用户名: 密码: 验证码:
机电作动器中永磁容错电机设计与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机电作动器作为飞行控制系统中的主要执行机构,必须具有很强的可靠性和容错性。本文以减小机电作动器的体积、提高机电作动器的容错性和可靠性为目标,设计具有容错性和高可靠性的永磁容错电机,研究了永磁容错电机无位置传感器检测技术和基于矩阵变换器的矢量控制技术。论文主要研究内容和结论如下:
     第一,根据飞行器中机电作动器对作动器体积和可靠性需求,提出了直驱型机电作动器和容错电机的结构方案及相应的电机尺寸。并在此基础上,优化电机定子内径使电机工作时铜耗最小,利用磁通管法推导了定子齿尖漏电感解析式,分析了电机槽齿尺寸对齿尖漏感的影响,结合有限元方法优化了电机齿槽结构尺寸。对所设计的电机容错性能进行了仿真分析,结果表明该电机具有很强的磁隔离和故障隔离能力,能够满足直驱型机电作动器需求。
     第二,针对永磁容错电机齿槽结构复杂的特点,将永磁容错电机气隙磁场分为定子绕组产生气隙磁场和永磁体产生气隙磁场两部分。利用许克变换求出电机不规则气隙区域与矩形区域的对应关系。将永磁体磁场等效为线圈电流磁场,分别得到了定子绕组和永磁体气隙磁场,利用有限元验证了结果的有效性。将定子绕组气隙磁场和永磁体气隙磁场相叠加,得到了永磁容错电机气隙磁场,计算了永磁容错电机齿槽转矩和电磁转矩。
     第三,分析了永磁容错电机饱和凸极效应,将电机绕组磁链等效为定子电流产生的磁链和转子磁极等效电流产生的磁链两部分,建立了考虑饱和凸极效应的永磁容错电机非线性数学模型。提出了一种基于高频电压注入的转子位置检测方法,仿真结果表明,注入的高频电压信号对电机运行性能影响较小,设计的转子位置观测器能较准确地估计转子位置。通过给电机施加电压脉冲矢量实现了转子初始位置检测,仿真结果表明,无论电机正常运行还是处于故障状态,转子初始位置检测算法都能较好地检测出转子初始位置。
     第四,在介绍矩阵变换器工作原理的基础上,将矩阵变换器等效成虚拟整流和虚拟逆变两个环节,设计了基于电压补偿的矩阵变换器控制策略。分析了PI电流环和最速电流环优缺点,设计了基于次速电流环的矩阵变换器控制系统。研究了基于矩阵变换器的永磁容错电机矢量控制系统,仿真分析了系统动态性能,仿真结果表明基于矩阵变换器的永磁容错电机矢量控制系统具有较好的动态响应性能,能够较好地跟踪转速和负载转矩变化,具有较好的抗负载变化能力。
     第五,设计了基于矩阵变换器的永磁容错电机无位置传感器矢量控制系统,仿真分析了该控制系统在正常工作状态下和短路及开路故障情况下的动态性能。仿真结果表明,该系统正常工作时能够很好地跟踪系统输入,且具有较好的动态响应性能;当电机发生单相短路和开路故障时,系统仍能继续工作,满足直驱型机电作动器容错性要求。
As the major actuating mechanism of an aircraft, electromechanical actuators havehigh requirements for reliability and fault tolerant. In this dissertation, a fault tolerantpermanent magnet motor is proposed to minimize the size and to improve the faulttolerant and reliability of the electromechanical actuators. A sensorless rotor positionestimation method for the fault tolerant permanent magnet motor is presented, and avector control system for the fault tolerant permanent magnet motor based on matrixconverter is studied. The main contents and contributions are as follows.
     1. According to the requirements of the reliability, fault tolerant and size of theelectromechanical actuator on an aircraft, the direct drive electromechanical actuator isproposed, and the structure and size of the fault tolerant motor are investigated. On thisbasis, the internal diameter of the stator is optimized to minimize copper loss. Ananalytic expression of the tooth tip leakage inductance is derived using the flux tubeapproach, and some slot and tooth parameters which have remarkable influences on thetooth tip leakage inductance are found, and they are optimized by the finite elementmethod. The fault tolerance of the motor is simulated using the finite element method,and the results show that the motor has a perfect property in the magnetic isolation andfault tolerant, and it meets the fault tolerant requirements on the direct driveelectromechanical actuator.
     2. For the complex slot configuration of the fault tolerant permanent magnet motor,the air gap magnetic field distribution is divided into two parts: the magnetic fielddistribution produced by the current through the armature windings, and the magneticfields produced by the permanent magnets of the motor. The slotted structure of thefault tolerant permanent magnet motor is transformed to a simpler geometrical domainutilizing the Schwarz-Christoffel transform, and the magnetic field distributiongenerated by the current through the armature windings is then analyzed. The magneticfields of the permanent magnets are represented by the magnetic fields generated by anumber of line currents, and the magnetic field distribution produced by the permanentmagnet is analyzed. The accuracy of the results is validated by the finite elementmethod. Summing up the two parts of the magnetic fields, the cogging torque andelectromagnetic torque are calculated as well.
     3. The magnetic saturation saliency effect is analyzed, and the total flux linkage ofa winding is separated into the flux linkages produced by the stator current and by therotor permanent magnet. The nonlinear mathematical model of the fault tolerantpermanent magnet motor is established. An estimation method for the rotor position ofthe fault tolerant permanent magnet motor, which is based on the high frequencyvoltage signal injection method, is presented. The simulation results show that the high frequency voltage signals have little effect on normal operation of the motor, and themethod can accurately estimate the position the rotor. The initial rotor position of thefault tolerant permanent magnet motor is estimated by injecting a voltage pulse vector.The simulation results indicate that the proposed approach is able to detect the initialposition of the rotor.
     4. By introducing the principle of the matrix converter, the matrix converter isequivalent to the combination of a virtual rectification and a virtual converter, and thecontrol strategy of the matrix converter based on voltage compensation is proposed.Based on the analysis of the advantages and disadvantages of the PI current loop and thetime-optimal current loop, a control system for the matrix converter based on asub-optimal current loop is designed. The vector control system for the fault tolerantpermanent magnet motor based on the matrix converter is studied, and the simulationresults show that the system holds good dynamic response performance and adaptationcapability.
     5. Based on the matrix converter, a sensorless vector controller for the faulttolerant permanent magnet motor is designed, and the dynamic performance of thecontrolled system is simulated for the cases when the motor is on the normal state andthe fault state. The results show that the controlled system can accurately track theinputs when the motor is normal, and the system can still work when short circuit oropen circuit faults occurs in the motor, and the designed system well meets the faulttolerant requirements for the direct drive electromechanical actuator.
引文
[1]付永领,刘和松,庞尧等.用于直驱型机电作动器的PMSM自抗扰控制研究[J].四川大学学报.2011,43(2):121-127.
    [2]刘林,郭恩友.飞行控制系统的分系统[M].北京:国防工业出版社,2003.
    [3]齐海涛,付永领.基于AMESim的电动静液作动器的仿真分析[J].机床与液压.2007,35(3):184-186.
    [4]李榕,刘卫国,马瑞卿等.双余度无刷直流电动机伺服系统电流均衡性研究[J].电工技术学报.2005,20(9):77-81.
    [5]郝振洋,胡育文,黄文新.电力作动器中永磁容错电机及其控制系统的发展[J].航空学报.2008,29(1):149-158.
    [6] Williams K, Brown D. Electrically Powered Actuator Design(EPAD)[R].NASA/USAF/Navy,1997.
    [7]沙南生,李军.功率电传机载一体化电作动系统的研究[J].北京航空航天大学学报.2004,30(9):909-912.
    [8] Cowan J R, Myers W N. Design and Test of a High Power ElectromechanicalActuator for Thrust Vector Control[R]. AIAA92-3851,1992.
    [9]郭宏,刑伟.机电作动系统发展[J].航空学报.2007,28(3):620-627.
    [10] Mccormick M B. Electronics for Advanced Electromechanical Actuators DesignConsiderations[C]. New York: Institute of Electrical and Electronics Engineers Inc,1985.
    [11] Bradbury G. Development of an Advanced Primary Flight ControlElectromechanical Actuator[C]. New York: Institute of Electrical and ElectronicsEngineers Inc,1987.
    [12] Alden R E. Flight Demonstration, Evaluation and Proposed Applications forVarious All Electric Flight Control Actuation System Concepts[R]. AIAA-93-1171,1993.
    [13]徐步力.一体化机载作动系统原理样机的性能研究[D].北京:北京航空航天大学,2002.
    [14] Groom N J. Electric flight system[R]. NASA Conference Publication2209,1982.
    [15] Jackson J E, Espenschied E, Klop J. The Control System for the X-33LinearAerospace Engine[C]. Los Alamitos: IEEE Computer Society,1998.
    [16] Fronista G L, Bradbury G. An Electromechanical Actuator for A TransportAircraft Spoiler Surface[J]. Proceedings of the32nd Intersociety Energy ConversionEngineering Conference.1997,1:694-698.
    [17] Gribble J J, Kjaer P C, Cossar C, et al. Feasibility Study of a Large SwitchedReluctance Spoiler Actuator System[J]. IEE Colloquium on All Electric Aircraft.1998,1-13.
    [18] Jensen S C, Jenney G D, Dawson D. Flight Test Experience with AnElectromechanical Actuator on the F-18Systems Research Aircraft[J]. The19th DigitalAvionics Systems Conferences.2000,1:1-10.
    [19] Aten M, Whitley C, Towers G, et al. Dynamic Performance of A MatrixConverter Driven Electro-Mechanical Actuator for An Aircraft Rudder[J]. SecondInternational Conference on Power Electronics, Machines and Drives.2004,1:326-331.
    [20]齐蓉,林辉,周素莹.多电飞机电气系统关键技术研究[J].航空计算技术.2004,34(1):97-101.
    [21]罗昀,付永领,裴忠才等.机载一体化作动系统的发展趋势[J].机床与液压.2004(1):1-3.
    [22] Krishman R, Bharadwaj A S. A Comparative Study of Various Motor DriveSystems for Aircraft Applications[J]. Industry Applications Society Annual Meeting.1991,1:252-258.
    [23] Briere D, Traverse P. AIRBUS A320/A330/A340Electrical Flight Controls-Afamily of Fault-Tolerant Systems[J]. The Twenty-Third International Symposium onFault-Tolerant Computing.1993:616-623.
    [24] Raimondi G M, Mcfarlane R D, Bingham C M, et al. Large ElectromechanicalActuation Systems for Flight Control Surfaces[J]. IEE Colloquium on All ElectricAircraft.1998:1-6.
    [25] Lyshevski S E. Nonlinear Control of Servo-Systems Actuated byPermanent-Magnet Synchronous Motors[J]. Automatica.1998,34(10):1231-1238.
    [26] Lyshevski S E. Electromechanical Flight Actuators for Advanced FlightVehicles[J]. IEEE Transactions on Aerospace and Electronic Systems.1999,35(2):511-518.
    [27] Lyshevski S E. High-Performance Direct-Drive Flight Actuators: AdvancedTechnology Demonstration[J]. Proceedings of the IEEE International Conferenece onControl Applications.1999:1229-1234.
    [28] Lyshevski S E, Colgren R D, Skormin V A. High-Performance ElectromechanicalDirect-Drive Actuators for Flight Vehicles[J]. Proceeding of the American ControlConference.2001:1345-1350.
    [29] Lyshevski S E, Skormin V A, Colgren R D. High-Torque Density IntegratedElectro-Mechanical Flight Actuators[J]. IEEE Transactions on Aerospace andElectronic Systems.2002,38(1):174-183.
    [30] Lyshevski S E. Direct-Drive Flight Actuators: New Challenging Problems inNonlinear Analysis and Control of Servo-Systems[J]. Proceedings of the AmericanControl Conference.2000:1098-1102.
    [31] Atallah K, Caparrelli F, Bingham C M, et al. Comparison of Electrical DriveTechnologies for Aircraft Flight Control Surface Actuation[J]. Ninth InternationalConference on Electrical Machines and Drives.1999:159-163.
    [32] Cossar C, Kelly L, Miller T J E, et al. The Design of a Switched Reluctance Drivefor Aircraft Flight Control Surface Actuation[J]. IEE Colloquium on lectrical Machinesand Systems for the More Electric Aircraft.1999:1-8.
    [33] Byington C S, Watson M, Edwards D, et al. A Model-Based Approach toPrognostics and Health Management for Flight Control Actuators[J]. IEEE AerospaceConference Proceedings.2004,6:3551-3562.
    [34] Gerada C, Bradley K, Whitley C, et al. Integrated Machine design for ElectroMechanical Actuation[J]. Proc. IEEE Int. Symp. Ind. Electron.2007:1305-1310.
    [35] Gerada C, Bradley K J. Integrated PM Machine Design for an Aircraft EMA[J].IEEE Transactions on Industrial Electronics.2008,55(9):3300-3306.
    [36]王自强,朱耀忠,陈杰峰.飞行控制用无刷直流电动机的结构设计[J].北京航空航天大学学报.2003,29(9):779-782.
    [37]王自强,张龙,黄燕丹.飞行控制用无刷直流电动机的优化设计[J].北京航空航天大学学报.2004,30(7):588-592.
    [38]周元钧,董慧芬,王自强.飞行控制用无刷直流电动机容错运行方式[J].北京航空航天大学学报.2006,32(2):190-194.
    [39]周元钧,赵运坤,葛云海.复合式余度机电作动系统容错控制与性能分析[J].北京航空航天大学学报.2008,34(3):285-289.
    [40]董慧芬,周元钧,沈颂华.双通道无刷直流电动机容错动态性能分析[J].中国电机工程学报.2007,27(21):89-94.
    [41]付永领,刘和松,庞尧等.机载直驱式机电作动器的伺服控制器设计研究[J].测控技术.2010,29(7):36-40.
    [42]郝振洋,胡育文,黄文新等.电力作动器中永磁容错电机的电感和谐波分析[J].航空学报.2009,30(6):1063-1069.
    [43]郝振洋,胡育文,黄文新等.具有高精度的永磁容错电机非线性电感分析及其解析式求取[J].航空学报.2009,30(11):2156-2164.
    [44]郝振洋,胡育文,黄文新等.永磁容错电机最优电流直接控制策略[J].中国电机工程学报.2011,31(6):46-51.
    [45]余文涛.永磁容错电机最优转矩控制策略的研究[D].南京:南京航空航天大学,2010.
    [46]余文涛,胡育文,郝振洋等.永磁容错电机最优转矩控制策略实验[J].航空学报.2010,31(8):1622-1628.
    [47]夏青元,徐锦法.无人机舵回路及其新型控制策略设计和应用[J].南京航空航天大学学报.2010,42(6):704-709.
    [48]李海波.电力作动器伺服控制器的研制[D].西安:西北工业大学,2004.
    [49]常顺宏,田广来,李玉忍等.飞机全电刹车系统机电作动器的研究与设计[J].航空精密制造技术.2005,41(6):18-20.
    [50]齐蓉,陈明.多电飞机容错作动系统拓扑结构分析[J].航空计算技术.2005,35(1):82-85.
    [51]齐蓉,陈明.永磁容错电机及容错驱动结构研究[J].西北工业大学学报.2005,23(4):475-478.
    [52]赵文祥,程明,花为等.双凸极永磁电机故障分析与容错控制策略[J].电工技术学报.2009,24(4):71-77.
    [53] Jack A G, Mecrow B C, Haylock J A. A Comparative Study of Permanent Magnetand Switched Reluctance Motors for High-Performance Fault-Tolerant Applications[J].IEEE Transactions on Industry Applications.1996,32(4):889-895.
    [54] Mecrow B C, Jack A G, Haylock J A, et al. Fault-Tolerant Permanent MagnetMachine Drives[J]. IEE Proceedings Electric Power Applications.1996,143(6):437-442.
    [55] Haylock J A, Mecrow B C, Jack A G, et al. Operation of Fault Tolerant Machineswith Winding Failures[J]. IEEE Transactions on Energy Conversion.1999,14(4):1490-1495.
    [56] Haylock J A, Macrow B C, Jack A G, et al. Operation of a Fault Tolerant PMDrive for an Aerospace Fuel Pump Application[J]. IEE Proceedings Electric PowerApplications.1998,145(5):441-448.
    [57] Mecrow B C, Jack A G, Atkinson D J, et al. Design and Testing of a Four-PhaseFault-Tolerant Permanent-Magnet Machine for an Engine Fuel Pump[J]. IEEETransactions on Energy Conversion.2004,19(4):671-678.
    [58] Green S, Atkinson D J, Jack A G, et al. Sensorless Operation of a Fault TolerantPM Drive[J]. IEE Proceedings Electric Power Applications.2003,150(2):117-125.
    [59] Atkinson G J, Mecrow B C, Jack A G, et al. The Analysis of Losses inHigh-Power Fault-Tolerant Machines for Aerospace Applications[J]. IEEE Transactionson Industry Applications.2006,42(5):1162-1170.
    [60] Atkinson G J, Mecrow B C, Jack A G, et al. The Design of Fault TolerantMachines for Aerospace Applications[J]. IEEE International Conference on ElectricMachines and Drives.2005:1863-1869.
    [61] Mitcham A J, Antonopoulos G, Cullen J J A. Favourable Slot and Pole NumberCombinations for Fault-Tolerant PM Machines [J]. IEE Proceedings Electric PowerApplications.2004,151(5):520-525.
    [62] Abolhassani M T. A Novel Multiphase Fault Tolerant High Torque DensityPermanent Magnet Motor Drive for Traction Application[J]. IEEE InternationalConference on Electric Machines and Drives.2005:728-734.
    [63] Abolhassani M T. A Novel Multiphase Fault Tolerant Permanent Magnet MotorDrive for Fuel Cell Powered Vehicles[J]. IEEE Vehicle Power and PropulsionConference.2007:160-167.
    [64] Abolhassani M T, Toliyat H A. Fault Tolerant Permanent Magnet Motor Drivesfor Electric Vehicles[J]. IEEE International Electric Machines and Drives Conference.2009:1146-1152.
    [65] Bianchi N, Pre M D, Grezzani G, et al. Design Considerations on Fractional-SlotFault-Tolerant Synchronous Motors[J]. IEEE International Conference on ElectricMachines and Drives.2005:902-909.
    [66] Bianchi N, Bolognani S, Pre M D. Strategies for the Fault-Tolerant CurrentControl of a Five-Phase Permannet-Magnet Motor[J]. IEEE Transactions on IndustryApplications.2007,43(4):960-970.
    [67] An J S, Ertugrul N, Soong W L, et al. An Indirect Rotor Position EstimationTechnique for a Fault-Tolerant Brushless PM Motor Drive[J]. IEEE Power ElectronicsSpecialists Conference.2008:1553-1558.
    [68] Raminosoa T, Gerada C, Othman N. Performance Comparison of Fault TolerantPM Machine for Static Load Holding Application[J]. IEEE International ElectricMachines and Drives Conference.2009:1729-1735.
    [69] Raminosoa T, Gerada C, Othman N. Rating Issues in Fault Tolerant PMSM[J].IEEE International Electric Machines and Drives Conference.2009:1592-1599.
    [70] Raminosoa T, Gerada C. A Comparative Study of PermanentMagnet-Synchronous and Permanent Magnet-Flux Switching Machines for FaultTolerant Drive Systems[J]. IEEE Energy Conversion Congress and Exposition.2010:2471-2478.
    [71] Raminosoa T, Gerada C, Galea M. Design Considerations for a Fault TolerantFlux Switching Permanent Magnet Machine[J]. IEEE Transactions on IndustrialElectronics.2010, pp(99):1-8.
    [72] Wen O, Lipo T A. Modular Permanent Magnet Machine with Fault TolerantCapability[J]. Twenty-Fourth Annual Applied Power Electronics Conference andExposition.2009:930-937.
    [73] Liu C, Chau K T, Li W. Comparison of Fault-Tolerant Operations forPermanent-Magnet Hybrid Brushless Motor Drive[J]. IEEE Transactions on Magnetics.2010,46(6):1378-1381.
    [74] Villani M, Tursini M, Fabri G, et al. Fault-Tolerant PM Brushless DC Drive forAerospace Application[J]. XIX International Conference on Electrical Machines.2010:1-7.
    [75] Villani M, Tursini M, Fabri G, et al. Multi-Phase Fault Tolerant Drives forAircraft Applications[J]. Electrical Systems for Aircraft, Railway and Ship Propulsion.2010:1-6.
    [76] Pang Y, Zhu Z Q, Chen X J, et al. Design Concept of Short-CircuitFault-Tolerance Permanent Magnet Machine[J]. IET International Conference on PowerElectronics, Machines and Drives.2010:1-4.
    [77] El-Refaie A M. Fault-Tolerant Permanent Magnet Machines: A Review[J]. IETElectric Power Applications.2011,5(1):59-74.
    [78] Barcaro M, Bianchi N, Magnussen F. Faulty Operations of a PM Fractional–SlotMachine with a Dual Three–Phase Winding[J]. IEEE Transactions on IndustrialElectronics.2011, pp(99):1-8.
    [79] Ede J D, Atallah K, Wang J, et al. Effect of Optimal Torque Control on RotorLoss of Fault-Tolerant Permanent-Magnet Brushless Machines[J]. IEEE Transactionson Magnetics.2002,38(5):3291-3293.
    [80] Ede J D, Atallah K, Wang J B, et al. Modular Fault-Tolerant Permanent MagnetBrushless Machines[J]. International Conference on Power Electronics, Machines andDrives.2002:415-420.
    [81] Wang J, Atallah K, Howe D. Optimal Torque Control of Fault-TolerantPermanent Magnet Brushless Machines[J]. IEEE Transactions on Magnetics.2003,39(5):2962-2964.
    [82] Sun Z, Wang J, Howe D, et al. Analytical Prediction of the Short-Circuit Currentin Fault-Tolerant Permanent-Magnet Machines[J]. IEEE Transactions on IndustrialElectronics.2008,55(12):4210-4217.
    [83] Sun Z, Wang J, Jewell G W, et al. Enhanced Optimal Torque Control ofFault-Tolerant PM Machine Under Flux-Weakening Operation[J]. IEEE Transactionson Industrial Electronics.2010,57(1):344-352.
    [84]齐蓉,陈峥,林辉.永磁容错电机解耦控制研究[J].西北工业大学学报.2007,25(6):809-813.
    [85]郝振洋,胡育文,黄文新等.转子磁钢离心式六相十极永磁容错电机及控制策略[J].中国电机工程学报.2010,30(30):81-86.
    [86]沈天珉,胡育文,郝振洋等.基于电压调制的永磁容错电机转矩控制系统仿真[J].微特电机.2011(3):66-72.
    [87]吉敬华,孙玉坤,朱纪洪等.新型定子永磁式容错电机的工作原理和性能分析[J].中国电机工程学报.2008,28(21):96-101.
    [88] Zhao W, Chau K T, Cheng M, et al. Remedial Brushless AC Operation ofFault-Tolerant Doubly Salient Permanent-Magnet Motor Drives[J]. IEEE Transactionson Industrial Electronics.2010,57(6):2134-2141.
    [89]任远,孙玉坤,朱纪洪.四相永磁容错电机的SVPWM控制[J].航空学报.2009,30(8):1490-1496.
    [90] Jin M, Wang C, Shen J, et al. A Modular Permanent-Magnet Flux-SwitchingLinear Machine with Fault-Tolerant Capability[J]. IEEE Transactions on Magnetics.2009,45(8):3179-3186.
    [91]彭芳彪,严东超,王光明等.六相永磁容错电机不对称运行研究[J].空军工程大学学报.2009,10(3):73-77.
    [92]秦峰,贺益康,刘毅等.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报.2005,25(5):116-121.
    [93]谷善茂,何凤有,谭国俊等.永磁同步电动机无传感器控制技术现状与发展[J].电工技术学报.2009,24(11):14-20.
    [94] French C, Acarnley P. Control of Permanent Magnet Motor Drives using a NewPosition Estiamtion Technique[J]. IEEE Transactions on Industry Applications.1996,32(5):1089-1097.
    [95]齐放,邓智泉,仇志坚等.基于MRAS的永磁同步电机无速度传感器[J].电工技术学报.2007,22(4):53-58.
    [96]王庆龙,张崇巍,张兴.基于变结构模型参考自适应系统的永磁同步电机转速辨识[J].中国电机工程学报.2008,28(9):71-75.
    [97]齐放,邓智泉,仇志坚等.一种永磁同步电机无速度传感器的矢量控制[J].电工技术学报.2007,22(10):7-11.
    [98] Low T, Lee T, Chang K. A Nonlinear Speed Observer for Permanent-MagnetSynchronous Motors[J]. IEEE Transactions on Industrial Electronics.1993,40(3):307-316.
    [99] Solsona J, Valla M I, Muravchik C. A Nonlinear Reduced Order Observer forPermanent Magnet Synchronous Motors[J]. IEEE Transactions on Industrial Electronics.1996,43(4):492-497.
    [100]纪历,徐龙祥.高速永磁同步电机无传感器控制[J].电机与控制学报.2011,15(9):24-30.
    [101] Furuhashi T, Sangwongwanich S, Okuma S. A Position-and-Velocity SensorlessControl for Brushless DC Motors using an Adaptive Sliding Mode Observer[J]. IEEETransactions on Industrial Electronics.1992,39(2):89-95.
    [102]祝晓辉,李颖晖.基于扰动滑模观测器的永磁同步电机矢量控制[J].电机与控制学报.2007,11(5):456-461.
    [103]黄雷,赵光宙,贺益康. PMSM的自适应滑模观测器无传感器控制[J].浙江大学学报.2007,41(7):1107-1110.
    [104]尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J].中国电机工程学报.2007,27(3):23-27.
    [105]孙杰,崔巍,范洪伟等.基于滑模观测器的永磁同步电机无传感器矢量控制[J].电机与控制应用.2011,38(1):38-42.
    [106]金树强,南余荣,吴晓东.基于改进滑模观测器的PMSM无位置传感器矢量控制系统[J].微特电机.2010(3):46-49.
    [107]吴静,杨俊友,何国锋.永磁同步电动机无传感器控制的滑模观测器[J].沈阳工业大学学报.2006,28(1):45-48.
    [108] Corley M J, Lorenz R D. Rotor Position and Velocity Estimation for aSalient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds[J].IEEE Transactions on Industry Applications.1998,34(4):784-789.
    [109] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman Filter Tuning inSensorless PMSM Drives[J]. IEEE Transactions on Industry Applications.2003,39(6):1741-1747.
    [110] Bolognani S, Oboe R, Zigliotto M. Sensorless Full-Digital PMSM Drive withEKF Estimation of Speed and Rotor Position[J]. IEEE Transactions on IndustrialElectronics.1999,46(1):184-191.
    [111] Dhaouadi R, Mohan N, Norum L. Design and Implementation of an ExtendedKalman Filter for the State Estimation of a Permanent Magnet Synchronous Motor[J].IEEE Transactions on Power Electronics.1991,6(3):491-497.
    [112]郑泽东,李永东, Fadel M.基于EKF的PMSM无机械传感器矢量控制[J].清华大学学报.2009,49(10):1585-1588.
    [113]薛树功,魏利胜,凌有铸.基于扩展卡尔曼滤波的永磁同步电机无传感器矢量控制[J].电机与控制应用.2011,38(8):15-18.
    [114]魏春平,李世华,陈夕松.基于自适应扩展Kalman滤波器的永磁同步电机无速度传感器控制[J].东南大学学报.2008,38:136-139.
    [115]李宏,张群,郑勇.基于降阶扩展卡尔曼滤波的永磁同步电动机无传感器控制[J].微特电机.2011(9):42-44.
    [116]李玉忍,谢利理,齐蓉等.永磁同步电机无位置传感器调速系统的研究[J].西北工业大学学报.2003,21(4):428-431.
    [117] Yi Y, Vilathgamuwa D M, Rahman M A. Implementation of anArtifical-Neural-Network-Based Real-Time Adaptive Controller for an InteriorPermanent-Magnet Motor Drive[J]. IEEE Transactions on Industry Applications.2003,39(1):96-104.
    [118]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报.2002,22(12):32-35.
    [119]陈奇,刘国海,周华伟等.基于神经网络的直接转矩无传感器控制[J].微特电机.2007(9):42-44.
    [120]李毓州,阳林.基于小波神经网络的永磁同步电机无速度传感器控制[J].微电机.2010,43(7):53-56.
    [121]杨俊友,陈大明.对角递归神经网络永磁同步电机的无传感器控制[J].沈阳工业大学学报.2008,30(1):24-27.
    [122] Hinkkanen M, Leppanen V, Luomi J. Flux Observer Enhanced withLow-Frequency Signal Injection Allowing Sensorless Zero-Frequency Operation ofInduction Motors[J]. IEEE Transactions on Industry Applications.2005,41(1):52-59.
    [123] Leppanen V, Luomi J. Observer using Low-Frequency Injection for SensorlessInduction Motor Control-Parameter Sensitivity Analysis [J]. IEEE Transactions onIndustrial Electronics.2006,53(1):216-224.
    [124]秦峰,贺益康,贾洪平.基于转子位置自检测复合方法的永磁同步电机无传感器运行研究[J].中国电机工程学报.2007,27(3):12-17.
    [125]秦峰,贺益康,刘毅等.永磁同步电机转子位置的无传感器自检测[J].浙江大学学报.2004,38(4):465-469.
    [126]刘毅,贺益康,秦峰等.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J].中国电机工程学报.2005,25(17):121-126.
    [127]年珩,贺益康,秦峰等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报.2004,24(11):101-105.
    [128]王丽梅,郑建芬,郭庆鼎.基于高频信号注入法的永磁同步电机无传感器控制[J].沈阳工业大学学报.2004,26(6):648-650.
    [129] Shinnaka S. A New Speed-Varying Ellipse Voltage Injection Method forSensorless Drive of Permanent-Magnet Synchronous Motors with Pole Saliency—NewPLL Method using High-Frequency Current Component Multiplied Signal[J]. IEEETransactions on Industry Applications.2008,44(3):777-788.
    [130] Ribeiro L A S, Degner M W, Briz F, et al. Comparison of Carrier Signal Voltageand Current Injection for the Estimation of Flux Angle or Rotor Position[Z].1998:1.
    [131] Kang S J, Kim J M, Sul S K. Position Sensorless Control of SynchronousReluctance Motor using High Frequency Current Injection[J]. IEEE Transactions onEnergy Conversion.1999,14(4):1271-1275.
    [132]陈书锦,李华德,马保柱.永磁同步电动机转子位置检测研究[J].煤矿机械.2006,27(3):414-416.
    [133] Jang J H, Sul S K, Ha J I, et al. Sensorless Drive of Surface-MountedPermanent-Magnet Motor by High-Frequency Signal Injection Based on MagneticSaliency[J]. IEEE Transactions on Industry Applications.2003,39(4):1031-1039.
    [134] Jang J H, Ha J I, Ohto M, et al. Analysis of Permanent-Magnet Machine forSensorless Control Based on High-Frequency Signal Injection[J]. IEEE Transactions onIndustry Applications.2004,40(6):1595-1604.
    [135] Choi C H, Seok J K. Pulsating Signal Injection-Based Axis Switching SensorlessControl of Surface-Mounted Permanent-Magnet Motors for Minimal Zero-CurrentClamping Effects[J]. IEEE Transactions on Industry Applications.2008,44(6):1741-1748.
    [136] Bianchi N, Bolognani S, Jang J H, et al. Advantages of Inset PM Machines forZero-Speed Sensorless Position Detection[J]. IEEE Transactions on IndustryApplications.2008,44(4):1190-1198.
    [137]周晓敏,王长松,齐昕等.基于脉动高频信号注入的永磁同步电动机转子位置检测[J].微电机.2008,41(3):13-16.
    [138]周晓敏,王长松,钟黎萍.基于卡尔曼滤波和高频信号注入法的永磁同步电机转子位置自检测[J].北京科技大学学报.2008,30(7):815-819.
    [139]徐艳平,王海垠,钟彦儒.基于脉振高频信号注入法的PMSM无传感器控制[J].电气传动.2009,39(1):11-14.
    [140]贾洪平,贺益康.基于高频注入法的永磁同步电动机转子初始位置检测研究[J].中国电机工程学报.2007,27(15):15-20.
    [141] Ostlund S, Brokemper M. Sensorless Rotor-Position Detection from Zero toRated Speed for an Integrated PM Synchronous Motor Drive[J]. IEEE Transactions onIndustry Applications.1996,32(5):1158-1165.
    [142] Nakashima S, Inagaki Y, Miki I. Sensorless Initial Rotor Position Estimation ofSurface Permanent-Magnet Synchronous Motor[J]. IEEE Transactions on IndustryApplications.2000,36(6):1598-1603.
    [143] Tursini M, Petrella R, Parasiliti F. Initial Rotor Position Estimation Method forPM Motors[J]. IEEE Transactions on Industry Applications.2003,39(6):1630-1640.
    [144] Boussak M. Implementation and Experimental Investigation of Sensorless SpeedControl with Initial Rotor Position Estimation for Interior Permanent MagnetSynchronous Motor Drive[J]. IEEE Transactions on Power Electronics.2005,20(6):1413-1422.
    [145]宋正强,杨俊友,丁新平.贴面式永磁同步电机无传感器控制系统研究[J].沈阳工业大学学报.2004,26(6):658-660.
    [146]杜金明,安群涛,孙力.基于饱和效应的面贴式永磁同步电动机转子初始位置检测[J].电机与控制应用.2009,36(7):53-56.
    [147] Gyugyi L. Generalized Theory of Static Power Frequency Changers[D].Manehester: Salford University,1970.
    [148] Venturini M. New Sine Wave In, Sine Wave Out Conversion TechniqueEliminates Reactive Elements[C]. Proceedings of the7th National Solid-State PowerConversion Conference,1980.
    [149] Huber L, Borojevic D, Burany N. Voltage space vector based PWM control offorced commutated cycloconverters[C]. Proceedings of the15th Annual Conference ofIEEE Industrial Electronics,1989.
    [150] Huber L, Borojevic D. Space vector modulated three-phase to three-phase matrixconverter with input power factor correction[J]. IEEE Transactions on IndustryApplications.1995,31(6):1234-1246.
    [151] Casadei D, Grandi G, Serra G, et al. Space vector control of matrix converterswith unity input power factor and sinusoidal input/output waveforms[C]. Proceedings ofthe5th European Conference on Power Electronics and Applications,1993.
    [152] Nielsen P, Blaabjerg F, Pedersen J K. Space vector modulated matrix converterwith minimized number of switchings and a feedforward compensation of input voltageunbalance[C]. Proceedings of the1996International Conference on Power Electronics,Drives&Energy Systems for Industrial Growth,1996.
    [153] Cha H J, Enjeti P N. An Approach to Reduce Common-Mode Voltage in MatrixConverter[J]. IEEE Transactions on Industry Applications.2003,39(4):1151-1159.
    [154] Casadei D, Serra G, Tani A, et al. Optimal use of zero vectors for minimizing theoutput current distortion in matrix converters[J]. IEEE Transactions on IndustrialElectronics.2009,56(2):326-336.
    [155]陈希有.矩阵式电力变换器在非对称输入条件下的原理与仿真[D].哈尔滨:哈尔滨工业大学,1999.
    [156]陈希有,陈学允.一般矩阵式电力变换器的等效电路及其应用[J].电工技术学报.1999,14(5):31-34.
    [157]陈希有,陈学允.基于PARK变换的空间矢量调制矩阵变换器的暂态分析[J].中国电机工程学报.2000,20(5):80-84.
    [158]王毅,陈希有,徐殿国.空间矢量调制矩阵变换器闭环控制的研究[J].中国电机工程学报.2003,23(6):164-169.
    [159]张华强,王新生,徐殿国.空间矢量调制矩阵变换器共模电压的抑制[J].电机与控制学报.2006,10(3):242-246.
    [160] Casadei D, Serra G, Tani A. Reduction of the input current harmonic content inmatrix converters under input/output unbalance[C]. Orlando, FL, United states:Proceedings of the1995IEEE21st International Conference on Industrial Electronics,Control, and Instrumentation,1995.
    [161] Casadei D, Serra G, Tani A. General approach for the analysis of the input powerquality in matrix converters[J]. IEEE Transactions on Power Electronics.1998,13(5):882-891.
    [162] Nielsen P, Casadei D, Serra G, et al. Evaluation of the input current quality bythree different modulation strategies for SVM controlled matrix converters with inputvoltage unbalance[C]. Proceedings of the1996International Conference on PowerElectronics, Drives&Energy Systems for Industrial Growth,1996.
    [163] Ju H, Hongchen L, Ming Y, et al. The control strategy of matrix converter withadaptive capability for the input voltage's disturbance[C].6th World Congress onIntelligent Control and Automation,2006.
    [164] Satish T, Mohapatra K K, Mohan N. Modulation methods based on a novelcarrier-based PWM scheme for matrix converter operation under unbalanced inputvoltages[C].21st Annual IEEE Applied Power Electronics Conference and Exposition,2006.
    [165] M Z, W H. Semi natural two steps commutation strategy for matrixconverters[C]. Proceeding of29th Annual IEEE Power ElectronicsSpecialists Conference,1998.
    [166] Ziegler M, Hofmann W. Implementation of a two steps commutated matrixconverter[C]. Proceedings of the199930th Annual IEEE Power Electronics SpecialistsConference,1999.
    [167] Empringham L, Wheeler P W, Clare J C. Matrix converter bi-directional switchcommutation using intelligent gate drives[C]. Proceedings of the19987th InternationalConference on Power Electronics and Variable Speed Drives,1998.
    [168] Oyama J, Higuchi T, Tsukamoto R. Power Factor Improvement of PWM MatrixConverter Using Intermediate Voltage[C]. Yokohama: IEEE Power ConversionConference,1993.
    [169] Oyama J, Xia X, Higuchi T, et al. Displacement angle control of matrixconverter[C]. Proceedings of the28th Annual IEEE Power Electronics SpecialistsConference,1997.
    [170] Pinto S F, Silva J F. Direct control method for matrix converters with input powerfactor regulation[C]. Proceedings of the35th Annual Power Electronics SpecialistsConference,2004.
    [171] Aten M, Towers G, Whitley C, et al. Reliability comparison of matrix and otherconverter topologies[J]. IEEE Transactions on Aerospace and Electronic Systems.2006,42(3):867-873.
    [172] Wheeler P W, Clare J C, Apap M, et al. Harmonic loss due to operation ofinduction machines from matrix converters[J]. IEEE Transactions on IndustrialElectronics.2008,55(2):809-816.
    [173]卢晓慧,梁加红.表面式永磁电机气隙磁场分析[J].电机与控制学报.2011,15(7):14-20.
    [174]林海,严卫生,王银涛等.永磁同步电机无传感器变结构矢量控制[J].西北工业大学学报.2009,27(5):688-693.
    [175] Depenbrock M. Direct Self-Control (DSC) of Inverter-Fed Induction Machine[J].IEEE Transactions on Power Electronics.1988,3(4):420-429.
    [176] French C, Acarnley P. Direct Torque Control of Permanent Magnet Drives[J].IEEE Transactions on Industrial Applications.1996,32(5):1080-1088.
    [177]陈振,刘向东,靳永强等.采用扩展卡尔曼滤波磁链观测器的永磁同步电机直接转矩控制[J].中国电机工程学报.2008,28(33):75-81.
    [178]崔巍.各相解耦永磁同步电动机设计及控制技术的研究[D].上海:上海大学,2004.
    [179] Bouchiker S, Capolino G, Poloujadoff M. Vector control of a permanent-magnetsynchronous motor using ac-ac matrix converter[J]. IEEE Transactions on PowerElectronics.1998,13(6):1089-1099.
    [180] Chen D, Liu T. Design and implementation for a novel matrix PMSM drivesystem[C]. Proceedings of the25th Annual IEEE Industrial Electronics SocietyConference,1999.
    [181] Chen D F, Yao K C. A dynamical modulation strategy of the virtual DC-linkvoltage for matrix converters under input voltage unbalance[C]. Proceedings of IEEEConference on Industrial Electronics and Applications,2006.
    [182]葛红娟.基于矩阵变换器的永磁同步电机矢量控制系统[D].南京:南京航空航天大学,2006.
    [183]张绍,周波,仇红奎.永磁同步电机-矩阵变换器新型电流调制策略研究[J].中国电机工程学报.2008,28(21):90-95.
    [184]张绍,周波.非对称输入下矩阵变换器新型电流控制策略[J].电工技术学报.2009,24(3):47-53.
    [185] Wang J, Bouazdia M. Influence of filter parameters/topologies on stability ofmatrix converter-fed permanent magnet brushless motor drive systems[C].2009IEEEInternational Electric Machines and Drives Conference,2009.
    [186] Ortega C, Arias A, Caruana C, et al. Improved waveform quality in the directtorque control of matrix-converter-fed PMSM drives[J]. IEEE Transactions onIndustrial Electronics.2010,57(6):2101-2110.
    [187] Kianinezhad R, Nahid-Mobarakeh B, Baghli L, et al. Modeling and Control ofSix-Phase Symmetrical Induction Machine Under Fault Condition Due to OpenPhases[J]. IEEE Transactions on Industrial Electronics.2008,55(5):1966-1977.
    [188] Pang Y, Zhu Z Q, Howe D. Analytical Determination of Optimal Split Ratio forPermanent Magnet Brushless Motors[J]. IEE Proc. Electr. Power Appl.2006,153(1):7-13.
    [189]程树康,刘伟亮,柴凤等.锥形转子永磁电机的磁场分析及电感参数计算[J].中国电机工程学报.2010,30(15):70-74.
    [190]卢琴芬,叶云岳.混合励磁直线同步电机的磁场与推力[J].中国电机工程学报.2005,25(10):127-129.
    [191]王兴华,励庆孚,王曙鸿.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算[J].中国电机工程学报.2003,23(3):126-130.
    [192]范坚坚,吴建华.计及齿槽极间隔断Halbach型磁钢的PMSM气隙磁场解析分析[J].中国电机工程学报.2010,30(12):98-105.
    [193]崔鹏,张锟,李杰.基于许-克变换的悬浮电磁铁力与转矩解析计算[J].中国电机工程学报.2010,30(24):129-134.
    [194]赵镜红,张晓锋,张俊洪等.径向充磁圆筒永磁直线同步电机磁场分析[J].上海交通大学学报.2010,44(7):989-993.
    [195]刘少刚,邱波.动磁式永磁直线无刷直流电机气隙磁场的解析分析[J].电机与控制学报.2009,13:62-66.
    [196]赵镜红,张晓锋,张俊洪等.圆筒永磁直线同步电机磁场和推力分析[J].电机与控制学报.2010,14(1):12-17.
    [197]司纪凯,封海潮,许孝卓等.数值解析混合法分析永磁直线同步电机性能[J].电机与控制学报.2010,14(10):8-14.
    [198]章跃进,江建中,崔巍.数值解析结合法提高电机磁场后处理计算精度[J].中国电机工程学报.2007,27(3):68-72.
    [199]朱孝勇,程明,花为等.新型混合励磁双凸极永磁电机磁场调节特性分析及实验研究[J].中国电机工程学报.2008,28(3):90-95.
    [200]章跃进,薛波,丁晔等.表面式永磁无刷电机电枢反应磁场半解析法[J].电工技术学报.2009,24(1):47-51.
    [201] Zhu Z Q, Howe D. Analytical Prediction of the Cogging Torque in Radial-FieldPermanent Magnet Brushless Motors[J]. IEEE Transactions on Magnetics.1992,28(2):1371-1374.
    [202]杨宪章.工程电磁场[M].北京:中国电力出版社,2007.
    [203]周希朗.电磁理论中的应用数学基础[M].南京:东南大学出版社,2006.
    [204] O'Connell T C, Krein P T. A Schwarz-Christoffel-Based Analytical Method forElectric Machine Field Analysis [J]. IEEE Transactions on Energy Conversion.2009,24(3):565-577.
    [205] Driscoll T A. Schwarz-Christoffel Toolbox User's Guide: Version2.3[R]. Newark:University of Delaware,2005.
    [206] Arias A, Silva C A, Asher G M, et al. Use of a Matrix Converter to Enhance theSensorless Control of a Surface-Mount Permanent-Magnet AC Motor at Zero and LowFrequency[J]. IEEE Transactions on Industrial Electronics.2006,53(2):440-449.
    [207] Lee J, Hong J, Nam K, et al. Sensorless Control of Surface-MountPermanent-Magnet Synchronous Motors Based on a Nonlinear Observer[J]. IEEETransactions on Power Electronics.2010,25(2):290-297.
    [208] Ichikawa S, Tomita M, Doki S, et al. Sensorless Control of Permanent-MagnetSynchronous Motors Using Online Parameter Identification Based on SystemIdentification Theory[J]. IEEE Transactions on Industrial Electronics.2006,53(2):363-372.
    [209] Kim T, Watanabe J, Sonoda S, et al. New Initial Pole-Position Estimation ofSurface PM-LSM Using Reference Currents[J]. IEEE Transactions on IndustryApplications.2005,41(3):817-824.
    [210] Pan C, Liaw J. A Robust Field-Weakening Control Strategy for Surface-MountedPermanent-Magnet Motor Drives[J]. IEEE Transactions on Energy Conversion.2005,20(4):701-709.
    [211]陆华才,徐月同,杨伟民等.无位置传感器表面式永磁同步直线电机初始位置估计新方法[J].中国电机工程学报.2008,28(15):109-113.
    [212]周元钧,蔡名飞.改进的永磁同步电机转子初始位置检测方法[J].电机与控制学报.2010,14(3):68-72.
    [213]廖勇,沈朗,姚骏等.改进的面贴式永磁同步电机转子初始位置检测[J].电机与控制学报.2009,13(2):203-207.
    [214]陈书锦,李华德,李擎等.永磁同步电动机起动过程控制[J].电工技术学报.2008,23(7):39-44.
    [215] Yan Y, Zhu J G, Guo Y G. Initial Rotor Position Estimation and Sensorless DirectTorque Control of Surface-Mounted Permanent Magnet Synchronous MotorsConsidering Saturation Saliency[J]. IET Electr. Power Appl.2008,2(1):42-48.
    [216] Wang Y, Zhu J, Wang S, et al. Nonlinear Magnetic Model of Surface MountedPM Machines Incorporating Saturation Saliency[J]. IEEE Transactions on Magnetics.2009,45(10):4684-4687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700