用户名: 密码: 验证码:
渗流作用下临海导流路堤围堰力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在社会经济高速发展,能源需求迅速增长的今日,开发清洁环保能源是可持续性发展的基本要求。具有巨大潜力的核电能源是我们主要开发的新能源之一,它不仅可以促进地区产业结构的升级,而且可以加速经济发展,增强我国综合国力。特别是一次能源短缺的沿海、内陆地区,更有必要积极发展核电。因此,加快核电建设、积极发展核电是保障国家能源安全的需要,对中国能源可持续发展、优化能源结构意义重大。
     本论文依托在建的辽宁红沿河核电工程,结合其特点和实际情况,对临海导流路堤围堰施工阶段的渗流场演化和力学特性进行研究,从围堰方案确定到模型建立、从海浪海冰冲击影响到防渗墙验算、从流固耦合到强度折减及其稳定性计算进行了全面的分析,将分析结果应用并指导该实体工程,保证了导流路堤围堰施工安全。具体内容如下:
     1、综述导流路堤围堰工程国内外研究成果,建立论文研究内容和技术路线
     为了进行辽东湾核电站取水导流工程施工阶段渗流及力学特性研究,对国内外导流工程的发展现状、导流路堤围堰渗流机理研究、渗流场与应力场耦合研究以及土石围堰防渗技术的发展等方面进行了大量的调查研究工作。针对国内外研究现状,在重点研究导流路堤围堰工程、导流路堤围堰渗流机理研究、流固耦合分析技术和导流路堤围堰防渗方法等的基础上,确立了研究思路与启示,建立了研究内容和技术路线。
     2、确定取水口导流路堤围堰方案,建立实体仿真空间模型
     红沿河核电站取水工程取水量大,涉及向四台百万千瓦发电机组供水及向核岛提供安全厂用水,所以取水的安全性、可靠性极为重要。考虑简化设施降低造价等因素,需结合取水海域海岸线自然条件、工程水文地质条件对导流路堤设计方案进行了对比研究。结合实际现场,进行导流路堤工程选择、施工围堰方案比选,确定取水口导流路堤围堰方案及导流路堤围堰防渗墙方案。同时,通过采用有限元建模软件,对导流路堤围堰与海潮演化进行了仿真建模,实现了针对现场施工情况的取水口原始地形生成、取水口实体模型建立、取水口海潮变化仿真和导流路堤围堰仿真空间建模。同时利用SolidWorks软件和Midas\GTS软件,开展了导流路堤围堰与海潮演化仿真建模,实现了针对现场施工情况的取水口原始地形生成、取水口实体模型建立、取水口海潮变化仿真和导流路堤围堰仿真空间建模。
     3、临海导流路堤围堰渗流与海浪海冰冲击影响
     利用Geo-Studio软件和有限元模型建立,进行导流路堤围堰渗流特征分析、海水涌浪冲击影响分析、海浪抽吸影响分析和海冰撞击影响分析,初步建立了导流路堤围堰防渗施工控制方法,以及导流路堤围堰防护施工方法。
     4、导流路堤围堰稳定性和防渗墙应力分析
     滨海核电站导流路堤围堰是保证取水建筑物干地施工的重要挡水建筑物,对防渗、结构安全的要求高,渗流控制、变形稳定控制、施工控制是导流路堤围堰建设的关键问题,进行导流路堤围堰工程力学特性和稳定性验算十分必要。针对导流路堤围堰地基试验与稳定性分析工况,开展临时围堰与导流路堤地基中砂试验,选择确定临时围堰与导流路堤计算内容与地震输入参数,开展静力条件下导流路堤和临时围堰应力分析、施工二期遭遇地震时导流路堤和临时围堰结构分析、地基中砂的液化分析和极限平衡拟静力法稳定分析。
     5、导流路堤围堰流固耦合力学特性分析
     取水导流工程海域地形地质条件复杂,在取水口工程三维实体仿真建模的基础上,开展导流路堤围堰实体渗流分析,以及流固耦合力学特性分析,可以深入分析更接近工程实际情况,揭示施工阶段的导流路堤围堰稳定性。在形成渗流场与应力场耦合有限元方法和导流路堤围堰流固耦合有限元模型建立的基础上,进行了导流路堤围堰渗流规律分析、导流路堤围堰流固耦合力学特性分析。
     6、围堰边坡强度折减及地震影响稳定性分析与围堰施工阶段监测与检测
     通过Phase2D软件和有限元强度折减与地震响应分析方法,进行了导流路堤围堰有限元强度折减稳定性分析和围堰施工阶段地震影响稳定性分析。对导流路堤围堰进行有限元强度折减稳定性分析与围堰施工阶段地震影响稳定性分析,并针对导流路堤围堰工程施工测量控制和测量检验,建立了施工沉降、位移监测中的沉降观测目的和内容:测量仪器和测量等级要求,水准网、平面网、监测点的设置和要求,观测频率,导流路堤围堰工程沉降位移的评价。同时,利用探地雷达原理与检测方法,在建立雷达探测数据处理方法和建立探地雷达波相识别的基础上,对导流路堤围堰和导流路堤围堰内侧冰水探测与评价。
With the rapid development of social economy and mushrooming energy demand, clean and green energy has become essential to the sustainable development. Nuclear energy endowing with great potential is one of the new energies we are focusing on, since it can not only promote the upgrade of regional industrial structure and accelerate the economic development, but also enhance China's comprehensive national strength. It is particularly important for coastal and inland areas suffering from energy shortage to actively develop nuclear power. Therefore, speeding up the construction of nuclear power and actively developing such power is a must to protect national energy and is of great significance to the sustainable development of China's energy and optimization of its energy structure.
     Taking the Liaoning Hongyanhe nuclear power project under construction as an example, this paper studies the seepage field evolution and mechanical properties of the coastal diversion embankment cofferdam at the construction stage in combination with the characteristics and the actual situations of the project. A comprehensive analysis is carried out from the determination of cofferdam program to the establishment of the model, from the impact of sea waves and ices to the checking computations of the cut-off wall, and from the fluid-structure interaction to the strength reduction and its stability calculation, of which the results will be used to guide the physical works to ensure a safe water diversion projects construction. Details are as follows:
     1. Summarize the research findings of diversion embankment cofferdam works at home and abroad; establish the thesis content and technology roadmap
     To study the seepage and mechanical characteristics of the water diversion projects of Liaodong Gulf Nuclear Power Plant in the construction stage, lots of researches have been done on the development status of the domestic and international diversion works, the seepage mechanism of diversion embankment cofferdam, seepage field and stress field coupling, as well as the seepage technology development of the earth and rock cofferdam, among which the focus is placed on the diversion embankment cofferdam works, researches on its seepage mechanism, analysis technologies of the fluid-structure interaction and anti-seepage methods, etc. The research ideas and implications as well as contents and technical routes have been determined based on the existing domestic and foreign researches.
     2. Determine the diversion embankment cofferdam program for water intake; build space model of physical simulation
     The Hongyanhe water project requires a large water volume that is supplied to four million-kilowatt generator sets and the nuclear island, therefore, the water safety and reliability are extremely important. In order to reduce the cost by simplifying the facilities, the diversion embankment design program should be studied comparatively based on the natural conditions of the water intake area, as well as the hydrogeological conditions of the project. Select the diversion embankment works and compare the construction cofferdam program according to the actual site; determine the diversion embankment cofferdam program for the water intake and its cutoff wall program. Meanwhile, simulate and mold the diversion embankment cofferdam and tide evolution with finite element modeling software (SolidWorks and Midas\GTS), to present the initial form of water intake appropriate to the on-site construction, build physical model of the water intake, simulate its tide changes and complete the diversion embankment cofferdam simulation and space modeling.
     3. Effects of coastal diversion embankment cofferdam seepage and sea waves&ices impact
     By using Geo-Studio software and finite element model, analyze the seepage characteristics of the diversion embankment cofferdam, impact effects and suction effects of sea waves, and the impact effects of sea-ices; develop the construction methods for anti-seepage as well as diversion embankment cofferdam protection initially.
     4. Analyze the stability and cut-off wall stress of the diversion embankment cofferdam
     The diversion embankment cofferdam of coastal nuclear power plant is an important water retaining structure to ensure the dry construction of water intake structures, thus imposing high requirements on anti-seepage and structural safety. As seepage control, deformation stability control and construction control are crucial to the construction of the diversion embankment cofferdam, it is necessary to check calculation for the mechanical properties and stability of the diversion embankment cofferdam works. Carry out tests on the sand in the foundation of temporary cofferdam and diversion embankment according to the results of the diversion embankment cofferdam foundation tests and analysis of the stability; select and determine the calculation content and earthquake input parameters of the temporary cofferdam and diversion embankment; carry out corresponding stress analysis under static conditions, structure analysis at the Phase Ⅱ construction in case of an earthquake, liquefaction analysis of the sand in the foundation and stability analysis by limit-equilibrium-based pseudo-static method.
     5. Analyze the mechanical properties of fluid-structure interaction of the diversion embankment cofferdam
     The water diversion projects is located at waters with complex topographic and geologic conditions. Carry out the analysis of seepage of physical diversion embankment cofferdam and mechanical properties of fluid-structure interaction based on the3D physical simulation modeling of the project, so as to further analyze its stability subject to the actual situation and indicating the construction stage. After developing the finite element method for coupling of the seepage field and stress field, and establishing the finite element model of the fluid-structure interaction of DEC, analyze the seepage rules and mechanical properties of such fluid-structure interaction of diversion embankment cofferdam.
     6. Analyze the effects of strength reduction of cofferdam slopes and earthquakes on the stability; monitor and detect the cofferdam at the construction stage.
     Analyze the effects of the finite element strength reduction of diversion embankment cofferdam and earthquakes on the stability at the construction stage by Phase2D software and analysis methods of finite element strength reduction and seismic response.
     After completing the aforesaid analysis and measuring the diversion embankment cofferdam works for control and inspection, determine the purposes and contents of the construction settlement and displacement monitoring:requirements for measuring instruments and measuring levels, settings and requirements of leveling network, plane net and monitoring points, the frequency of monitoring, and the evaluation of the diversion embankment cofferdam works settlement and displacement. Meanwhile, use ground-penetrating radar (GPR) principle and detection methods to detect and evaluate the diversion embankment cofferdam as well as its internal ice water on condition that the processing methods of radar detection data have been developed and GPR wave modes identified.
引文
[1]张雪松,张成恩.我国核电发展前景[J].沈阳工程学院学报,2005,1(2):39-41.
    [2]郑明光,叶成,韩旭.新能源中的核电发展[J].NuclearTechniques,2010,2 (33):81-86.
    [3]韩理.港口水工建筑物[M].北京:人民交通出版社,2000.
    [4]汝乃华,牛运光.大坝事故与安全:土石坝[M].北京:中国水利水电出版社.2001.
    [5]匡林生.施工导流及围堰[M].北京:水利电力出版社.1993.
    [6]日本电力土木技术协会编,陈慧远等译.最新土石坝工程[M].北京:水利电力出版社,1986.
    [7]国内外土石坝及围堰防渗墙技术综述.
    [8]高钟璞.大坝基础防渗墙[M].北京:中国电力出版社,2000.
    [9]钱家欢,殷宗泽主编,土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [10]刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社,1992.
    [11]薛禹群.地下水动力学原理[M].北京:地质出版社,1986.
    [12]郭庆国.粗粒土的工程特性及应用[M].黄河水利出版社,1998.
    [13]黄文熙.土的工程性质[M].北京:水利电力出版社,1984.
    [14]DupuitAJ E J. Etudes Theoretiques et Pratiques sur le Mouvement des Eaux[M]. Paris:Dunod,1963.
    [15]Theis C V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage[J]. Trans Amer Geophys, 1935 (16):519-524.
    [16]陈崇希,地下水不稳定井流计算方法[M].北京:地质出版社,1983.
    [17]D.G.Fredlund and H.Rahardjo著,陈仲颐等译.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [18]R.A.Freeze,Influence of the Unsaturated Flow Domain on Seepage Through Earth Dams[J].Water Resources Res.,Vol.7,no.4,pp,929-940,1971.
    [19]A.T.Papagiannakis and D.G.Fredlund, A Steady State Model for Flow in Saturated Unsaturated Soils[J].Can.Geotech,vol.21,no.13,pp.419-430,1984.
    [20]顾慰慈,渗流计算原理及应用[M].北京:中国建筑工业出版社,2000.
    [21]丁树云,蔡正银.土石坝渗流研究综述[J].人民长江,2008,39(2):33-37.
    [22]司兆乐,刘松涛.葛洲坝工程大江围堰的应力应变分析及实测成果的验证[J].长江科学院院报,1987,4.
    [23]郑守仁.三峡一期土石围堰设计与运用[J].中国三峡建设.1997,11.
    [24]郑守仁.三峡工程大江截流二期围堰设计主要技术问题论述[J].人民长江.1997(4)
    [25]郑守仁.三峡工程三期围堰及截流设计关键技术问题[J].人民长江.2002,33(1):7-11.
    [26]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报,2004,2(6):123-126.
    [27]Terzaghi K, Er Erdbaununechanilc[M]. R Deuticke,1925.
    [28]Mikasa M, The Consolidation of Soft Clay [J].Civil Engineering in Japan, JSCE:1965
    [29]Gibuson R.E. et al, The Theory of One-Dimensional Consolidation of Saturated Clays [J]. Finite Non-linear Consolidation of Thick Homogeneous Layers.Canadian Geotechnical Journal,1981,18
    [30]谢新宇等.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38
    [31]Rendulic L, Porenziffer and Porenwasserdilick in Tonen [J]. Bauingenieur, Vol.17,1936
    [32]Biot M.A, General theory of three-dimensional consolidation [J]Jour. Appl. Phys, Vol.12,1941
    [33]Biot M.A, Consolidation settlement under a rectangular load distribution [J]. Jour. Appl. Phys,Vol.12,1941.
    [34]Fredlund D.G.and Hasan J.U, One-dimensional consolidation theory of unsaturated soils [J].Can.Geot.J.1979,16 (3):521-531.
    [35]沈珠江.非饱和土力学的回顾与展望[J].水利水电科技进展,1996,16(2):1-6.
    [36]Neuman S.P., Saturated-unsatutated Seepage by Finite Element. Hydraul. Div. Amer. Soc, Civil Eng.,99 (HY12),1973,2233-2290.
    [37]Mustafa M.Aral and Morris L. Maslia.Unsteady Seepage Analysis of Wallace Dam [J]. Hydra.Eng.,Jun.,1983,109 (6)
    [38]Guyman Gary L., Flow and Transport laws in Unsaturated Zone Hydrology [M].Michael Hays,ed.,Printed by PTR Prentice Hall,USA,1994
    [39]黄康乐.求解非饱和土壤水流问题的一种数值方法[J].水利学报,1987,(9):9-16.
    [40]朱学愚,谢春红,钱孝星.非饱和渗流动问题的SUPG有限元法[J].水利学报,1994,(6).
    [41]高骥,雷光耀,张锁春.堤坝饱和-非饱和渗流的数值分析[J].岩土工程学报.1988,(6)
    [42]杨代泉,沈珠江.非饱和土一维广义固结的数值计算[J].水利水运科学研究.1991,(4):357-385.
    [43]吴梦喜,高莲士.饱和-非饱和土体非稳定渗流数值分析[J].水利学报.1999,(12):38-42.
    [44]周桂云.饱和-非饱和非稳定渗流有限元分析方法的改进[J].水利水电科技进展。2009,29(2):5-8.
    [45]陈正汉,谢定义,刘祖典.非饱和土固结的混合物理论[J].应用数学与力学I.1993(2):127-137.
    [46]陈正汉,谢定义,刘祖典.非饱和土固结的混合物理论[J].应用数学与力学II.1993(8):687-697.
    [47]柴军瑞.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水力发电,1997(3).
    [48]王媛.多孔介质渗流与应力耦合的计算方法[J].工程勘察,1995(2)
    [49]罗晓辉.深基坑开挖渗流与应力耦合分析[J].工程勘察,1996(6)
    [50]仵彦卿.地下水与地质灾害.地下空间[M].1999,19(4):303-310.
    [51]平扬,徐燕平.深基坑工程渗流—应力耦合分析数值模拟研究[J],岩土力学,2001(3)
    [52]陈波,李宁,禚瑞花等.多孔介质的变形场—渗流场—温度场耦合有限元分析[J],岩石力学与工程学报,2001(4)
    [53]柴军瑞.地下水非达西渗流分析[J].勘察科学技术,2002(1):25-27.
    [54]杨志锡,杨林德.各向异性饱和土体的渗流耦合分析与数值模拟[J],岩石力学与工程学报,2002(10)
    [55]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J],水动力学研究与进展A辑,2003(4)
    [56]水利水电工程施工手册[M].北京:中国电力出版社,2005.
    [57]水工建筑物荷载设计规范[S],DL5077-1997.
    [58]冯耀奇,孙秀喜,李泉然.土石坝渗流及防渗技术措施研究[J].地下水,2006,28(2):70-72.
    [59]水电水利工程混凝土防渗墙施工规范[S],DL/T5199-2004.
    [60]Lee K.M., Rowe R.K. Analysis of three-dimensional ground movements:the Thunder Bay Tunnel.Canadian Geotechnieal Joumal,2005,28(1):25-41.
    [61]Lee K.M.,Rowe R.K.,Lo K.Y. Subsidence owing to tunneling.Ⅰ:Estimating the gap parameter[J]. Canadian Geotechnieal Journal,2002(a),29:929-940.
    [62]Lei S.An analytical solution for steady flow into a tunnel[J].Ground Water,2004.37:23-6.
    [63]Li X. Stress and displacement fields around a deep cireular tunnel with partial sealing[J]. Computers and Geoteehnies,2006,24(2):125-140.
    [64]Li X., Berrones R.F. Time-dependent behavior of partially sealed circular tunnels[J]. Computers and Geotechnics,2002,29(6):433-449.
    [65]Liao S.M, et al. Shield tunneling and environment protection in Shanghai soft ground[J].Tunnelling and Underground Space Technology.2009(InPress),doi:10.1016.
    [66]Loganathan N., Poulos H.G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnieal and Geoenvironmental Engineering,2008,124(9):846-856.
    [67]Mair R.J. Ground movement around shallow tunnels in soft clay[J].Tunnels and Tunneling,2002(6):3338.
    [68]Mair R.J., Tylor R.N.,Bracegirdle A. Surface Settlement profiles above tunnels in caly[J].Geotechnique,2003,43(2):315-320.
    [69]杨运泽,混凝土异形护面块体的现状及展望[J].港工技术.1996(2):24-33.
    [70]杨运泽,混凝土异形护面块体的现状及展望[J].港工技术.1996(3):28-47.
    [71]徐海军.SolidWorks2008中文版三维建模实例精解[M].北京:机械工业出版社.2007.
    [72]John Krahn.Seepage Modeling with SEEP/W [S]. Canada:GEO-SLOPE International LTD,2004.
    [73]John Krahn.Stress and Deformation Modeling with SIGMA/W[S]. Canada: GEO-SLOPE International LTD,2004.
    [74]John Krahn.Dynamic Modeling with QU AKE/W[S]. Canada:GEO-SLOPE International LTD,2004.
    [75]段梦兰.海冰环境中海洋石油钢结构的破坏分析[J].石油学报.1999,5(20):71-77.
    [76]毛海涛,侍克斌,王晓菊,周峰.土石坝防渗墙深度对透水地基渗流的影响[J].人民黄河,2009,31(2):84-86.
    [77]夏可风.水利水电工程施工手册:地基与基础工程[M],北京:中国电力出版社,2004.
    [78]蒋成明.塑性混凝土薄壁防渗墙施工技术在沙湾水电站的应用[J],水利水电施工,2008,(109):54-58.
    [79]MIDAS-GTS理论分析[S],北京:迈达斯公司.
    [80]强祖基,活动构造研究[M],地震出版社,1992,8.
    [81]Duncan, J.M. and Chang, C.Y.,1970. Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, ASCE, vol.96, no. SM5, 1629-1654
    [82]Hardin, B.O. and Vincent, P. D.,1972, Shear Modulus and Damping In Soils:Design Equations and Curves, Journal of the Soil Mechanics and Foundations Division, ASCE, SM7,667-691
    [83]殷宗泽.土工原理[M].北京:中国水利水电出版社,2007:470-480.
    [84]Idriss, I.M. and Sun, J.,1992, User's Manual for SHAKE91 A Computer Program For Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits, Department of Civil & Environmental Engineering, University of California Davis
    [85]Ji Zhou,Qiong Tian. The Analysis of Settlement for Geogrid Embankment and Slope Stability in Valley Soft Foundation Area[A]. In:2011 International Conference on Electric Technology and Civil Engineering [C]. Chengdu,2011,5
    [86]姜云,李水林,李天斌等.隧道工程围岩大变形类型与机制研究[J],地质灾害与环境保护,2004,15(4):48-53.
    [87]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M],北京:科学出版社,1995,87-106.
    [88]陈祖煌.土质边坡稳定分析:原理·方法·程序[M].北京:中国水利水电出版社,2003:533-560.
    [89]Ji Zhou,Qiong Tian. The Application of Solidworks's Parametric Modeling Method in Tunnel's Finite Element Numerical Simulation Analysis[A]. In:3rd International Conference on Transportation Engineering [C]. Wuhan,2011,10
    [90]Croce H, Pollara P, Oliveri R, Torregrossa MV, Valentino L, CanduxaR.Operational efficieney of a pilot plant for wastewater,reuse[J]. Water Seienee Teelmology, 1996,33(10):443-450.
    [91]Bendahmane D.Water reuse in develoPing countries(ineludingguidelines)[R].Water and Sanitation for Health.[J].Water Seienee Teehnology,2009,40(4-5):37-2.
    [92]FAO. Water quality management and control of water pollution.Proeeedings of A Regional Workshop,Bangkok, Thailand,26-30,October,1999.
    [93]ChouW.I.,Bobet A.Predictions of ground deformations in shallow tunnels in clay[J].Tunnelling and Underground Space Technology,2002,17:3-19.
    [94]Deane A.P.,Bassett R.H. The heathrow express trial turmel[A].Proeeedings of the Institution of Civil Engineers and Geotecllnieal Engineering,113:144-156.
    [95]El Tani M.Circular tunnel in asemi-infinite aquifer[J].Tunnelling and Underground Spaee Technology,2003.18(l):49-55.
    [96]Firmo R.J., Clough G.W.Finite element simulation of EPB shield tulllleling[J] Journal of the Geoteehnieal Engineering Division,ASCE,2005,111(2):155-173.
    [97]Fujita K.On the surface settlement caused by various methods of shield tunneling[A].Proceeding of 10th International Conference of Soil Mechanics and Foundation Engineering.Stockholm,vol 4:609-610.
    [98]Hwang J.H.,Lu C.C. A semi-analytical method for analyzing the tunnel water inflow[J].Tunnelling and Underground Space Technology,2007,22:39-6.
    [99]Jeffery GB. Plane stress and plane strain in bjPolar coordinates[C].Transactions of the Royal Soeiety, London,England,1920,221:265-293.
    [100]Karlsrud K. Water control when tunnelling under urban areas in the Os region[J].NFF publieation,2007,No.12(4):27-33.
    [101]Kolymbas D., Wagner P. Ground water ingress to tunnels-the exact analytical solution[J].Tunnelling and Underground Space Technology,2007,22(1),23-27.
    [102]Muskat M.The flow of homogeneous fluid through porous media[M]. Me Graw Hill, 1937,175-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700