用户名: 密码: 验证码:
单基板全固态染料敏化太阳能电池性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化纳米晶太阳能电池(DSSC)是20世纪90年代研发出来的一种新概念太阳能电池,由于其主要原材料成本低廉,生产工艺简单,因此受到科研人员和投资者的广泛关注。依据电解质的不同,DSSC主要分为液态DSSC和全固态DSSC。其中液态DSSC存在液态电解质挥发以及泄漏等问题,阻碍了其大规模应用。而全固态DSSC主要采用空穴传输材料替代液态电解质。相对于液态DSSC,全固态DSSC避免了电解质挥发或泄漏等问题。同时,全固态DSSC主要采用的是单基板结构,该结构是将光阳极和对电极集成在单一导电衬底上,从而进一步降低了器件成本。因此单基板全固态DSSC比液态DSSC更具有应用前景。
     单基板全固态DSSC主要由光阳极、空穴传输材料和对电极组成。单基板全固态DSSC目前存在的主要问题为工艺复杂和效率低。传统的单基板全固态DSSC中工艺最复杂的部分为对电极的制备:高真空条件下于空穴传输材料层上热蒸镀一层金属(Au或Ag)。目前,对于单基板全固态DSSC中对电极的研究很少,有待开发新的对电极材料和工艺。此外,染料、空穴传输材料和光阳极结构也是单基板全固态DSSC中有待改进的方面。
     基于单基板全固态DSSC中存在的问题,本论文以可印刷的碳材料作为对电极替代了传统的蒸镀金属电极,研究了碳对电极结构对基于聚3-己基噻吩(P3HT)的单基板全固态DSSC性能的影响。同时,对于空穴传输材料P3HT,本文采用近红外吸收的染料SQ2来研究电池的单色光量子效率。对于空穴传输材料spiro-OMeTAD,本文研究了光掺杂对电池性能的影响。此外,本文还研究了光阳极结构对单基板全固态DSSC性能的影响。本论文的主要内容如下:
     首先,针对单基板全固态DSSC中对电极工艺复杂的问题,以石墨和炭黑复合材料作为对电极并采用简单的丝网印刷法制备了基于P3HT的单基板全固态DSSC。讨论了对电极结构以及绝缘层和光阳极厚度对电池性能的影响。通过优化,在一个标准太阳光(AM1.5100mW cm-2)下获得了3.11%的光电转换效率。
     其次,针对P3HT与D102染料吸收重叠的问题,采用近红外吸收的方酸染料SQ2作为敏化剂制备了基于P3HT的单基板全固态DSSC,并研究了SQ2的分子结构以及LiTFSI处理对电池性能的影响。通过优化,基于SQ2与P3HT的单基板全固态DSSC获得了2.2%的光电转换效率。
     再次,采用spiro-OMeTAD作为空穴传输材料制备了基于介孔碳对电极的单基板全固态DSSC。研究了光掺杂程度对器件性能的影响。进一步分析了光掺杂对TiO2/spiro-OMeTAD界面电子复合和spiro-OMeTAD/C界面电子传输的影响。通过优化光掺杂对spiro-OMeTAD的氧化程度,基于spiro-OMeTAD的单基板全固态DSSC获得了4.04%的光电转换效率。
     最后,针对传统光阳极结构对光的利用率低的问题,采用TiO2介孔球作为光阳极制备了基于spiro-OMeTAD的单基板全固态DSSC并获得了4.0%的光电转换效率。对比了TiCl4处理对于TiO2介孔球光阳极与TiO2纳米颗粒(P25)光阳极的光伏性能的影响。研究了两种光阳极的散射性能以及电子传输性能。
Dye-sensitized nanocrystalline solar cell (DSSC) is a new kind of solar cell, whichwas firstly developed in1990s. Because of its low cost materials and simple fabricationprocess, DSSC has attracted great attention from researchers and investors. From itsdifferent electrolytes, DSSC is mainly divided into the liquid DSSC and the solid-stateDSSC. Among them, the liquid DSSC meets many problems such as solvent evaporationand electrolyte leakage, which hinder its large-scale application. In contrast, the solid-stateDSSC mainly apply hole transporting materials to replace the liquid electrolyte. Comparedwith the liquid DSSC, the solid-state DSSC avoid electrolyte evaporation or leakageproblems. Moreover, the solid-state DSSC is mainly created with monolithic structure,where the photoanode and the counter electrode are integrated on a single conductivesubstrate, which further reduces the cost of the device. As a result, the monolithicall-solid-state DSSC has more application prospect than the liquid DSSC.
     Monolithic all-solid-state DSSC is mainly composed of photoanode, hole transportingmaterials and counter electrode. At present, monolithic all-solid-state DSSC mainly sufferfrom complicated fabrication and low efficiency. The most complicated process intraditional monolithic all-solid-state DSSC is the fabrication of counter electrode:depositing a metal layer (Au or Ag) on the hole transporting matertial under high vacuum.Currently, there are only a few research on the counter electrode of monolithicall-solid-state DSSC. Therefore, the development of new materials and process of counterelectrode is indispensable. In addition, dye, hole transporting materials and photoanodealso need improvement for monolithic all-solid-state DSSC.
     Herein, based on printable carbon material as counter electrode (CE) instead oftraditional evaporated metal electrode, we investigate the effect of the carbon CE structureon the performance for all-solid-state DSSC based on poly(3-hexylthiophene)(P3HT).Meanwhile, for the hole transporting material P3HT, near-infrar dye SQ2was used tostudy the incident photon to electron conversion efficiency. For the hole transportingmaterial spiro-OMeTAD, the influence of photo-doping on the performance of deviceswas investigated. In addition, the effect of photoanode structure on the performance of monolithic all-solid-state DSSC was studied. The main contents of this thesis are listed asfollowing:
     Firstly, due to the complicated fabrication of counter electrode for monolithicsolid-state DSSC, graphite and carbon black composite material was used as CE tofabricate P3HT-based monolithic solid-state DSSC by screen printing. The influence ofCE structure and the thickness of insulating layer and photoanode layer on theperformance for devices were studied. After optimization, an efficiency up to3.11%wasachieved for the monolithic solid-state DSSC under a standard solar illumination (AM1.5100mW cm-2).
     Secondly, due to the absorption competition between P3HT and D102dye, the nearinfrared squarine dye SQ2sensitizer was used to fabricate P3HT-based monolithicsolid-state DSSC, and the effects of molecular structure of SQ2and LiTFSI treatment onthe performance of the devcies were investigated. An efficiency of2.2%was achievedwithin monolithic solid-state DSSC based on SQ2and P3HT.
     Thirdly, spiro-OMeTAD was used as a hole transporting material to fabricatemonolithic solid-state DSSC based on mesoporous carbon CE. The effect of photo-dopingon the performance of devices was investigated. Moreover, the influences of photo-dopingon the charge recombination at spiro-OMeTAD/C interface and on the charge transfer atTiO2/spiro-OMeTAD interface were analyzed. Through the optimization on the level ofphoto-doping, an efficiency of4.04%was achieved within spiro-OMeTAD basedmonolithic solid-state DSSC with carbon CE.
     Finally, due to the insufficient light trapping for traditional photoanode, mesoporousTiO2beads was used as photoanode to fabricate monolithic solid-state DSSC based onspiro-OMeTAD and an efficiency of4.0%was achieved. The effect of TiCl4treatment onthe photovoltaic performance for TiO2beads phonoanode and P25nanoparticlesphonoanode were studied. The scattering properties and electron transport properties ofthe two photoanodes were also investigated.
引文
[1] The German Advisory Council on Global Change (WBGU)., World in Transition3:Towards Sustainable Energy Systems (v.3),2004. ISBN-10:1853838829|ISBN-13:978-1853838828
    [2] Martin G. Third Generation Photovoltaics: Advanced Solar Energy Conversion.Springer Science+Business Media,2003. ISBN3-540-40137-7.
    [3] Strasfeld D B, Dorn A, Wanger D D, et al., Imaging Schottky Barriers and OhmicContacts in PbS Quantum Dot Devices, Nano Letters,2012,12(2):569-575
    [4] Shu T, Zhou Z, Wang H, et al., Efficient quantum dot-sensitized solar cell withtunable energy band CdSexS(1-x) quantum dots, Journal of Materials Chemistry,2012,22(21):10525-10529
    [5] Lee H, Leventis H C, Moon S-J, et al., PbS and US Quantum Dot-SensitizedSolid-State Solar Cells:"Old Concepts, New Results", Advanced FunctionalMaterials,2009,19(17):2735-2742
    [6] Park S H, Roy A, Beaupre S, et al., Bulk heterojunction solar cells with internalquantum efficiency approaching100%, Nature Photonics,2009,3(5):297-U295
    [7] Liang Y Y, Xu Z, Xia J B, et al., For the Bright Future-Bulk HeterojunctionPolymer Solar Cells with Power Conversion Efficiency of7.4%, AdvancedMaterials,2010,22(20): E135-E138
    [8] Ma W L, Yang C Y, Gong X, et al., Thermally stable, efficient polymer solar cellswith nanoscale control of the interpenetrating network morphology, AdvancedFunctional Materials,2005,15(10):1617-1622
    [9] Oregan B, Gratzel M, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films, Nature,1991,353(6346):737-740
    [10] Nazeeruddin M K, Kay A, Rodicio I, et al., Conversion of Light to Electricity bycis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-TransferSensitizers (X=C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02Electrodes,Journal of the American Chemical Society,1993,115:6382-6390
    [11] Gratzel M, Photoelectrochemical cells, Nature,2001,414(6861):338-344
    [12] Chen H Y, Hou J H, Zhang S Q, et al., Polymer solar cells with enhancedopen-circuit voltage and efficiency, Nature Photonics,2009,3(11):649-653
    [13] Yella A, Lee H W, Tsao H N, et al., Porphyrin-Sensitized Solar Cells with Cobalt(II/III)-Based Redox Electrolyte Exceed12Percent Efficiency, Science,2011,334(6056):629-634
    [14] Hagen J, Schaffrath W, Otschik P, et al., Novel hybrid solar cells consisting ofinorganic nanoparticles and an organic hole transport material, Synthetic Metals,1997,89(3):215-220
    [15] Bach U, Lupo D, Comte P, et al., Solid-state dye-sensitized mesoporous TiO2solarcells with high photon-to-electron conversion efficiencies, Nature,1998,395(6702):583-585
    [16] Kitamura T, Maitani M, Matsuda M, et al., Improved solid-state dye solar cellswith polypyrrole using a carbon-based counter electrode, Chemistry Letters,2001,(10):1054-1055
    [17] Kruger J, Plass R, Gratzel M, et al., Improvement of the photovoltaic performanceof solid-state dye-sensitized device by silver complexation of the sensitizercis-bis(4,4'-dicarboxy-2,2'bipyridine)-bis(isothiocyanato) ruthenium(II), AppliedPhysics Letters,2002,81(2):367-369
    [18] Chen D Y, Hsu Y Y, Hsu H C, et al., Organic dyes with remarkably highabsorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution,Chemical Communications,2010,46(29):5256-5258
    [19] Tiwana P, Docampo P, Johnston M B, et al., The origin of an efficiency improving"light soaking" effect in SnO2based solid-state dye-sensitized solar cells, Energy&Environmental Science,2012,5(11):9566-9573
    [20] Wang M K, Bai J, Le Formal F, et al., Solid-State Dye-Sensitized Solar Cells usingOrdered TiO2Nanorods on Transparent Conductive Oxide as Photoanodes, Journalof Physical Chemistry C,2012,116(5):3266-3273
    [21] Tetreault N, Horvath E, Moehl T, et al., High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled3D FibrousNetwork of Crystalline TiO2Nanowires, Acs Nano,2010,4(12):7644-7650
    [22] Mor G K, Kim S, Paulose M, et al., Visible to Near-infrared Light Harvesting inTiO2Nanotube Array-P3HT Based Heterojunction Solar Cells, Nano Letters,2009,9(12):4250-4257
    [23] Plank N O V, Howard I, Rao A, et al., Efficient ZnO Nanowire Solid-StateDye-Sensitized Solar Cells Using Organic Dyes and Core-shell Nanostructures,Journal of Physical Chemistry C,2009,113(43):18515-18522
    [24] Xu C K, Wu J M, Desai U V, et al., High-Efficiency Solid-State Dye-SensitizedSolar Cells Based on TiO2-Coated ZnO Nanowire Arrays, Nano Letters,2012,12(5):2420-2424
    [25] Zhang W, Zhu R, Ke L, et al., Anatase Mesoporous TiO2Nanofibers with HighSurface Area for Solid-State Dye-Sensitized Solar Cells, Small,2010,6(19):2176-2182
    [26] Stergiopoulos T, Arabatzis I M, Katsaros G, et al., Binary polyethyleneoxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2photoelectrochemical cells, Nano Letters,2002,2(11):1259-1261
    [27] Han H W, Liu W, Zhang J, et al., A hybrid poly(ethylene oxide)/poly(vinylidenefluoride)/TiO2nanoparticle solid-state redox electrolyte for dye-sensitizednanocrystalline solar cells, Advanced Functional Materials,2005,15(12):1940-1944
    [28] Wu J H, Hao S, Lan Z, et al., An all-solid-state dye-sensitized solar cell-basedpoly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of5.64%, Journalof the American Chemical Society,2008,130(35):11568-11569
    [29] Wang G Q, Wang L A, Zhuo S P, et al., An iodine-free electrolyte based on ionicliquid polymers for all-solid-state dye-sensitized solar cells, ChemicalCommunications,2011,47(9):2700-2702
    [30] Li B, Wang L D, Kang B N, et al., Review of recent progress in solid-statedye-sensitized solar cells, Solar Energy Materials and Solar Cells,2006,90(5):549-573
    [31] Sakamoto H, Igarashi S, Niume K, et al., All solid state dye-sensitized solar cellsby the specific interaction of CuI with NCS groups for practical use, Journal of theCeramic Society of Japan,2012,120(1403):304-306
    [32] Kumara G R A, Kaneko S, Okuya M, et al., Fabrication of dye-sensitized solarcells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor,Langmuir,2002,18(26):10493-10495
    [33] Karlsson P G, Bolik S, Richter J H, et al., Interfacial properties of thenanostructured dye-sensitized solid heterojunction TiO2/RuL2(NCS)(2)/CuI,Journal of Chemical Physics,2004,120(23):11224-11232
    [34] Yang L, Zhang Z, Fang S, et al., Influence of the preparation conditions of TiO2electrodes on the performance of solid-state dye-sensitized solar cells with CuI as ahole collector, Solar Energy,2007,81(6):717-722
    [35] O'Regan B, Lenzmann F, Muis R, et al., A solid-state dye-sensitized solar cellfabricated with pressure-treated P25-TiO2and CuSCN: Analysis of pore filling andIV characteristics, Chemistry of Materials,2002,14(12):5023-5029
    [36] Smestad G P, Spiekermann S, Kowalik J, et al., A technique to comparepolythiophene solid-state dye sensitized TiO2solar cells to liquid junction devices,Solar Energy Materials and Solar Cells,2003,76(1):85-105
    [37] Tennakone K, Kumara G, Kumarasinghe A R, et al., A dye-sensitized nano-poroussolid-state photovoltaic cell, Semiconductor Science and Technology,1995,10:1689-1693
    [38] Ding I K, Melas-Kyriazi J, Cevey-Ha N L, et al., Deposition of hole-transportmaterials in solid-state dye-sensitized solar cells by doctor-blading, OrganicElectronics,2010,11(7):1217-1222
    [39] Taguchi T, Zhang X T, Sutanto I, et al., Improving the performance of solid-statedye-sensitized solar cell using MgO-coated TiO2nanoporous film, ChemicalCommunications,2003,(19):2480-2481
    [40] Kumara G R A, Konno A, Shiratsuchi K, et al., Dye-sensitized solid-state solarcells: Use of crystal growth inhibitors for deposition of the hole collector,Chemistry of Materials,2002,14(3):954-955
    [41] Kumara G, Konno A, Senadeera G K R, et al., Dye-sensitized solar cell with thehole collector p-CuSCN deposited from a solution in n-propyl sulphide, SolarEnergy Materials and Solar Cells,2001,69(2):195-199
    [42] Burschka J, Dualeh A, Kessler F, et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III)as p-Type Dopant for Organic Semiconductors and Its Application in HighlyEfficient Solid-State Dye-Sensitized Solar Cells, Journal of the American ChemicalSociety,2011,133(45):18042-18045
    [43] Kim H S, Lee C R, Im J H, et al., Lead Iodide Perovskite SensitizedAll-Solid-State Submicron Thin Film Mesoscopic Solar Cell with EfficiencyExceeding9%, Scientific Reports,2012,2:591
    [44] Wang M, Moon S-J, Xu M, et al., Efficient and Stable Solid-State Dye-SensitizedSolar Cells Based on a High-Motar-Extinction-Coefficient Sensitizer, Small,2010,6(2):319-324
    [45] Chou P-T, Chi Y, Wu C-I, Application of F4TCNQ Doped Spiro-MeOTAD in HighPerformance Solid State Dye Sensitized Solar Cell, Physical Chemistry ChemicalPhysics,2012:14(33):11689-11694
    [46] Kroeze J E, Hirata N, Schmidt-Mende L, et al., Parameters influencing chargeseparation in solid-state dye-sensitized solar cells using novel hole conductors,Advanced Functional Materials,2006,16(14):1832-1838
    [47] Zhu R, Jiang C Y, Liu B, et al., Highly Efficient Nanoporous TiO2-PolythiopheneHybrid Solar Cells Based on Interfacial Modification Using a Metal-Free OrganicDye, Advanced Materials,2009,21(9):994-1000
    [48] Chang J A, Rhee J H, Im S H, et al., High-Performance NanostructuredInorganic-Organic Heterojunction Solar Cells, Nano Letters,2010,10(7):2609-2612
    [49] Moon S-J, Baranoff E, Zakeeruddin S M, et al., Enhanced light harvesting inmesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye, ChemicalCommunications,2011,47(29):8244-8246
    [50] Yang L, Cappel U B, Unger E L, et al., Comparing spiro-OMeTAD and P3HT holeconductors in efficient solid state dye-sensitized solar cells, Physical ChemistryChemical Physics,2012,14(2):779-789
    [51] Kim Y, Sung Y-E, Xia J-B, et al., Solid-state dye-sensitized TiO2solar cells usingpoly(3,4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes andnoble metal catalysts on FTO counter electrodes, Journal of Photochemistry andPhotobiology a-Chemistry,2008,193(2-3):77-80
    [52] Xia J B, Masaki N, Lira-Cantu M, et al., Influence of doped anions onpoly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-statedye-sensitized solar cells, Journal of the American Chemical Society,2008,130(4):1258-1263
    [53] Liu X, Zhang W, Uchida S, et al., An Efficient Organic-Dye-Sensitized Solar Cellwith in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-TransportingMaterial, Advanced Materials,2010,22(20): E150-E155
    [54] Koh J K, Kim J, Kim B, et al., Highly Efficient, Iodine-Free Dye-Sensitized SolarCells with Solid-State Synthesis of Conducting Polymers, Advanced Materials,2011,23(14):1641-1646
    [55] Ikeda N, Miyasaka T, A solid-state dye-sensitized photovoltaic cell with apoly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide, ChemicalCommunications,2005,(14):1886-1888
    [56] Chung I, Lee B, He J Q, et al., All-solid-state dye-sensitized solar cells with highefficiency, Nature,2012,485(7399):486-U494
    [57] Chung I, Song J H, Im J, et al., CsSnI3: Semiconductor or Metal? High ElectricalConductivity and Strong Near-Infrared Photoluminescence from a Single Material.High Hole Mobility and Phase-Transitions, Journal of the American ChemicalSociety,2012,134(20):8579-8587
    [58] Etgar L, Gao P, Xue Z S, et al., Mesoscopic CH3NH3PbI3/TiO2HeterojunctionSolar Cells, Journal of the American Chemical Society,2012,134(42):17396-17399
    [59] Kruger J, Plass R, Cevey L, et al., High efficiency solid-state photovoltaic devicedue to inhibition of interface charge recombination, Applied Physics Letters,2001,79(13):2085-2087
    [60] Schmidt-Mende L, Zakeeruddin S M, Gratzel M, Efficiency improvement insolid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye,Applied Physics Letters,2005,86(1):013504
    [61] Schmidt-Mende L, Bach U, Humphry-Baker R, et al., Organic dye for highlyefficient solid-state dye-sensitized solar cells, Advanced Materials,2005,17(7):813-815
    [62] Snaith H J, Moule A J, Klein C, et al., Efficiency enhancements in solid-statehybrid solar cells via reduced charge recombination and increased light capture,Nano Letters,2007,7(11):3372-3376
    [63] Snaith H J, Petrozza A, Ito S, et al., Charge Generation and Photovoltaic Operationof Solid-State Dye-Sensitized Solar Cells Incorporating a High ExtinctionCoefficient Indolene-Based Sensitizer, Advanced Functional Materials,2009,19(11):1810-1818
    [64] Wang M K, Liu J Y, Cevey-Ha N L, et al., High efficiency solid-state sensitizedheterojunction photovoltaic device, Nano Today,2010,5(3):169-174
    [65] Cai N, Moon S J, Cevey-Ha L, et al., An Organic D-pi-A Dye for RecordEfficiency Solid-State Sensitized Heterojunction Solar Cells, Nano Letters,2011,11(4):1452-1456
    [66] Ding I K, Zhu J, Cai W S, et al., Plasmonic Dye-Sensitized Solar Cells, AdvancedEnergy Materials,2011,1(1):52-57
    [67] Xia J B, Yuan C C, Yanagida S, Novel Counter Electrode V2O5/Al for SolidDye-Sensitized Solar Cells, Acs Applied Materials&Interfaces,2010,2(7):2136-2139
    [68] Hardin B E, Gaynor W, Ding I K, et al., Laminating solution-processed silvernanowire mesh electrodes onto solid-state dye-sensitized solar cells, OrganicElectronics,2011,12(6):875-879
    [69] Chiang Y F, Tsai C H, Chen P, et al., Bifacial transparent solid-state dye-sensitizedsolar cell with sputtered indium-tin-oxide counter electrode, Solar Energy,2012,86(6):1967-1972
    [70] O'Regan B, Schwartz D T, Zakeeruddin S M, et al., Electrodepositednanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics,Advanced Materials,2000,12(17):1263-1267
    [71] Huang Z, Liu X H, Li K X, et al., Application of carbon materials as counterelectrodes of dye-sensitized solar cells, Electrochemistry Communications,2007,9(4):596-598
    [72] Ramasamy E, Lee W J, Lee D Y, et al., Nanocarbon counterelectrode for dyesensitized solar cells, Applied Physics Letters,2007,90(17):173103
    [73] Murakami T N, Gratzel M, Counter electrodes for DSC: Application of functionalmaterials as catalysts, Inorganica Chimica Acta,2008,361(3):572-580
    [74] Wu M X, Lin X, Wang T H, et al., Low-cost dye-sensitized solar cell based on ninekinds of carbon counter electrodes, Energy&Environmental Science,2011,4(6):2308-2315
    [75] Lee B, Buchholz D B, Chang R P H, An all carbon counter electrode for dyesensitized solar cells, Energy&Environmental Science,2012,5(5):6941-6952
    [76] Kay A, Gratzel M, Low cost photovoltaic modules based on dye sensitizednanocrystalline titanium dioxide and carbon powder, Solar Energy Materials andSolar Cells,1996,44:99-117
    [77] Liu G H, Wang H, Li X, et al., A mesoscopic platinized graphite/carbon blackcounter electrode for a highly efficient monolithic dye-sensitized solar cell,Electrochimica Acta,2012,69:334-339
    [78] Han H W, Bach U, Cheng Y B, et al., A design for monolithic all-solid-statedye-sensitized solar cells with a platinized carbon counterelectrode, AppliedPhysics Letters,2009,94(10):103102
    [79] Mozer A J, Panda D K, Gambhir S, et al., Flexible and CompressibleGoretex-PEDOT Membrane Electrodes for Solid-State Dye-Sensitized Solar Cells,Langmuir,2010,26(3):1452-1455
    [80] Kwong C Y, Choy W C H, Djurisic A B, et al., Poly(3-hexylthiophene): TiO2nanocomposites for solar cell applications, Nanotechnology,2004,15(9):1156-1161
    [81] Schmidt-Mende L, Gratzel M, TiO2pore-filling and its effect on the efficiency ofsolid-state dye-sensitized solar cells, Thin Solid Films,2006,500(1-2):296-301
    [82] Ding I K, Tetreault N, Brillet J, et al., Pore-Filling of Spiro-OMeTAD inSolid-State Dye Sensitized Solar Cells: Quantification, Mechanism, andConsequences for Device Performance, Advanced Functional Materials,2009,19(15):2431-2436
    [83] Snaith H J, Humphry-Baker R, Chen P, et al., Charge collection and pore filling insolid-state dye-sensitized solar cells, Nanotechnology,2008,19(42):424003
    [84] Melas-Kyriazi J, Ding I K, Marchioro A, et al., The Effect of Hole TransportMaterial Pore Filling on Photovoltaic Performance in Solid-State Dye-SensitizedSolar Cells, Advanced Energy Materials,2011,1(3):407-414
    [85] Thompson S J, Duffy N W, Bach U, et al., On the Role of the Spacer Layer inMonolithic Dye-Sensitized Solar Cells, Journal of Physical Chemistry C,2010,114(5):2365-2369
    [86] Han H W, Bach U, Cheng Y-B, et al., Increased nanopore filling: Effect onmonolithic all-solid-state dye-sensitized solar cells, Applied Physics Letters,2007,90(21):213510
    [87] Ito S, Zakeeruddin S M, Humphry-Baker R, et al., High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2electrode thickness,Advanced Materials,2006,18(9):1202-1205
    [88] Longo C, Nogueira A F, De Paoli M A, et al., Solid-state and flexible dye-sensitized TiO2solar cells: a study by electrochemical impedance spectroscopy,Journal of Physical Chemistry B,2002,106(23):5925-5930
    [89] Nishikitani Y, Minami M, Asano T, et al., Electrochemical properties ofdye-sensilized solar cells fabricated with PVDF-type polymeric solid electrolytes,Kobunshi Ronbunshu,2006,63(1):54-61
    [90] Koide N, Islam A, Chiba Y, et al., Improvement of efficiency of dye-sensitizedsolar cells based on analysis of equivalent circuit, Journal of Photochemistry andPhotobiology a-Chemistry,2006,182(3):296-305
    [91] van de Lagemaat J, Park N G, Frank A J, Influence of electrical potentialdistribution, charge transport, and recombination on the photopotential andphotocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2solarcells: A study by electrical impedance and optical modulation techniques, Journalof Physical Chemistry B,2000,104(9):2044-2052
    [92] Lee Y L, Shen Y J, Yang Y M, A hybrid PVDF-HFP/nanoparticle gel electrolyte fordye-sensitized solar cell applications, Nanotechnology,2008,19(45):455201
    [93] Wang M K, Gratzel C, Moon S J, et al., Surface Design in Solid-State DyeSensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on PhotovoltaicPerformance, Advanced Functional Materials,2009,19(13):2163-2172
    [94] Kern R, Sastrawan R, Ferber J, et al., Modeling and interpretation of electricalimpedance spectra of dye solar cells operated under open-circuit conditions,Electrochimica Acta,2002,47(26):4213-4225
    [95] Suzuki S, Bower C, Kiyokura T, et al., Photoemission spectroscopy of single-walled carbon nanotube bundles, Journal of Electron Spectroscopy and RelatedPhenomena,2001,114:225-228
    [96] Gao R P, Pan Z W, Wang Z L, Work function at the tips of multiwalled carbonnanotubes, Applied Physics Letters,2001,78(12):1757-1759
    [97] Wang H, Liu G H, Li X, et al., Highly efficient poly(3-hexylthiophene) basedmonolithic dye-sensitized solar cells with carbon counter electrode, Energy&Environmental Science,2011,4(6):2025-2029
    [98] Zhang W, Zhu R, Li F, et al., High-Performance Solid-State Organic DyeSensitized Solar Cells with P3HT as Hole Transporter, Journal of PhysicalChemistry C,2011,115(14):7038-7043
    [99] Lee H J, Leventis H C, Haque S A, et al., Panchromatic response composed ofhybrid visible-light absorbing polymers and near-IR absorbing dyes fornanocrystalline TiO2-based solid-state solar cells, Journal of Power Sources,2011,196(1):596-599
    [100] Geiger T, Kuster S, Yum J H, et al., Molecular Design of Unsymmetrical SquaraineDyes for High Efficiency Conversion of Low Energy Photons into Electrons UsingTiO2Nanocrystalline Films, Advanced Functional Materials,2009,19(17):2720-2727
    [101] Kuang D, Uchida S, Humphry-Baker R, et al., Organic dye-sensitized ionic liquidbased solar cells: Remarkable enhancement in performance through moleculardesign of indoline sensitizers, Angewandte Chemie-International Edition,2008,47(10):1923-1927
    [102] Ito S, Miura H, Uchida S, et al., High-conversion-efficiency organic dye-sensitizedsolar cells with a novel indoline dye, Chemical Communications,2008,(41):5194-5196
    [103] Abrusci A, Kumar R S S, Al-Hashimi M, et al., Influence of Ion Induced LocalCoulomb Field and Polarity on Charge Generation and Efficiency in Poly(3-Hexylthiophene)-Based Solid-State Dye-Sensitized Solar Cells, AdvancedFunctional Materials,2011,21(13):2571-2579
    [104] Jiang K J, Manseki K, Yu Y H, et al., Photovoltaics Based on Hybridization ofEffective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT,Advanced Functional Materials,2009,19(15):2481-2485
    [105] Snaith H J, Gratzel M, Electron and hole transport through mesoporous TiO2infiltrated with spiro-MeOTAD, Advanced Materials,2007,19(21):3643-3647
    [106] Cappel U B, Daeneke T, Bach U, Oxygen-Induced Doping of Spiro-MeOTAD inSolid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance,Nano Letters,2012,12(9):4925-4931
    [107] Chen D, Huang F, Cheng Y-B, et al., Mesoporous Anatase TiO2Beads with HighSurface Areas and Controllable Pore Sizes: A Superior Candidate forHigh-Performance Dye-Sensitized Solar Cells, Advanced Materials,2009,21(21):2206-2210
    [108] Sauvage F, Chen D, Comte P, et al., Dye-Sensitized Solar Cells Employing aSingle Film of Mesoporous TiO2Beads Achieve Power Conversion EfficienciesOver10%, Acs Nano,2010,4(8):4420-4425
    [109] Chen D, Cao L, Huang F, et al., Synthesis of Monodisperse Mesoporous TitaniaBeads with Controllable Diameter, High Surface Areas, and Variable PoreDiameters (14-23nm), Journal of the American Chemical Society,2010,132(12):4438-4444
    [110] Xiang P, Li X, Wang H, et al., Mesoporous nitrogen-doped TiO2sphere applied forquasi-solid-state dye-sensitized solar cell, Nanoscale Research Letters,2011,6:606
    [111] Sommeling P M, O'Regan B C, Haswell R R, et al., Influence of a TiCl4post-treatment on nanocrystalline TiO2films in dye-sensitized solar cells, Journalof Physical Chemistry B,2006,110(39):19191-19197
    [112] Zeng L Y, Dai S Y, Wang K J, et al., Mechanism of enhanced performance ofdye-sensitized solar cell based TiO2films treated by titanium tetrachloride,Chinese Physics Letters,2004,21(9):1835-1837
    [113] O'Regan B C, Durrant J R, Sommeling P M, et al., Influence of the TiCl4treatmenton nanocrystalline TiO2films in dye-sensitized solar cells.2. Charge density, bandedge shifts, and quantification of recombination losses at short circuit, Journal ofPhysical Chemistry C,2007,111(37):14001-14010
    [114] Dloczik L, Ileperuma O, Lauermann I, et al., Dynamic response of dye-sensitizednanocrystalline solar cells: Characterization by intensity-modulated photocurrentspectroscopy, Journal of Physical Chemistry B,1997,101(49):10281-10289
    [115] Fisher A C, Peter L M, Ponomarev E A, et al., Intensity dependence of the backreaction and transport of electrons in dye-sensitized nanacrystalline TiO2solarcells, Journal of Physical Chemistry B,2000,104(5):949-958

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700