energy Environ. Sci.2012,5,6895.
    [20]Lou, X. W., Archer, L. A.; Yang, Z. C.Adv. Mater.2008,20,3987.
    [21]Zhang, Q., Wang, W. S., Goebl, J.; Yin, Y. D. Nano Today,2009,4,494.
    [22]Hu, J., Chen, M., Fang, X.; Wu, L. Chem. Soc. Rev.2011,40,5472.
    [23]Chen, D.; Ye, J. H. Adv. Funct. Mater.2008,18,1922.
    [24]Lai, X. Y., Halperta, J. E.; Wang, D. Energy Environ. Sci.2012,5,5604.
    [25]Wang, B., Wu, H., Yu, L., Xu, R., Lim, T.-T.; (David) Lou, X. W. Adv. Mater. 2012,24,1111.
    [26]Cheng, K.; Sun, S. H. Nano Today.2010,5,183.
    [27]Li, X. L., Lou, T. J., Sun', X. M.; Li, Y. D. Inorg. Chem.2004,43,5442.
    [28]Wang, Z., Zhou, L.; (David) Lou, X. W. Adv. Mater.2012,24,1903,
    [29]Tang, K. et al. ChemSusChem.2012,5,400.
    [30]Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z. Y.; (David) Lou, X. W. J. Am. Chem. Soc.2011,133,17146.
    [31]Wang, Z.; (David) Lou, X. W. Adv. Mater.2012,24,4124.
    [32]Yao, Y. et al. Nano Lett.2011,11,2949.
    [33]Lou, X. W., Deng, D., Lee, J. Y.; Archer, L. A. J. Mater. Chem.2008,18,4397.
    [34]Zhu, J. X. et al. JPhys. Chem. C.2011,115,8400.
    [35]Hu, L. et al. Chem. Eur. J.2012,18,8971.
    [36]Hu, L. et al. Chem. Eur. J.2012,18,15049.
    [37]Hu, L. et al. Scientific Reports 2012,2,986.
    [38]Yan, N. et al. J. Phys. Chem. C.2012,116,7227.
    [39]Yan, N. et al. J. Mater. Chem. A 2013,1,637.
    [40]Wang, X. et al. Adv. Funct. Mater.2010,20,1680.
    [41]Gotzmann, O. J. Nucl. Mater.1989,167,213.
    [1]a). Hattori, H. Chem. Rev.1995,95,537 b). Zhang, Y. G.; Riduan, S. N. Chem. Soc. Rev.2012,41,2083.
    [2]a). Zhou, K. B.; Li, Y. D. Angew. Chem. Int. Ed.2012,51,602 b). Lee, K; Kim, M.; Kim, H. J. Mater. Chem.2010,20,3791.
    [3]Choudary, B.; Mulukutla, R.; Klabunde, K. J. Am. Chem. Soc.2003,125,2020.
    [4]Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. J. Catal.2005,229,206.
    [5]a). Yang, H. G; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature,2008,453,638. b). Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Nature,2005,437,121
    [6]Wang, D.; Xie, T.; Li,Y. D. Nano Res.2009,2,30.
    [7]Li, Y.; Liu, Q.; Shen, W. J. Dalton Trans.2011,40,5811.
    [8]a) El-Sayed, M. A.; Yoo, J. W. ChemCatChem.2010,2,268 b) Haghofer, A.;P Sonstrom, Fenske, D.; Fottinger, K.; Schwarz, S.; Bernardi, J.; Al-Shamery, K.; Baumer, M.; Rupprechter, G Langmuir.2010,26,16330. c) Schmidt, E.; Kleist, W.; Krumeich, F.; Mallat, T.; Baiker, A. Chem. Eur. J.2010,16,2181.
    [9]R Narayanan MA. El-Sayed. J. Phys. Chem. B 2005,109,12663.
    [10]R Narayanan MA. El-Sayed. J. Am. Chem. Soc.2003,125,8340.
    [11]a). Xie, X. W.; Li, Z. Y.;Liu, Q.;Haruta, M.;Shen, W. J. Nature 2009,458,746. b). Bollinger, M. A.; Vannice, M. A.Appl. Catal. B 1996,8,417.
    [12]a). Lou, X. W; Archer, L. A.; Yang, Z. C. Adv. Mater.2008,20,3987. b). Cheng, K.; Sun, S. H. Nano Today 2010,5,183. c). Lai, X. Y.; Halperta, J. E.;Wang, D. Energy Environ. Sci.2012,5,5604. d).Chaudhuri, R. G; Paria, S. Chem. Rev.2012,112,2373.
    [13]Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W. Xing, X. R.; Lu, G Q. Chem.Commun.2011,47,12578.
    [14]Chen, Z.; Cui, Z. M.; Niu, F.; Jiang, L.; Song, W. G Chem. Commun.2010,46, 6524.
    [15]Chen, Y; Chen, H. G.; Guo, L.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. ACS Nano.2010,4529
    [16]Zhu,Y F.; Ikoma,T.; Hanagata,N.; Kaskel,S. Small 2010,6,471
    [17]Lee,J.;Park, J. C.;Bang,J. U.;Song,H. Chem. Mater.2008,20,5839
    [18]Fang, Z.; Liu, Y F.; Liu, X. W.; Wang, Q.; Fan, Y T.; Wang, W. Z. CrystEngComm 2011,13,5653
    [19]Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc.2007,129,8406
    [20]Li,W.; Deng,Y H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y J. Am. Chem. Soc.2011,133,15830
    [21]Kamata, K.; Lu, Y; Xia, Y N. J. Am. Chem. Soc.2003,125,2384
    [22]Choi, W. S.; Koo, H. Y.; Kim, D. Y. Langmuir.2008,24,4633.
    [23]Wang, C.;Yan, J.; Cui, X.;Wang, H. J. Colloid Interface Sci.2011,358,423.
    [24]Huang,X. Q.;Guo,C. Y.;Zuo,J. Q.;Zheng,N. F.; Stucky,G. D. Small 2009,5, 361.
    [25]Wang, D. S.; Li, Y. D. Adv. Mater.2011,23,1044.
    [26]Tsung, C.-K.; Kuhn, J. N.; Huang, W.; Aliaga, C.; Hung, L.-I.; Somorjai, G A.; Yang, P. J. Am. Chem. Soc.2009,131,5816.
    [27](a) Puntes, V. F.; Krishnan, K. M. A. P. Alivisatos, Science 2001,291,2115; (b) Santra, S.; Yang, H.; Holloway, P. H.; Stanley, J. T.; Mericle, R. A. J. Am. Chem. Soc.2005,127,1656; (c) Guczi, L.; Boskovic, G.; Kiss, E. Catal. Rev. 2010,52,133.
    [28]Khodakov, A. Y; Chu, W.; Fongarland, P. Chem. Rev.2007,107,1692.
    [29]Qi, H.; Zhang, W.; Wang, X.; Li, H.; Chen, J.; Peng K.; Shao, M. Catal. Commun.2009,10,1178.
    [30]Hashmi, A. S. K.; Hutchings, G. Angew. Chem. Int. Ed.2006,45,7896;
    [31]Shylesh, S.; Schunemann, V.; Thiel, W. R. Angew. Chem. Int. Ed.2010,49, 3428.
    [32]Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem. Int. Ed.2011, 50,7238.
    [33]Liu, J.; Qiao, S. Z.; Hu, Q. H.; Lu, G Q. small 2011,7,425
    [34](a) Anand, C; Srinivasu, P.; Mane, G. P.; Talapaneni, S. N.; Dhawale, D. S.; Wahab, M. A.; Priya, S. V.; Varghese, S.; Sugi, Y.; Vinu, A. Microporous Mesoporous Mater.2013,167,146; (b) Zhang, X.; Wei, Z.; Guo, Q.; Tian, H. J. Power Sourc.2013,231,190.
    [35](a) Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Angew. Chem. Int. Ed.2008, 47,1766; (b) Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Angew. Chem. Int. Ed.2012,51, 13089; (c) Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc.2012,134,6309.
    [36]de la Pefia O'Shea, V. A.; de P. R. Moreira, I.; Roldan, A.;Illas, F. J. Chem. Phys.2010,133,024701.
    [37]Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q. W. J. Phys. Chem. C2012,116,7227.
    [38]Santos, G. A.; Santos,C. M. B.; Silva, S. W. D.; Urauieta-Gonzalez, E. A.; Sartoratto, P. P. C.; Colloids and Surfaces A:Physicochem. Eng. Aspects.2012, 395,217
    [39]Lou,X. W.;Yuan, C.L.;Rhoades,E.;Zhang,Q.;Lynden; Archer,A. Adv. Funct. Mater.2006,16,1679
    [40]Chen, J. F.;Zhang,Y. R.; Tan,L.; Zhang, Y.jnd. Eng. Chem. Res.2011,50,4212
    [41]Jia,C. J.; Schwickardi, M.; Weidenthaler, C.; Schmidt, W.;Korhonen,S.; Weckhuysen,B. M.; Schuth,F.;J. Am. Chem. Soc.2011,133,11279
    [42]a). Sun,Y.; Lv, P.; Yang, J. Y.; He, L.; Nie, J. C.; Liu, X. W.; Li, Y. D. Chem. Commun.2011,47,11279 b). Teng, F.; Yao, W. Q.; Zhu, Y. F.; Gao, G Z.; Meng, D. D. J. Non-Cryst. Solids 2009,355,2375 c).Zhang, Y. G.; Chen, Y. C.; Zhou, J. H.; Wang, T.; Zhao, Y. G Solid State Commun.2009,149,585
    [43]Teng,F.; Chen,M. D.; Li,G. Q.;Teng, Y; G.T. Xu,; Hang,Y. C.;Yao,W. Q.;Santhanagopalane, S.; Menge, D. D.;Zhu, Y.F.;4ppl. Catal, B.2011,110, 133
    [44]Zheng,J.;Chu,W.;Zhang,H.;Jiang,C. F.;Dai,X. Y.;J. Nat. Gas Chem.2010,19, 583
    [45]Yu,Y B.;Takei,T.;Ohashi,H.; He,H.;Zhang,X. L.;Haruta, M. J. Catal.2009, 267,121.
    [46]Hu,L. H.; Sun,K. Q.;Peng,Q.; Xu, B. Q.;Li,Y. D.Nano Res.2010,3,363.
    [47]Srivastava, A. K.; Madhavi, S.; White, T. J.; Ramanujan, R. V. J. Mater. Chem., 2005,15,4424.
    [48]Dinega, D. P.; Bawendi, M. G Angew. Chem. Int. Ed.,1999,38,1788.
    [49]Liu, Q. Y, Guo, X. H.; Li, Y.; Shen, W. J. Langmuir,2009,25,6425.
    [50]Zhang, Y; Yao, Q.; Zhang, Y.; Cui, T.; Li, D.; Liu, W.; Zhang, Z. Cryst. Growth Des.2008,8,3206.
    [51]Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q. W. Sci. Rep. 2013,3,1568.
    [52]Herves, P.; Perez-Lorenzo, M.; Liz-Marzan, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev.2012,41,5577.
    [53]Du, D. Y; Qin, J. S.; Wang, T. T.; Li, S. L.; Su, Z. M.; Shao, K. Z.; Lan, Y Q.; Wang, X. L.; Wang, E. B. Chem. Sci.2012,3,705.
    [54](a) Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. J. Phys. Chem. C 2010, 114,8814.
    [55]Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. Appl. Catal, B 2010,101,137.
    [56]Senapatil, S.; Srivastaval, S. K.; Singh, S. B. J. Nanosci. Nanotechnol.2012, 12,3048.
    [57]Deng, Y; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. J. Am. Chem. Soc.2010,132,8466.
    [58]Narayanan, K. B.; Sakthivel, N. J. Hazard. Mater.2011,189,519.
    [59]Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc.2011, 133,1304.
    [60]Ai, L. H.; Yue, H. T.; Jiang, J. J. Mater. Chem.2012,22,23447.
    [61]Chiou, J. R.; Lai, B. H.; Hsu, K. C.; Chen, D. H. J. Hazard. Mater.2013, 248-249,394.
    [62]Zhang, P.; Shao, C. L.; Zhang, Z. Y; Zhang, M. Y; Mu, J. B.; Guo, Z. C.; Liu, Y. C. Nanoscale,2011,3,3357.
    [63]Lu, X.; Bian, X.; Me, G.; Zhang, C.; Wang, C.; Wei, Y. J. Mater. Chem.2012, 22,12723
    [64]Bhandari, R.; Knecht, M. R. ACS Catal.2011,1,89
    [65]Gao, M. R.; Xu, Y. F.; Jiang, J.; Zheng Y R.; Yu, S. H. J. Am. Chem. Soc.2012, 134,2930.
    [66]Yang, H. T.; Su, Y. K.; Shen, C. M.; Yang, T. Z.; Gao, H. J. Surf. Interface Anal. 2004,36,155.
    [1]Armand, M. & Tarascon, J.-M. Nature,2008,451,652.
    [2]Bruce, P. G., Scrosati, B. & Tarascon, J. M. Angew. Chem. Int. Ed.2008,47, 2930.
    [3]Goodenough, J. B.; Kim, Y. Chem. Mater.2009,22,587.
    [4]Ji, L. W., Lin, Z. Alcoutlabi, M.; Zhang, X. W. Energy Environ. Sci.2011,4, 2682.
    [5]Yan, N. et al. Sci.Rep.2013,3,1568.
    [6]Poizot, P., Laruelle, S., Grugeon, S., Dupont, L.; Tarascon, J.-M. Nature,2000, 407,496.
    [7]Yan, N. et al. J. Phys. Chem. C.2012,116,7227.
    [8]Wu, C. Z., Yin, P., Zhu, X., Ouyang, C. Z.; Xie, Y. J. Phys. Chem. B.2006,110, 17806.
    [9]Chaudhari, S.; Srinivasan, M. J. Mater. Chem.2012,22,23049.
    [10]Zhang, L., Wu, H. B., Madhavi, S., Hng, H. H.; Lou, X. W. J. Am. Chem. Soc. 2012,134,17388.
    [11]Xu, X. D., Cao, R, Jeong, S.; Cho, J. Nano Lett.2012,12,4988.
    [12]Wu, H. et al. Nat. Nanotech.2012,7,310.
    [13]Wang, B., Chen, J. S., Wu, H. B., Wang, Z. Y.,; Lou, X. W. J. Am. Chem. Soc. 2011,133,17146.
    [14]Kim, H. S., Piao, Y. Z., Kang, S. H., Hyeon, T.; Sung, Y. E. Electrochem. Commun.2010,12,382.
    [15]Kang, N. et al. Angew. Chem. Int. Ed. 2012,57,6626.
    [16]Wang, Z. Y, Zhou, L.; Lou, X. W. Adv. Mater.2012,24,1903.
    [17]Wu, Z. S. et al. Nano Energy.2012,1,107.
    [18]Han, F. et al. Adv. Funct Mater.2013,23,1692.
    [19]Li, Y. et al. Carbon.2013,52,565.
    [20]Ji, L. W. et al. Appl. Mater. Interfaces.2012,4,2672.
    [21]He, C. N. et al. ACS. Nano.2013,7,4459.
    [22]Zhou, G M. et al. J. Mater. Chem.2012,22,17942.
    [23]Wang, Z. Y; Luan, D. Y; Madhavi, S.; Hu, Y; Lou, X. W. Energy Environ. Sci. 2012,5,5252.
    [24]Lahann, J. Nat. Nanotechnol.2008,3,320.
    [25]Zhu, Q.; Pan, Q.; Liu, F. J. Phys. Chem. C 2011,115,17464.
    [26]Yuan, J.; Liu, X.;Akbulut, O.; Hu, J.; Suib, S. L.; Kong, J.; Stellacci, F. Nat. Nanotechnol.2008,3,332.
    [27]Shiflett, M. B.; Foley, H. C. Science,1999,285,1902.
    [28]Li, M.; Xu, J.; Lu,Q. J. Mater. Chem.2007,17,4772.
    [29]Wang, C; Yao, T.; Wu, J.; Ma, C.; Fan, Z.; Wang, Z.; Cheng,Y.; Lin, Q.; Yang, B.ACSAppl. Mater. Interfaces,2009, 1,2613.
    [30]Feng, L.; Zhang, Z.; Mai, Z.; Ma,Y.; Liu, B.; Jiang, L.; Zhu, D. Angew. Chem. 2004,116,2046.
    [31]Marmur, A. Langmuir 2004,20,3517.
    [32]Hou, H. Q.; Schaper, A. K.; Weller, F.; Greiner, A. Chem. Mater.2002,14, 3990.
    [33]Ren, S. H., Prakash, R., Wang, D., Chakravadhanula, V. S. K.; Fichtner, M. ChemSusChem.2012,5,1397.
    [34]Faria, D. L. A. D.; Silva, S. V.; Oliveira, M. T. D. J. Raman Spectrosc.1997,28, 873.
    [35]Teng, X. W., Black, D., Watkins, N. J., Gao, Y. L.; Yang, H. Nano Lett.2003,3, 261.
    [36]Cherian, C. T. et al. J. Mater. Chem.2012,22,12198
    [37]Jin, B. et al. Electrochimica Acta.2013,90,426.
    [38]Oktaviano, H. S., Yamada, K.; Waki, K. J. Mater. Chem.2012,22,25167.
    [39]Cao, F.; Chen, C.; Wang, Q.; Chen,Q. Carbon,2007,45,727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700