用户名: 密码: 验证码:
二次型Boost变换器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着能源危机和环境保护两大问题的日益严峻,新能源的利用和开发成为研究热点,太阳能光伏发电系统和燃料电池系统等新能源技术的应用对开关DC-DC变换器的输入电压范围提出了越来越高的要求。变换器级联技术可以有效拓宽开关DC-DC变换器的输入电压范围,即用两个或多个变换器进行级联,但随着变换器级联个数的增加,将会带来开关管数量增加和控制回路设计复杂等问题。
     二次型Boost变换器仅使用一个开关管即可实现与占空比成平方关系的电压增益,拓宽了开关DC-DC变换器的输入电压范围,使其在太阳能光伏发电系统和燃料电池系统等新能源应用领域具有广泛的应用前景。根据二次型Boost变换器输入电感和储能电感的工作模式,将其分为了CCM-CCM二次型Boost变换器、CCM-DCM二次型Boost变换器、DCM-CCM二次型Boost变换器以及DCM-DCM二次型Boost变换器,建立了四种变换器的状态空间平均等效模型;推导了输入电感电流、储能电感电流和输出电压对占空比的传递函数并分析了其频域特性;划分了二次型Boost变换器工作区域,为变换器的参数设计提供了理论指导。
     本论文研究了二次型Boost变换器的能量传输模式、输出电压纹波和控制器设计。根据储能电感电流谷值与输出电流的关系,分析了二次型Boost变换器在开关管关断期间的能量传输模式,并分析了不同能量传输模式时输出电压纹波特性;得出了能量传输模式的临界电感值和临界工作条件;验证了将输入电感电流和输出电容电压作为反馈信号的峰值电流控制策略的可行性,简化了控制环路设计。
     本论文通过对二次型Boost变换器开关状态的完整描述,推导了两个电感电流边界,建立了电流控制二次型Boost变换器的分段光滑迭代映射模型。对比分析了以输入电感电流或储能电感电流作为电流反馈量的非线性分岔行为。通过稳定性和工作模式分析,得到了电流控制二次型Boost变换器从稳定的周期1工作状态到次谐波振荡状态转移以及从电感电流不连续导电模式(DCM)到连续导电模式(CCM)转移的条件并采用参数空间映射图,对二次型Boost变换器的工作状态域进行了估计。同时分析了斜坡补偿电流控制二次型Boost变换器的分岔行为、工作状态域估计以及稳定性。研究结果表明,不同的参数变化有着不同的分岔路由,存在工作模式转移现象,电流控制二次型Boost变换器呈现复杂的动力学行为。
     为拓展二次型Boost变换器的应用范围,本论文将二次型Boost变换器应用于PFC领域,提出了二次型Boost PFC变换器。对比分析了传统Boost PFC变换器和二次型Boost PFC变换器输入电感电流纹波、控制器设计、输出电压纹波以及动态响应速度的优缺点。研究结果表明,与传统Boost PFC变换器相比,二次型Boost PFC变换器具有更小输入电感电流纹和更快的动态响应速度,且没有增加控制环路的复杂性。
     为了验证理论分析的正确性,搭建了仿真模型,并制作了相应的实验电路,给出了相应的实验结果。实验结果与仿真结果相符,并验证了理论分析的正确性。
The utilization and development of new energy sources become a research focus because of constant serious energy crisis and environmental protection. The applications of solar photovoltaic systems, fuel cell systems, and other new energy technologies put forward higher requirements for input voltage range of switching DC-DC converter. Cascade technology for converter can effectively widen the input voltage range of switching DC-DC converter, i.e. two or more converter in cascade, but which will bring the increase number of switch tubes and complexity design of control loop with increasing number of the cascade converters.
     Quadratic Boost converter using only one switch tube can be realized the voltage gain related to the square of duty cycle and widen the input voltage range of switching DC-DC converter, which makes it have broad application prospect in solar photovoltaic systems, fuel cell systems and other the fields of new energy application. According to operating modes (discontinuous conduction mode, DCM and continuous conduction mode, CCM) of input inductor and energy storage inductor, quadratic Boost converter can be divided into CCM-CCM quadratic Boost converter, CCM-DCM quadratic Boost converter, DCM-CCM quadratic Boost converter and DCM-DCM quadratic Boost converter. The state space equivalent models of the four converters are established. The transfer functions of input inductor current, energy storage inductor current and output voltage to the duty cycle are derived and theirs frequency domain characteristics are analyzed, working areas of quadratic Boost converter are also divided, all of which as mention above provide a theoretical guidance for the parameter design of the converter.
     Energy transmission modes (ETM), output voltage ripple and controller design of quadratic Boost converter are discussed. According to the relationship between valley current of energy storage inductor and output current during switching OFF time, energy transmission modes of quadratic Boost converter and output voltage ripple characteristics are analyzed. The critical inductance value and critical operating conditions of the energy transmission modes are deduced. The feasibility of the input inductor current and output capacitor voltage used as a feedback signal of the peak current control strategy is verified, which simplifies the design of control loops.
     The two inductor current boundaries are derived and segmented smooth iteration mapping model of current controlled quadratic Boost converter is established depending on the detailed description of switching states. The comparative analysis of the nonlinear bifurcation behaviors is investigated with input inductor current and the storage inductor current as current feedback respectively. Two boundary conditions that shift between stable period-one state and sub-harmonic oscillation state and between DCM and CCM are derived by analyzing stability and operating mode. The operation-state regions corresponding to circuit parameter regions are estimated by utilizing the parameter-space maps. Nonlinear bifurcation behaviors, operation-state regions and stability of current controlled quadratic Boost Converter with slope compensation are analyzed. An experimental circuit is built and the results show that both different bifurcation route and operation mode shift phenomenon are changed with parameter variations, the current controlled quadratic Boost converter exhibits complicated dynamical behaviors.
     To extend the application range of quadratic Boost converter, the quadratic Boost converter is utilized to realize PFC in this paper. Quadratic Boost PFC converter is proposed. Comparative analysis of the advantages and disadvantages of the traditional Boost PFC converter and quadratic Boost PFC converter are investigated including input inductor current ripple, the controller design, the output voltage ripple and dynamic response. The results show that, compared with the traditional Boost PFC converter, quadratic Boost PFC converter has a smaller input inductor current ripple and faster dynamic response without increasing the complexity of the control loop.
     In order to verify the correctness of theoretical analysis, a lot of simulation models are builded, and corresponding experimental prototypes are set up. The experimental results are consistent with the simulation results, and the correctness of theoretical analysis is validated by simulations and experiments.
引文
[1]赵更甚,王庆章.最大功率跟踪控制在光伏系统中的应用[J].光电子.激光,2003,14(8):813-816.
    [2]卢志飞.二次型开关DC-DC的研究[D].西南交通大学硕士学位论文,2012.
    [3]禹华军,潘俊民.光伏电池输出特性与最大功率跟踪的仿真分析[J].计算机仿真,2005,22(6):248-252.
    [4]金如麟.小型风力发电机的最大输出功率[J].中小型电机,2000,27(2):37-39.
    [5]朱选才,徐德鸿,吴屏,曹路萍,沈国桥.燃料电池发电装置能量管理控制系统设计[J].中国电机工程学报,2008,28(11):101-106.
    [6]马召鼎.燃料电池用直流变换器的研究[D].重庆大学硕士学位论文,2010.
    [7]李奇,陈维荣,刘述奎,等.燃料电池混合动力车辆多能源管理策略[J].电工技术学报,2008,26(1):303-308.
    [8]吴理博,赵争鸣,刘建政.独立光伏照明系统中的能量管理控制[J].中国电机工程学报,2005,25(22):68-72.
    [9]许颇,张兴,张崇巍,曹仁贤,赵为.基于Boost变换器的小型风力机并网逆变控制系统设计[J].太阳能学报,2007,28(3):274-278.
    [10]沙德尚,孔力,孙晓.燃料电池功率调节系统的研究[J].太阳能学报,2004,25(2):227-231.
    [11]杨平,许建平,张士宇,王金平.峰值电流控制二次型Boost变换器[J].电工技术学报,2011,26(5):101-107.
    [12]杨平,许建平,张士宇,张斐.二次型CCM Boost变换器能量传输模式[J].电机与控制学报,2012,16(6):44-49.
    [13]陈道炼.双向大升压比直流变换器型逆变器[J].电工技术学报,2010,25(6):55-62.
    [14]H. Matsuo, K. Harada. The cascade connection of switching regulators [J]. IEEE Trans. Ind. Appl,1976,12(2):192-198.
    [15]M. Dragan, C. Slobodan. Switching converters with wide DC conversion range[J]. IEEE Trans. Power Electron,1991,6(1):151-157.
    [16]J. Rajagopalan, F. C. Lee, P. Nora. Multiloop controller design for a quadratic converter with a single active switch[J]. IET Electron. Power Appl,2007,1(3): 362-367.
    [17]M. G. Ortiz-Lopez, J. Leyva-Ramos, L. H. Diaz-Saldierna, J. M. Garcia-Ibarra. Current mode control for a quadratic Boost converter with single switch[C]. IEEE Power Electronics Specialists Conference,2007, pp.2652-2657.
    [18]J. Leyva-Ramos, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna, J. A. Morales-Saldana. Switching regulator using a quadratic Boost converter for wide DC conversion ratios[J]. IET Power Electronics,2009,2(5):605-613.
    [19]J. Leyva-Ramos, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna. The effect of ESR of the capacitors on modeling of a quadratic Boost converter[C]. IEEE Control and Modeling for Power Electronics Conference,2008, pp.1-5.
    [20]G. Moschopoulos. Quadratic power conversion for industrial applications[C]. IEEE Applied Power Electronics Conference and Exposition,2010, pp.1320-1327.
    [21]刘树林,刘健,杨银玲,等.Boost变换器的能量传输模式及输出纹波电压分析[J].中国电机工程学报,2006,26(5):119-124.
    [22]阮新波,严仰光.直流开关电源的软开关技术[M].北京:科学出版社,2000.
    [23]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004.
    [24]戴栋,马西奎,李小峰.一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌[J].物理学报,2003,52(11):2729-2736.
    [25]周宇飞,陈军宁,谢智刚,柯导明,时龙兴,孙伟锋.参数共振微扰法在Boost变换器混沌控制中的实现及其优化[J].物理学报,2004,53(11):3676-3863.
    [26]张源,张浩,马西奎.单周期控制Cuk功率因数校正变换器中的中尺度不稳定现象分析[J].物理学报,2010,59(12):8432-8443.
    [27]王发强,张浩,马西奎.单周控制Buck变换器中的降频现象分析[J].物理学报,2008,57(5):2842-2848.
    [28]包伯成,许建平,刘中.具有两个边界的Boost变换器的分岔行为和斜坡补偿的镇定控制[J].物理学报,2009,58(5):2949-2956.
    [29]B. C. Bao, J. P. Xu, Z. Liu. Mode shift and stability control of current mode controlled buck-Boost converter operating in discontinuous conduction mode with ramp compensation[J]. Chinese Physics B,2009,18(11):4742-4747.
    [30]包伯成,许建平,刘中.斜坡补偿Buck变换器工作状态域估计[J].电子学报,2009,37(12):2787-2791.
    [31]G. H. Zhou, J. P. Xu, B. C. Bao, and Y. Y. Jin. Symmetrical dynamics of peak current-mode and valley current-mode controlled switching DC-DC converters with ramp compensation [J]. Chinese Physics B,2010,19(6):060508.1-060508.8.
    [32]毕玉春,汪小峰,刘立生.具有斜坡补偿的Buck-Boost变换器的碰撞分岔现象及混沌[J].哈尔滨理工大学学报,2012,15(3):77-81.
    [33]卢伟国,周雒维,罗全明,杜雄.Boost变换器延迟反馈混沌控制及其优化[J].物理学报,2007,56(11):6275-6281.
    [34]F. Liu. Intermittency and bifurcation in SEPICs undervoltage-mode control [J]. Chinese Physics B,2010,19(8):080511.1-080511.11.
    [35]包伯成,周国华,许建平,刘中.斜坡补偿电流模式控制开关变换器的动力学建模与分析[J].物理学报,2010,59(6):3769-3777.
    [36]包伯成.混沌电路导论[M].北京:科学出版社,2013.
    [37]B. C. Bao, X. Zhang, J. P. Xu, J. P. Wang. Critical ESR of output capacitor for stability of fixed off-time controlled buck converter [J]. Electronic Letters,2013, 49(4):287-288.
    [38]J. P. Wang, B. C. Bao, J. P. Xu. Dynamical effects of equivalent series resistanceof output capacitor in constant on-time controlled buck converter [J]. IEEE Trans on Industrial Electronics,2013,60(5):1759-1768.
    [39]杨平,包伯成,沙金,许建平.开关变换器斜坡补偿动力学机理研究[J].物理学报,2013,62(1):010504.1-010504.9.
    [40]周志敏,周纪海,纪爱华.开关电源功率因数校正电路设计与应用[M].北京: 人民邮电出版社,2004.
    [41]李东.基于Boost变换器的宽输入电压范围功率因数校正技术的研究[D].南京航空航天大学博士学位论文,2006.
    [42]张斐.单传感器数字控制功率因数校正技术研究[D].西南交通大学硕士学位论文,2009.
    [43]严百平,刘健,程红丽.不连续导电模式高功率因数开关电源[M].北京:科学出版社,2000.
    [44]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda. Single phase power factor correction:a survey[J]. IEEE Transactions on Power Electronics,2003,18(3): 749-755.
    [45]姚凯.高功率因数DCM Boost PFC变换器的研究[D].南京航空航天大学博士学位论文,2010.
    [46]L. H. Dixon. High power factor pre-regulators for Off-line power supplies[J]. Unitrode Switching Regulator Power Supply Design Seminar Manual,1990,12.
    [47]K. H. Liu, Y. L. Lin. Current waveform distortion in power factor correction circuits employing discontinuous-mode Boost converters [C]. Power Electronics Specialists Conference,1989, pp.825-829.
    [48]J. S. Lai, D. Chen. Design consideration for power factor correction Boost cnverter oerating at the boundary of continuous conduction mode and discontinuous conduction mode[C]. Applied Power Electronics Conference and Exposition,1993, pp.267-273.
    [49]F. Zhang, J. P. Xu. A novel PCCM Boost PFC converter with fast dynamic response[J]. IEEE Transactions on Industrial Electronics,2011,58(9):4207-4216.
    [50]张斐,许建平,王金平,于海坤.具有快速动态响应的三态功率因数校正变换器[J].电机与控制学报,2011,15:13-19.
    [51]F. Zhang, J. P. Xu, J. P. Wang, and H. K. Yu. A Novel tri-State Boost PFC converter with fast dynamic performance[C]. IEEE Conference on Industrial Electronics and Applications,2010, pp.2104-2109.
    [52]F. Zhang, J. P. Xu, H. K. Yu, and P. Yang. Dead-zone digital controllers for improved dynamic response over wide load range in tri-state Boost PFC converter[C]. IEEE Symposium on Power Electronics for Distributed Generation Systems,2010, pp. 444-448.
    [53]F. Zhang, J. P. Xu, H. K. Yu, and G. H. Zhou. Inductive idling Boost converter with low inductor current-ripple and improved dynamic response for power factor correction[C]. IEEE Energy Conversion Congress and Exposition,2010, pp. 3210-3215.
    [54]F. Zhang, J. P. Xu, P. Yang, and T. S. Yan. Tri-state Boost PFC converter with high input power factor[C]. IEEE International Power Electronics and Motion Control Conference-ECCE Asia,2012, pp.1626-1621.
    [55]于海坤,许建平,张斐,王金平.具有宽负载范围的新型Boost功率因数校正器研究[J].电工技术学报,2011,26:93-98.
    [56]林渭勋.现代电力电子电路[M].浙江:浙江大学出版社,2002.
    [57]H. Matsuo, K.Harada. The cascade connection of switching regulators[J]. IEEE Transactions on Industrial Applications,1976,12(2):192-198.
    [58]L. Huber and M. M. Jovanovic. A design approach for server supplies for networking application[C]. IEEE Applied Power Electronics Conference,2000, pp.1163-1169.
    [59]X. G. Feng, J. J. Liu, F. C. Lee, Impedance specifications for stable DC distributed power systems[J]. IEEE Transactions on Power Electronics,2002,17(2):157-162.
    [60]J. R. D. Britto, F. V. R. D. Silva. Proposal of a DC-DC converter with wide conversion range used in photovoltaic systems and utility power grid for the universal voltage range[C]. IEEE Power Electronics Conference,2009, pp.606-611.
    [61]J. A. Morales-Saldana, J. Leyva, E. E. Carbajal. Modeling of switch-mode DC-DC cascade converter[J]. IEEE transactions on aerospace and Electronic Systems,1991, 38(1):151-157.
    [62]C. Gutierrez, M. Saldana, J. Leyva. Modeling of a single-switch quadratic buck converter [J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(4): 1450-1456.
    [63]V. M. Pacheco, A. J. Do Nascimento, V. J. Farias, J. B. Vieira, L. C. de Freitas. A quadratic buck converter with lossless commutation[J]. IEEE Transactions on Industrial Electronics,2000,47(47):264-272.
    [64]D. K. W. Cheng, C. S. Cheng, J. H. K. Chan. Analysis Of a laboratory switching power supply with wide output voltage range[C]. IEEE Industrial Electronic, Control, Instrumentation, and Automation Conference,1992, pp.217-222.
    [65]Y. R. de Novaes, A. Rufer, I. Barbi. A new quadratic, three-level, DC/DC converter suitable for fuel cell application[C]. IEEE Power Conversion Conference,2007, pp. 601-607.
    [66]V. Vorperian. Simplified analysis of PWM converters usingmodel of PWM switch. II. discontinuous conduction mode[J]. IEEE Transactions on Aerospace and Electronic Systems,1990,26(3):497-505.
    [67]J. P. Xu. Modelling of switching DC-DC converters by time averaging equivalent circuit approach[J]. International Journal of Electronics Part II Discontinuous Conduction Mode,1993,74(3):477-488.
    [68]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2005.
    [69]Y. Jiao, F. L. Luo, M. Zhu. Generalized modeling and sliding mode control for n-cell cascade super-lift DC-DC converters [J]. IET Power Electron,2011,4(5):532-540.
    [70]R. C. Dorf, R. H. Bisliop现代控制系统[M].北京:高等教育出版社,2001.
    [71]B. Bryant, M. K. Kazimierczuk. Modeling the closed current loop of PWM Boost DC-DC converters operating in CCM with peak current mode control[J]. IEEE Transactions on Circuits and Systems,2005,52(11):2404-2412.
    [72]B. Bryant, M. K. Kazimierczuk. Voltage loop of Boost PWM DC-DC converters with peak current-mode control [J]. IEEE Transactions on Circuits and Systems,2006, 53(1):99-105.
    [73]林薇,刘永根,张艳红.开关电源峰值电流模式次谐波振荡研究[J].信息与电子工程,2009,7(4):330-334.
    [74]李少远,章春利,陈增强等.非最小相位系统具有强鲁棒性的广义预测控制[J].控制与决策,1998,13(1):63-66.
    [75]施壮,陈胜利.一类非最小相位系统的智能控制[J].自动化技术与应用,2008,27(1):30-33.
    [76]文志军,栾日涛等.非最小相位导弹过载自适应滑模控制[J].弹箭与制导学报,2003,26(1):731-734.
    [77]J. P. Xu. Modelling of switching DC-DC converters by time averaging equivalent circuit approach[J]. International Journal of Electronics Part I Continuous Conduction Mode,1993,74(3):465-475.
    [78]刘树林,刘健,杨银玲,赵新毅.Boost变换器的能量传输模式及输出纹波电压分析[J].中国电机工程学报,2006,26(5):119-124.
    [79]周国华,许建平.开关变换器数字控制技术[M].北京:科学出版社,2011.
    [80]P. Midya, P. T. Krein, M. F. Greuel. Sensorless current mode control an observer based technique for DC-DC converters [J]. IEEE Transactions on Power Electronics, 2001,16(4):522-526.
    [81]G. H. Zhou, J. P. Xu, J. P. Wang, Q. B. Mu. Elimination of sub-harmonic oscillation of digital average current control buck converter [C]. IEEE Communications Circuits and systems Conference,2008, pp.1314-1318.
    [82]N. Rossetti, S. R. Sanders. Valley design techniques outperform peak current-mode approach for CPU supplies[J]. Power Electronics Technology,2001,27(7):50-56.
    [83]Mustafa A. Al-Saffar, Esam H. Ismail, and Ahmad J. Sabzali. High Efficiency Quadratic Boost Converter[C]. IEEE Applied Power Electronics Conference and Exposition,2012, pp.1245-1252.
    [84]J. P. Gaubert, G. Chanedeau. Evaluation of DC-to-DC converters topologies with quadratic conversion ratios for photovoltaic power systems[C]. IEEE Power Electronics and Application Conference,2009, pp.1-10.
    [85]R. Kadri, J. P. Gaubert, G. Champenois, M. Mostefai. Performance analysis of transformless single switch quadratic Boost converter for grid vonnected photovoltaic systems[C]. Intenational Conference on Electrical Machines,2010, pp. 1-7.
    [86]J. R. D. Britto, F. V. R. D. Silva, E. A. A. Coelho, L. C. D. Freitas, V. J. F. Joao. Proposal of a DC-DC converter with wide conversion range used in photovoltaic systems ans utility power grid for the universal voltage range [C]. IEEE Applied Power Electronics Conference and Exposition,2010, pp.2258-2263.
    [87]C. K. Tse, M. D. Bernardo. Complex behavior in switching power converters [J]. Proceeding of IEEE,2002,90(5):768-781.
    [88]Y. Chen, C. K. Tse, S. Qiu, L. Lindenmiiller, and W. Schwarz. Coexisting fast-scale and slow-scale instability in current-mode controlled dc/dc converters:analysis, simulation and experimental results[J]. IEEE Trans. Circuits Syst. Ⅰ, Reg. Papers, 2008,55(10):3335-3348.
    [89]M. G. Bottarelli, I. Barbi, Y. R. denovaes, A, Rufer. Three level quadratic non-insulated basic DC-DCconverters[C]. IEEE Power Electronics and Application Conference,2007, pp.1-10.
    [90]S. Parui, S. Banerjee. Bifurcations due to transition from continuous conduction mode to discontinuous conduction mode in the Boost converter[J]. IEEE Trans. Circuits and Systems-Ⅰ,2003,50(11):1464-1469.
    [91]J. H. B. Deane, D. C. Hamill. Instability, subharmonics, and chaos in power electronic systems[J]. IEEE Trans. Power Electron,1990,5(3):260-268.
    [92]包伯成,许建平,刘中.开关DC-DC变换器斜坡补偿的稳定性控制研究[J].电子科技大学学报,2008,37(3):397-400.
    [93]S. Banerjee, S. Parui, A. Gupta. Dynamical effects of missed switching in current-mode controlled dc-dc converters [J]. IEEE Trans. Circuits and Systems-II, 2004,51(12):649-654.
    [94]B. C. Bao, G. H. Zhou, J. P. Xu, Z. Liu. Unified classification of operation state regions for switching converters with ramp compensation[J]. IEEE Trans. Power Electronics,2011,26(7):1968-1975.
    [95]R. Giral, A. E. Aroudi, L. M. Salamero, R. Leyva, J. Maixe. Current control technique for improving EMC in power converters[J]. Electron. Letter,2001,37(5): 274-275.
    [96]包伯成,杨平,马正华,张希.电路参数宽范围变化时电流控制开关变换器的动力学研究[J].物理学报.2012,61(22):220502.1-220502.14.
    [97]J. P. Xu, G. H. Zhou, M. Z. He. Improved digital peak voltage predictive control for switching DC-DC converters[J]. IEEE Transactions on Industrial Electronics,2009, 56(8):3222-3229.
    [98]S. Wall, R. Jackson. Fast controller design for single-phase powerfactor correction systems[J]. IEEE Trans, on Industry Electronics,1997,44:654-660.
    [99]邓卫华,张波,丘东元,等.电流连续型Boost变换器状态反馈精确线性化与非线性PID控制研究[J].中国电机工程学报,2004,24(8):45-50.
    [100]D. S. Ma, H. K. Wing. Fast-transient PCCM switching converter with freewheel switching control[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2007,54(9):825-829.
    [101]A. Prodic, J. Chen, D. Maksimovic, and R. W. Erickson. Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response[J]. IEEE Trans, Power Electron,2003,18(1):420-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700