用户名: 密码: 验证码:
栅栏脉冲与等离子体相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在间接驱动惯性约束核聚变中,高能激光分别从内环以及外环注入到黑腔内,在腔壁上激发X射线,使之作用靶丸完成内爆。靶丸受到X射线作用,会向外喷发等离子体,与入射到腔壁上的激光相互作用,激发各种参量不稳定性(受激拉曼散射,受激布里渊散射,成丝等)。由于与内环、外环激光作用的等离子体密度不一样,参量不稳定性所造成的内外环散射光强度也不一样,这不仅降低了光束入射到黑腔面上的能量,还破坏了靶丸的辐射对称性;同时受激拉曼散射除了能将入射光散射,它所激发的电子等离子体波还会产生超热电子,破坏靶丸的等嫡压缩过程。因此如何抑制激光等离子体相互作用中参量不稳定性,提高束靶耦合效率,一直是人们关心和研究的重点。
     为了抑制参量不稳定性,各国科学家相继提出了光谱色散匀滑,偏振匀滑,连续相位板等一系列光束匀滑方法。它们通过均匀光束的空间能量分布,让光束焦斑在靶面快速移动,有效的避免了亮斑成丝,抑制了参量不稳定性。但是由于与内环激光作用的等离子体密度更高,激发产生的参量不稳定性更强,仅采用束匀滑方法是不够的。基于这点本文提出利用栅栏脉冲来抑制参量不稳定性中的SRS增长。当栅栏脉冲与等离子体相互作用时,通过不断的衰减电子等离子体波强度,降低SRS增长速度,达到削弱SRS背反份额的目的。
     本文主要的研究工作如下:
     (1)从maxwell方程出发,推导了激光等离子体相互作用下的受激拉曼散射的3波耦合方程,并通过电场的慢变振幅关系,对受激拉曼散射的3波耦合方程进行了化简,将方程中的矢势关系全部变换为电场关系。通过三波耦合方程编写了SRS过程的数值模拟程序,并对程序进行验证
     (2)研究了激光与等离子体相互作用时的电子等离子体波弛豫效应,它的本质是激光通过等离子体后所残留的电子密度扰动。这些密度扰动会增加下一个激光通过时的SRS增长速度。通过定义电子等离子体波弛豫时间量化了弛豫效应的强弱,并依此研究了等离子体状态,脉冲的时间宽度,功率密度以及脉冲的波长对弛豫效应的影响。为栅栏脉冲的设计提供了理论依据
     (3)以SRS背反份额为标准,分析了不同脉冲与等离子体作用的结果。其中栅栏脉冲在SRS反应过程中,通过不停的削弱电子等离子体波强度,降低SRS增长速度,从而有效的削弱SRS的背反份额。然后对其子脉冲的形状,子脉冲的时间宽度,占空比进行了分析,当栅栏脉冲处于最佳占空比时,能够最大程度的削弱SRS。当对栅栏脉冲内相邻两支子脉冲加入频率差后,通过频率失配,抑制了电子等离子体波的生长,使得子脉冲与子脉冲之间的相互影响被大大削弱了,进一步的降低SRS散射份额。理论模拟显示,当加入频率差为250GHz(基频光)时,栅栏脉冲在等离子体温度1.5keV到1.6keV范围内(等离子体密度为0.1nc),能让大部分SRS散射光份额从10%-20%(长脉冲入射情况)下降到5%以下。当加入偏振匀滑后,能进一步的提高栅栏脉冲最优占空比的值,降低了栅栏脉冲在激光系统中传输与放大的难度。
     (4)分析了栅栏脉冲产生问题,可以通过半导体可饱和收镜的锁模光纤激光器所产生,产生的脉冲接近傅里叶变换极限;同时也提出了一种基于波导阵列光栅产生栅栏脉冲的设想,理论上可以得到超高斯型的栅栏脉冲。研究了栅栏脉冲在激光系统放大过程中的增益窄化效应与增益饱和效应。栅栏脉冲的带宽不足以引起明显的增益窄化效应,而在放大过程中通过设计栅栏脉冲的波形,很好的抑制了增益饱和所带来的影响。最后讨论了栅栏脉冲的非线性传输特性,占空比在其中起了决定性的作用
     (5)在文章的最后我们理论模拟了栅栏脉冲的频率转换问题。通过优化二倍频晶体的厚度,提升了栅栏脉冲的二倍频效率,同时对晶体失谐角的调谐使得一倍频光与二倍频光达到最佳三倍频比例。对于三倍频过程,栅栏脉冲宽带宽所带来的色散走离效应会降低其三倍频效率,通过调节倍频后基频光与二倍频光的中心时间差,最大程度的抑制了走离,使栅栏脉冲的理论三倍频效率达到88%。
     本文主要的创新点:
     (1)通过对电子等离子体波弛豫效应的研究,提出利用栅栏脉冲削弱SRS背反份额。当对栅栏脉冲子脉冲加入频率差后,能进一步削弱SRS效应。
     (2)对栅栏脉冲在驱动器系统中的产生,非线性传输,放大,三倍频做了相应的理论研究。其中通过预补偿抑制了栅栏脉冲的增益饱和效应,研究了栅栏脉冲与B积分之间的关系,通过一系列优化方案上栅栏脉冲的=倍频理论效率提升到88%
In the indirect driven inertial confinement fusion (ICF), high energy laser pulses are injected into the hohlraum via the outter and inner rings. X-ray is excited on the wall of the hohlraum and irradiate onto the target to drive the implosion. Plasma is ejected outward after the interaction between the X-ray and the target, which will interact with the incident laser and excite all kinds of parametric instabilities such as the stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS) and filamentation. Due to the difference of the densities of the plasma excited by the laser pulses ejected via the inner and outter ring, the scattering intensities excited by the parametric instabilities are different. This effect not only reduces the laser energy irradiate on the hohlraum, but also disturbs the symmetry of the laser radiation on the target. Moreover, the electron plasma wave will generate ultrahot eletrons which can destroy the isentropic compression process. Therefore, how to suppress the parametric instabilities in the laser plasma interactions and the enhance the laser coupling efficiency has always been the major concern of ICF research communities.
     To suppress the parametric instabilities, methods such as smoothing by spectral dispersion (SSD), polarization smoothing and continuous phase plate have been proposed. The parametric instabilities are suppressed and the filamentations are avoided by fast moving the focal spot and smoothing the spatial profile of the laser beam. However, because the plasma density of the inner ring laser is higher which excites higher parametric instabilities, the beam smoothing methods are not enough. In this thesis, the fence pulse is proposed to suppress the growth of the SRS. When the fence pulse interacts with the plasma, the growth rate of the SRS is reduced by attenuating the electron plasma wave intensity, and therefore suppress the proportion of the backward SRS.
     The main contents of this thesis are as follows:
     (1) The three wave coupling equations of the SRS process between the laser and plasmas are derived from the Maxwell equations. The three wave coupling equations are simplified by applying the slowly varying amplitude approximation and the vectorial potential are replaced by the electric field. The numerical simulation codes of the three wave coupling equations are verified.
     (2) The hysteresis effect of the plasmas in the process of laser plasmas interaction is researched, whose intrinsic mechanism is the influence of the residual perturbation of the electron density which will increase the growth rate of the SRS when next laser pulse arrives. The strength of the hysteresis effect is quantified by defining a relaxation time. The influences of the plasmas status, the pulse width, the power density and the laser wavelength on the hysteresis effect are researched which provide the theoretical basis for fence pulse design.
     (3) The interaction results of different kinds of laser pulses are analyzed based on the backward SRS proportion. In the SRS process of the fence pulse, the growth rate of SRS is decreased by attenuating the strength of the plasmas wave. The influences of the shape, duration and duty cycle of the sub-pulse are analyzed. The SRS can be suppressed to the largest extend for optimized duty cycle. When frequency spacing between neighboring sub-pulses are introduced, the growth of the plasmas wave is weakened and the interaction between the sub-pulses is substantially suppressed which decreases the SRS proportion further. When frequency difference of250GHz (fundamental wave) is introduced, the plasmas temperature is within the range of1.5keV to1.6keV, and the SRS proportion reduces to less than5%. When polarization smoothing method is applied, the optimized duty cycle is further increased which reduce the difficulty of propagation and amplification of the fence pulse in the laser system.
     (4) The generation of the fence pulse is researched. The pulse can be generated from the mode-locked fiber laser employing the semi-conductor saturable absorption mirror which is near Fourier transform limit. A method based on the waveguide array grating is proposed which can generate fence pulse with super-Gaussian sub-pulses. The gain narrowing and gain saturation effects of the fence pulse are studied. The results show that the bandwidth of fence pulse won't introduce obvious gain narrowing effect, and the gain saturation effect can be compensated by proper design of the pulse envelop. The influence of the fence pulse on the B integral is researched, it proves that the duty cycle plays a dominant role.
     (5) The frequency doubling and tripling processes are researched theoretically. The thickness of the crystal for frequency doubling is optimized to enhance the bandwidth and eliminate the effect of the short pulses. The angular mismatch is detuned to achieve required frequency doubling efficiency. For the frequency tripling process, the walk-off introduced by the spectral dispersion of the fence pulse will lower the efficiency. The walk-off effect is suppressed by optimizing the temporal delay of the fundamental and second harmonic wave and88%third harmonic generation efficiency can be achieved.
     The major innovative points of this thesis are as follows:
     (1) The fence pulse is proposed to suppress the backward SRS through the research of the relaxation effect of the electron plasma wave. The SRS effect can be further reduced by introducing the frequency difference among the sub-pulses in the fence pulse.
     (2) The seed generation, nonlinear propagation, amplification and third harmonic generation (THG) of the fence pulse in the laser driver facility are theoretically studied. Pre-composition is applied to suppress the gain saturation of the fence pulse. The B integral of the fence pulse is studied. The theoretical THG efficiency of the fence pulse is increased to88%by a series of optimization methods.
引文
[1]http://en.wikipedia.org/wiki/Ernest_Rutherford
    [2]http://en.wikipedia.org/wiki/Hans_Bethe
    [3]http://www.iter.org
    [4]https://lasers.llnl.gov/
    [5]J.D.Lindl, Phys. Plasmas,2(1995),3933
    [6]J.D.Lindl, P.Amendt, R.L.Berger, et al., Phys. Plasmas,11(2004),339
    [7]S.Atzeni and J.Meyer-ter-Vehn, "The Physics of Inertial Fusion", Oxford University Press,2004
    [8]W.L.Kruer, "The Physics of Laser Plasma Interaction", Addison-Wesley,1988
    [9]W.L.Kruer, Phys. Fluids B,3(1991),2356
    [10]W.L.Kruer, E.M.Campbell, C.D.Dechker, et al., Plasma Phys. Control. Fusion, 41(1999), A409
    [11]Y.Kato,K.Mima, Physical Review Letters. Volume 53,Number 11,10,September(1984)
    [12]S.Skupsky.J.Appl.Phys;74(7):4310-4316,(1993)
    [13]Xiao Jun,Lv Baida. Theoretic Study of Smoothing Speckles Using Zero-Correlation Phase Plate[J]. Acta Optica Sinica,2000,20(10):1341-1346 (in chinese)
    [14]March 15/Vol.19, No.6/OPTICS LETTERS, (1994)
    [15]Distributed phase plates for super-Gaussian focal-plane irradiance profiles[R] LLE Review,63:126-129,(1995)
    [16]Design and optical characterization of a largecontinuous phase plate for Laser Integration Lineand laser Megajoule facilities,Vol.42, No.13 APPLIED OPTICS
    [17]Ximing Deng, Xiangchun Liang,Uniform illumination of large targets using a lens array,Vol.25, No.3/APPLIED OPTICS
    [18]Qiu yue,Qian liejia et al. Improve Illumination Uniformity by Suppressing the Diffraction of a Lens Array[J]. Chinese Journal of Lasers,1995,22(1):27-31 (in chinese)
    [19]Phase Conversion Using Distributed Polarization Rotation,LLE review 45,1-12 (1990).
    [20]RH.Lehmberg,Theory of induced spatial incoherence[J].J.Appl.Phys.;62(7). (1987)
    [21]Lehmberg.RH, Go ldhar J. Use of incoherence to p roduce smooth and controllable irradiation profiles with KrF fusion lasers [J]. FusionTechnology,11: 532., (1987)
    [22]Obenschain.SP, Grun.J, Herbst.M.J,et al.Laser2target interaction with induced spatial incoherence[J]. Phys Rev Lett,56:2807,(1986)
    [23]Obenschain.SP, Pawley.CJ, Mostovych.AN, et al. Reduction of Raman scattering in a plasma to convective levels using induced spatial incoherence [J]. P.R.L 62:768.,(1986)
    [24]H. Nakano, T. Kanabe, K. Yagi, Opt. Commun.78,123(1990).
    [25]H. Nakano, K. Tsubakimoto, J. Appt. Phys., Vol.73, No.5,1 March (1993)
    [26]S.Skupsky,J.Appl.Phys.66(8),15 october (1989)
    [27]Two Dimensional Beam Smoothing by Spectral Dispersionf or Direct Drive Inertial Confinement Fusion,LLNL,UCRL-JC-121198 PREPRINT
    [28]Two-Dimensional SSD on OMEGA,LLE Review, Volume 69
    [29]Preliminary Design of NIF 2-D SSD,LLE Review, Volume 85
    [30]J.D.Moody, B.J.MacGowan, J.E.Rothenberg, et al., Phys. Rev. Lett.,86(2001), 2810
    [31]D. H. Froula et.al "Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility "LLNL-JRNL-420444
    [32]J. L. Klineet et.al "Observation of High Soft X-Ray Drive in Large-Scale Hohlraums at the National Ignition Facility" Thys. Rev. Lett.106,085003 (2011)
    [33]S.H.Glenzer, D.H.Froula, L.Divol, et al., Nature Physics,3(2007),716
    [34]T. R. Boehly et.al "Optical and plasma smoothing of laser imprinting in targets drivenby lasers with SSD bandwidths up to 1THz" phys of plasmas.Vol:8,No.5 2331-2337
    [35]D.H.Froula, L.Divol, R.L.Berger, et al., Phys. Rev. Lett.,101(2008),115002
    [36]C.Niemann, L.Divol, D.H.Froula, et al., Phys. Rev. Lett.,94(2005),085005
    [37]C.Niemann, R.L.Berger, L.Divol, et al., Phys. Rev. Lett.,100(2008),045002
    [1]W.L.Kruer, "The Physics of Laser Plasma Interaction", Addison-Wesley,1988
    [2]K.Mima and K.Nishikawa, "Handbook of Basic Plasma Physics Ⅱ", North-Holland,1983:p457, p467
    [3]陈银华,《非线性等离子体物理导论》,中国科技大学近代物理系等离子体专业讲义,2003
    [4]胡希伟,《等离子体理论基础》,北京大学出版社,2006
    [5]K.B.Wharton, "Laser-plasma interactions relevant to inertial confinement fusion", PhD thesis,1998
    [6]S.Atzeni and J.Meyer-ter-Vehn, "The Physics of Inertial Fusion", Oxford University Press,2004
    [7]吕理想,张晓萍.不同形式非线性薛定谔方程及其分步傅里叶法求解[J].计算物理,2007,24(3):373-377.
    [8]李荣华,偏微分方程数值解法,北京:高等教育出版社,2005
    [9]D. H. Froulal,_ L. Divol, R. A. London, R. L. Berger, T. Doeppner,N. B. Meezan, J. Ralph, J. S. Ross, L. J. Suter, and S. H. Glenzer, "Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility", LLNL-JRNL-420444,(2009)
    [1]Adrian H. Quartermanl, Keith G. Wilcoxl, Vasilis Apostolopoulos1* etc.,NATURE PHOTONICS,VOL 3,DECEMBER 2009
    [2]Rui Song, Hong-Wei Chen,etc.,J. Opt.13 (2011) 035201
    [3]Hyunil Byun,etc.OPTICS LETTERS,Vol.33, No.19,2221-2223
    [4]王旌等,中国激光,2007,February, Vol.34,No.2
    [6]Luis A. Gomes, Lasse Orsil,etc.IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.10, NO.1(2004)
    [5]梁永灵,陈根祥.阵列波导光栅技术及其研究进展[J].光通信技术,2006,30(4)
    [7]Takada, K.; Abe, M.; Shibata, T.10-GHz-spaced 1010-channel tandem AWG filter
    consisting of one primary and ten secondary AWGs[J], IEEE Photonics Technology
    Letters,2001, vol.13, issue 6, pp.577-578
    [8]K. Takada,1 H. Yamada,l and K. Okamoto.320-channel multiplexer consisting of 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs[J]. Electron. Lett. 1999, Volume 35, Issue 10, p.824-826
    [9]Baek, J. H.; Soares, F. M.; Seo, S. W.10-GHz and 20-GHz Channel Spacing High-Resolution AWGs on InP[J]. IEEE Photonics Technology Letters,2009, vol.21, issue 5, pp.298-300
    [10]Anthony E. Siegman. Lasers[M]. Mill Valley, California:University Science Books,1986:280-281
    [11]卢兴强,范滇元,增益饱和在整形放大啁啾脉冲中的作用,光学学报,2002,22(12),1433-1437。
    [12]Franzt L M, Nodvik J S 1963 J. Appl. Phys.34 2346
    [13]W.克希耐尔,《固体激光工程》,科学出版社,1983
    [14]J.A.Fleck, JR., J.R.Morris, and E.S.Bliss,"Small-Scale Self-Focusing Effects in a High Power Glass Laser Amplifier ",IEEE Journal of Quantum Electronics, Vol. QE-14,No.5, May 1978
    [15]Y.R. SHEN, The Principles of NONLINEAR OPTICS (John Willy & sons, Inc., New York,1984)
    [16]V.I.Bespalov and V.I.Tanlanov,Soviet Phaysics JETP Letters,3(1966):307
    [1]Stefano Atzeni, Jurgen Meyer-ter-vehn,惯性聚变物理,沈百飞(译者),科学出版社
    [2]R. J. Wegner, M. A. Henesian, et al, Harmonic conversion of large-aperture 1.05um laser beams for inertial-confinement fusion research, App. Opt., vol.3, No.30, 20 Oct.1992, p 6414.
    [3]C. E. Barker, B. M. Van Wonterghem, J M Auerbach, et al., Design and performance of the Beamlet laser third harmonic frequency converter, SPIE, vol.2633, 1997,p.398
    [4]张克从、王希敏,《非线性光学晶体材料科学》,科学出版社。
    [5]R. J. Wegner, M. A. Henesian, et al, Harmonic conversion of large-aperture 1.05um laser beams for inertial-confinement fusion research, App. Opt., vol.3, No.30, 20 Oct.1992, p 6414.
    [6]R. S. Craxton, Stephen D. Jacobs, Joseph E. Rizzo, et al., Basic Properties of KDP Related to the Frequency Conversion of 1 μm Laser Radiation, IEEE J QE, Vol. QE-17, No.9, Sep.,1981, p 1782
    [7]C. A. Haynam,* P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand,M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta,J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson,R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer,R. K. White, S. T. Yang, and B. M. Van Wonterghem,"National Ignition Facility laser performance status", APPLIED OPTICS,Vol.46, No.16(2007)
    [8]V.D.Volosov and E.V.Goryachkina,"Compensation of phase matching dispertion in generation of nonmonochromatic radiation harmonics",Sov.J.Quantum Electron,1976,Vol.6 (7):854-857.
    [9]Robert W. Boyd, Nonlinear Optics, Academic Press.INC, p56,1992.
    [10]R. A. Sacks, C. E. Baker, et al, ICF Quarterly Report2(4),179-188, LLNL, Livemore, CA, UCRL-LR-105821-92-4, (1992)
    [11]W. Lee Smith, F. P. Milanovich, et al, LLNL memorandum, UVM 83-02 (Feb. 25,1983)
    [12]C. E. Barker, B. M. Van Wonterghem, J M Auerbach, et al., Design and performance of the Beamlet laser third harmonic frequency converter, SPIE, vol.2633, 1997,p.398
    [13]R. S. Cracton, High Efficiency Frequency Tripling Scheme for High-Power Nd:Glass, IEEE J QE,QE-17,No.9,Sept.,1981, p 1771
    [14]BOYD R W. Nonlinear Optics [M].3rd ed.:Elsevier Inc.,2008.
    [15]韩耀锋.超短脉冲激光倍频技术研究[Dl成都;四川大学,2006.
    [16]DU Y C, HUANG W H, HUA J F, et al. Preliminary experiment of the Thomson scattering X-ray source at Tsinghua University [J]. Chinese Physics C,2008,32(1): 75-9.
    [17]李琨,张彬,李恪宇,et al.超高强度飞秒脉冲的三次谐波转换[J].中国激光,2006,33(11):1506-11.
    [18]郑万国.高功率激光宽带倍频技术研究[D].上海;复旦大学,2006.
    [19]NIKOGOSYAN D N. Nonlinear Optical Crystals:A Complete Survey. [M].1st ed. USA:Springer,2005.
    [20]NIKOGOSYAN D N. Beta-Barium Borate (BBO):A Review of Its Properties and Applications [J]. Applied Physics a-Materials Science & Processing,1991,52(6): 359-68.
    [21]KLEIN R S, KUGEL G E, MAILLARD A, et al. Absolute non-linear optical coefficients measurements of BBO single crystal and determination of angular acceptance by second harmonic generation [J]. Optical Materials,2003,22(2):163-9.
    [22]D.Eimerl, J.M.Auerbach,etal, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals:I.Narrowband pump fields,",Journal of Modern Optics,1995, vol.42, No.5, P1037-1067
    [23]Andrei Babushkin, R. Stephen Craxton, Stephen Oskoui, etc., Demonstration of dual-tripler broadband third-harmonic generation and implications for OMEGA and the NIF, University of Rochester, SPIE 1999, Vol.3492, p406-413.
    [24]J. M. Auerbach, C. E. Barker, D. Eimerl, D. Milam, Alternate Frequency Tripling Schemes, Lawrence Livermore National Laboratory, SPIE 1997, Vol.3047, p853-858
    [25]A. Babushkin and R. S. Craxton, Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation, OPTICS LETTERSVol.23, No.12, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700