用户名: 密码: 验证码:
上海光源BL14W1线站高分辨XAFS方法的实现及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自同步辐射光源发现以来,同步辐射实验方法已成为科学研究中一种越来越重要的实验技术。伴随着同步辐射技术的发展,X射线吸收精细结构谱(XAFS)方法也得到了快速的发展,新的实验技术如快速扫描XAFS、掠入射XAFS等相继出现。发展并利用新的实验技术,已经成为XAFS领域的重要方向之一。
     上海光源BL14W1线站是一条硬X射线通用谱学线站,主要进行X射线吸收精细结构谱的研究。现在已有多种吸收谱的测试手段如透射法,lytle荧光法、32元固探荧光法、掠入射XAFS方法,并可以在高低温等环境下进行XAFS谱的测试。高分辨XAFS方法的发展不仅可以拓展线站的实验技术,还可以解决一些常规XAFS方法无法解决的问题。
     高分辨XAFS谱仪是利用高能量分辨的分析晶体的谱仪,使样品、分析晶体、探测器三者采取罗兰圆几何结构。可以研究电子跃迁发出的更精细的光谱,一般主要是观测元素的Kβ1,3及其附近的各种卫星谱线,这些谱线往往需要几个eV或更高能量分辨的探测方法才能实现,常规探测方法的能量分辨率一般不好于120eV,难以或无法区分Kβ1,3及其附近的卫星谱线,而正是Kβ1,3及其附近的卫星谱线包含了重要的结构信息,如电子自旋与轨道耦合等,通过研究这种高分辨的发射谱及吸收谱可以获得常规XAFS吸收谱得不到的结构和信息。
     论文第一部分主要是在上海光源BL14W1线站成功发展并实现了高分辨XAFS方法,获得了高分辨的发射谱和吸收谱,本部分主要包括以下内容:
     1、对高分辨XAFS方法在上海光源BL14W1线站的实现进行了可行性讨论;
     2、介绍了高分辨XAFS方法的硬件系统,其主要由样品架系统、球面晶体系统和探测器系统三部分组成;
     3、对高分辨XAFS方法的软件系统的介绍,其软件系统主要是基于线站现有的编程软件Lab-View;
     4、安装调试了高分辨XAFS谱仪,并研究了Mn的各个价态的标准化合物样品,获得了高分辨的发射谱和吸收谱,测试了高分辨谱仪的性能;
     5、解决并优化了存在的问题,主要是对谱仪的分辨率、探测器参数和信噪比等加以优化。
     最终通过优化获得了分辨率在3eV左右的高分辨发射谱,已达到国际同类仪器的水平,证明了高分辨谱仪具有优越的性能,为今后XAFS线站进行相关的实验奠定了重要基础。
     论文第二部分主要是将高分辨XAFS方法应用在环境领域,结合静态法和高分辨XAFS方法,对不同pH值下Eu(III)在γ-MnOOH的表面的吸附机理和微观结构进行了研究,在对放射性核废料的存放存储以及放射性核素的寿命和迁移评估中,放射性核素与水体和土壤环境的迁移和吸附过程被认为是评估放射性核素与水体和土壤的相互作用的重要因素,自然界水体和土壤中的材料对放射性核素的吸附性能决定了放射性核素在水体和土壤等环境中的扩散和迁移能力。通过对Eu(III)与环境中材料的相互作用的研究,来获得镧系、锕系等有相似化学性质的元素的处理方式。本部分的主要研究内容有:
     1、配备了实验所需的化学试剂,并对合成的材料进行表征测试,结果表明所制备的Eu的溶液和碱式氧化锰符合实验要求。
     2、通过静态批式法对制备的Eu在碱式氧化锰表明进行吸附实验,并对吸附结果进行分析,结果表明随着pH值的增大,吸附效果变好,但当pH值达到一定值后吸附效果趋于稳定,分析发现这是由γ-MnOOH的表面的基团浓度影响的。进一步分析发现,Eu(III)在γ-MnOOH的表面的吸附源自于Eu(III)在γ-MnOOH的表面形成的内层表面络合物。
     3、对吸附样品和标样参照样品进行了吸收谱研究,吸收谱数据显示所有样品中的Eu均为三价,通过对吸附样品吸收谱数据的拟合发现,Eu(III)在γ-MnOOH的表面的相互作用,除在第一配位层有Eu与O的配位外,在第二配位层有Eu与Mn的配位存在,这也表明Eu(III)与γ-MnOOH相互作用形成的内层表面络合物,这与宏观吸附结果相吻合。
     实验中因为Mn的Kα荧光峰和Eu的Lα1荧光峰相互干扰,常规吸收谱实验无法正常进行,基于高分辨XAFS方法,成功将上述荧光峰区分开来,使实验得以成功进行,为以后此类复杂体系(基底元素的荧光信号与目标元素的荧光信号相互干扰)的研究奠定了基础。
     此研究不仅从宏观上发现了放射性核素Eu(III)与碱式氧化锰表面的作用机理,还从微观上印证了这种相互作用机理,这对于揭示放射性核素Eu(III)等放射性核素与自然界中的氧化物等天然矿物的作用机理有一定的参考价值,对于阐明放射性核素在界面表面的吸附作用过程也有一定的意义。
Since the appearance of the synchrotron radiation, synchrotron radiation techniquesare becoming important experimental techniques of scientific researches gradually.XAFS technique is one of the most important synchrotron radiation techniques andhas been developed rapidly. New experimental techniques, such as QXAFS, GIXAFSand so on, have emerged. The development of new methods of XAFS technique isimportant for scientific researches.
     XAFS beamline (BL14W1) at Shanghai Synchrotron Radiation Facility (SSRF) is ageneral purpose XAFS beamline. It is mainly used for XAFS tests. Now XAFSbeamline have a variety of testing methods for XAFS, such as transmission mode,lytle fluorescence mode,SDD detector mode etc.. The development of high-resolutionXAFS method can not only expand the experimental techniques of beamline, but alsosolve some questions that conventional XAFS methods cannot solve.
     The high-resolution XAFS spectrometer is composed of a spherically curvedsilicon crystal, a detector and a sample. The analyzing plane is horizontal. The bentcrystal, the sample and the detector are located on the Rowland circle. It is used tostudy the spectrum from the electronic transitions. Generally it is mainly used toobtain the Kβ1,3and its satellite spectrum. The obtainment of these spectra can beachieved by using high energy resolution method. Generally speaking, the energyresolution of conventional XAFS method is not more than120eV. It is difficult (evenimpossible) to distinguish these spectra. But these spectra contain important structuralinformation such as spin state and orbit coupling. We can get some information thatconventional XAFS method cannot obtain through high-resolution emission spectraand absorption spectra.
     The first part of this thesis discussed high-resolution XAFS method at Bl14W1beamline. High-resolution XES and XAFS spectra were obtained. The following isthe main content of this part:
     1. Design of high-resolution XAFS method at BL14W1beamline;
     2. Introduction of hardware of high-resolution XAFS spectrometer;
     3. Introduction of software of high-resolution XAFS spectrometer. It is based on theexisting software Labview;
     4. Installation and test of high-resolution XAFS spectrometer. Test of theperformance of the spectrometer through the emission spectra of Mn compounds;
     5. Optimization of the resolution and signal-to-noise ratio for high-resolutionXAFS method.
     The resolution of the emission spectrum about3eV can be obtained through theoptimization. The testing results indicated that high-resolution XAFS method hadbeen achieved at BL14W1beamline in SSRF. It reached the international level ofsimilar instruments.
     The second part of this thesis discussed the high-resolution XAFS method appliedto the field of environment. Mechanism and microstructure of Eu(III) interaction withγ-MnOOH by a combination of batch and high resolution EXAFS. In the context ofsafety of nuclear waste repositories and for the assessment of radionuclide fate andmobility in the natural environment, understanding of the interaction mechanism andmicrostructure of radionuclides at the interface is of great importance to assess theinterfacial behavior of radionuclides in the natural environment. The chemicalproperty of Eu(III) is very similar to other lanthanides and actinides, thus we canunderstand other lanthanides and actinides interfacial behavior through Eu(III). Thework is listed in the following part:
     Preparation and characterization of chemicals was carried out. The results showedthat the prepared solution of Eu and γ-MnOOH met experimental requirements.
     Adsorption experiments about Eu(III) interaction with γ-MnOOH. The resultsindicated that Eu(III) interaction with γ-MnOOH by sorption process was mainly dueto inner-sphere surface complexation.
     XAFS investigation of interaction mechanism and microstructure about Eu(III)interaction with γ-MnOOH through high-resolution XAFS method. This result wasconsistent with the macroscopic adsorption results.
     In this experiment, the fluorescence peak Lα of Eu(III) and Mn which is difficult tobe discriminated using conventional XAFS technique was discriminated. It formedthe basis of the studies on such complex systems.
     The utility of high-resolution EXAFS technique has been well-demonstrated in thepresent study. The results of this work are important to understand thephysicochemical behavior of the interested radionuclides in the natural environment.
引文
1H. Winick, and A. Bienenstock, SYNCHROTRON RADIATION RESEARCH.ARNPS,1978
    2马礼敦,杨福家.同步辐射应用概论,复旦大学出版社.2001
    3F.R.Elder, A.M.Gurewitsch, R.V.LangmuirandH.D.Pollaek, Phys.Rev.71,829,(1947)
    4徐彭寿,潘国强,同步辐射应用基础,中国科学技术大学出版社,2009
    5冼鼎昌.同步辐射应用的发展.物理.199524(11):P642-650
    6D. Iwanenko, and I. Pomeranchuk, On the Maximal Energy Attainable in aBetatron, Phys. Rev.,1944,65,343
    7Julian Schwinger, Electron Radiation in High Energy Accelerators, Phys.Rev.,1946,70,798
    8JIANG MianHeng, YANG Xiong, XU HongJie, ZHAO ZhenTang, DING Hao.Shanghai Synchrotron Radiation Facility, Chinese Science Bulletin,2009,54(22),4171
    9A.A.Sokolov, N.P. KlePikov and I.M. Ternov, K VOPROSU OB IZLUCHENIIBYSTRYKH ELEKTRONOV V MAGNITNOM POLE, Dokl. Akad. NaukSSSR,1953,59,665
    10A.A.Sokolov and I.M.Ternov, The Quantum Theory of The Radiating Electron,Sov. Phys. JETPI,1955,227
    11王其武,刘文汉,X射线吸收精细结构及其应用,科学出版社,1994
    12Becker, R. S., Golovchenko, J. A., Pate l, J. R., Phys. Rev. Lett.,50,153,(1983)
    13Gregor, R. B. et al., Applica tion of Various EXAFS Techniques to theInvestigation of Structurally Damaged Ma terials, Presented at XAFS V, Seattle,(1988)
    14Oyanagi, H., Matsushita, T., Kaminaga, U., Hashimoto, H., J. De Physique,47,C8-139,(1986)
    15Dartyge, E., Fontaine, A., Jucha, A. And Sayers, D., EXAFS and Near EdgeStructure Ⅲ,472, Springer-Verlag, Berlin,1984
    16M atsushita, T. Oyanagi, H., Saigo, S. and Kibara, H., Kaminaga, U., EXAFS andNear Edge Structure Ⅲ,476, Springer-Ver-lag, Berlin,(1984)
    17D. C. Koningsberger and P. Prins, X-ray absorption Principles, Application,Techniques of EXAFS, SEXAFS and XANES, John Wiley and Sons, New York,1988
    18F. W. Lytle, D. E. Sayers, and E. A.Stern, Report of the International Workshopon Standards and Criteria in X-ray Absorption Spectroscopy,1989, Physica B,58,701
    19R. Kronig, On the theory of fine structure in the X-ray absorption spectra, Z.Phys.,1931,70,317
    20R. Kronig, On the theory of fine structure in the X-ray absorption spectrum3, Z.Phys.,1932,75,468
    21H. Peterson, Zur Theorie der R ntgenabsorption molekularer Gase. III, Z. Phys.,98,569,1936
    22M. Sawada, K. Tsutsumi, T. Shiraiwa, T. Ishimura and M. Obashi, The X-RaySpectroscopy of Solid State, Ann. Rep. Sci. Work, Fac. Sci. Osaka Univ.,1959,7,1
    23V. V. Shmidt, On the effect of interelectron interaction in metals on the finestructure of X-ray spectra, SOVIET PHYSICS JETP-USSR,1961,12(5),886
    24D. E. Sayers, E. A. Stern, and F. W. Lytle, New Technique forInvestigatingNoncrystalline Structures: Fourier Analysis of the Extended X-Ray—Absorption Fine Structure, Phys. Rev. Letters,27,1204,1971
    25E.A. Stern,Theory of the extended x-ray-absorption fine structure,Phys. Rev. B,10,3027-3037,1974
    26C. A. Ashley and S. Doniach, Theory of extended x-ray absorption edgefinestructure (EXAFS) in crystalline solids, Phys. Rev. B11,1279–1288,1975
    27P. A.Lee and J.B.Pendry,Theory of the extended x-ray absorption fine structure,Phys. Rev. B,11,2795-2811,1975
    28J. J. Rehr and R. C. Albers, Scattering-matrix formulation of curved-wavemultiple-scattering theory: Application to x-ray-absorption fine structure, Phys.Rev. B,41,8139-8149,1990
    29J..J. Rehr and R.C. Albers. Theoretical approaches to x-ray absorption finestructure, Rev. Mod. Phys,72,621-654,2000
    30J. J.Rehr and A.L.Ankudinov, New developments in the theory of X-rayabsorption and core photoemission, J. Electron Spectrosc. Relat. Phenom,114-116,1115-1121,2001
    31J.A.Soininen,J.J.Rehr, and E.L.Shirley, J.Phys: Electron self-energy calculationusing a general multi-pole approximation, Condens. Matter,15,2573-2586,2003
    32Keski-Rahkomen and M. O. Krause, At. Data Nucl. Data Tables,14,140,(1974)
    33M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Excitation Energies fromTime-Dependent Density-Functional Theory, Phys. Rev. Lett.76,1212-1215,1996
    34D. E. Sayers, F. W. Lytle, and E. A. Stern, Adeances in X-ray Analysis, edited byB. L. Henke, J, B. Newkirk, and G. R. Mallett (Plenum, New York,1970), Vol.13,p.248
    35E.A.Stern, Theory of the extended x-ray-absorption fine structure, Phys. Rev. B,1974,10,3027
    36G. L. Glen, and C. G. Dodd, Use of Molecular Orbital Theory to Interpret X‐RayK‐Absorption Spectral Data, J. Appl. Phys.,1968,39,5372
    37J. C. Swarbrick, U. Skyllberg, T. Karlsson, P. Glatzel, Inorg. Chem.2009;48,10748-10756
    38J. Singh, M. Tromp, O. V. Safonova, P. Glatzel, J. A. van Bokhoven, CatalysisToday,2009;145,300-306
    39K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. L. Hu, M. W. Ribbe, F. Neese, U.Bergmann, S. DeBeer, Science,2011;334,974
    40R. Nomura, H. Ozawa, S. Tateno, K. Hirose, J. Hernlund, S. Muto, H. Ishii, N.Hiraoka, Nature,2011;473,199-202
    41K. Hamalainen, C.-C. Kao, J. B. Hastings, D. P. Siddons, L. E. Berman, V.Stojanoff, and S. P. Cramer,“Spin-dependent x-ray absorption of MnO andMnF2”, Phys. Rev. B4614274(1992).
    42U. Bergmann, S. P. Cramer,“A High-Resolution Large-Acceptance Analyzer forX-ray Fluorescence and Raman Spectroscopy”, In Proc. SPIE, Crystal andMultilayer Optics,3448(1998)198–210.
    43T. A. Tyson, Q. Qian, C.–C. Kao, J.–P. Rueff, F. M. F. de Groot, M. Croft, S.–W.Cheong, M. Greenblatt, and M. A. Subramanian,“Valence state of Mn inCa-doped LaMnO3studied by high-resolution Mn Kβ emission spectroscopy”,Phys. Rev. B60.4665-4674(1999).
    44P. Glatzel, U. Bergmann,“High resolution1s core hole X-ray spectroscopy in3dtransition metal complexes—electronic and structural information”, Coord. Chem.Rev.249(2005)65.
    45Hua Wei, Huang Yuying, He Wei, Wu Ziyu,“Progress of Synchrotron RadiationHigh-Resolution X-ray Fluorescence Spectrometer and its Application”,(Chinese), Nuclear Technique,Vol.27., No.10,(2004)740-743.
    46K. J. Zhou, W. Hua, M. Q. Cui, Y. D. Zhao and Y. Y. Huang,“Resonant inelasticx-ray scattering from highly correlated Dysprosium compounds”, X-raySpectrometry,35(2006),106-111.
    47Wei Hua, Kejin Zhou, Yuying Huang, Q. Qian, Wei He, Shixuan Ma, WangshengChu, Tiandou Hu, and Zhiyu Wu,“Experimental Investigation of La1-xSrxMnO3by High-resolution X-ray Emission and Spin-polarized X-ray AbsorptionSpectroscopy”, Spectrochim. Acta. Part A,70(2008),462-465.
    48Evgueni Kleimenov, Anna Bergamaschi, Jeroen van Bokhoven, Markus Janousch,Bernd Schmitt and Maarten Nacgtegaal,“High-resolution hard-X-rayfluorescence spectrometer”, Journal of Physics: Conference Series190(2009)012035.
    49I Zaharieva, P Chernev, M Risch, L Gerencser, G Berggren, D Shevchenko, MAnderlund, T C Weng, M Haumann and H Dau,“Towards a comprehensiveX-ray approach for studying the photosynthetic manganese complex-XANES,Kα/Kβ/Κβ-satellite emission lines, RIXS, and comparative computationalapproaches for selected model complexes”, Journal of Physics: Conference Series
    190(2009)012142.
    50Hitoshi Yamaoka, Ignace Jarrige, Atsushi Ikeda-Ohno, Satoshi Tsutsui, Jung-FuLin, Nao Takeshita, Kiichi Miyazawa, Akira Tyo, Hijiri Kito, Hiroshi Eisaki,Nozumu Hiraoka, Hirofumi Ishii, and Ku-ding Tsuei,“Hybridization andsuppression of superconductivity in CeFeAsO1-y: Pressure and temperaturedependence of the electronic structure”, Phys. Rev. B82,125123(2010).
    51Pieter Glatzel, Jagdeep Singh, Kristina O. Kvashnina, and Jeroen A. vanBokhoven,“In Situ Characterization of the5d Density of States of PtNanoparticles upon Adsorption of CO”, J. Am. Chem. Soc.2010,132,2555–2557.
    52Jagdeep Singh, Ryan C. Nelson, Brian C. Vicente, Susannah L. Scott and JeroenA. van Bokhoven,“Electronic structure of alumina-supported monometallic Ptand bimetallic PtSn catalysts under hydrogen and carbon monoxide environment”,Phys. Chem. Chem. Phys.,2010,12,5668–5677.
    53T. Vitova, K. O. Kvashnina, G. Nocton, G. Sukharina, M. A. Denecke, S. M.Butorin, M. Mazzanti, R. Caciuffo, A. Soldatov, T. Behrends, and H. Geckeis1,“High energy resolution x-ray absorption spectroscopy study of uranium invarying valence states”, Phys. Rev. B82,235118,2010.
    54Liling Sun, Xi Dai, Chao Zhang, Wei Yi, Genfu Chen, Nanlin Wang, LirongZheng, Zheng Jiang, Xiangjun Wei, Yuying Huang, Jie Yang, Zhian Ren, Wei Lu,Xiaoli Dong, Guangcan Che, Qi Wu, Hong Ding, Jing Liu, Tiandou Hu andZhongxian Zhao,“Pressure-induced competition between superconductivity andKondo effect in CeFeAsO1-xFx(x=0.16and0.3)”, Europhysics Letters,9157008,2010.
    55Liling Sun, Jing Guo, Genfu Chen, Xianhui Chen, Xiaoli Dong, Wei Lu, ChaoZhang, Zheng Jiang, Yang Zou, Suo Zhang, Yuying Huang, Qi Wu, Xi Dai,Yuanchun Li, Jing Liu, and Zhongxian Zhao,“Valence change of europium inEuFe2As1.4P0.6and compressed EuFe2As2and its relation toSuperconductivity”, Phys. Rev. B82,134509,2010.
    56Rentao Mu, Qiang Fu, Hong Xu, Hui Zhang, Yuying Huang, Zheng Jiang, ShuoZhang, Dali Tan, and Xinhe Bao,“Synergetic Effect of Surface and SubsurfaceNi Species at Pt-Ni Bimetallic Catalysts for CO Oxidation”, J. Am. Chem. Soc.2011,133,1978–1986.
    57Hongbo Zhang, Xiulian Pan, Jingyue (Jimmy) Liu, Weizhong Qian, Fei Wei,Yuying Huang, and Xinhe Bao,“Enhanced Catalytic Activity of Sub-nanometerTitania Clusters Confined inside Double-Wall Carbon Nanotubes”, onlinepublished on ChemSusChem, DOI:10.1002/cssc.201000324.
    58Y.Y.Huang, X.Gao, Y. Zou, S.Q.Gu, Q. Gao, Z. Jiang, X.J.Wei,“HighEnergy-resolution Detection Technique at SSRF XAFS Beamline”, the abstractsof7th International Conference on Inelastic X-ray Scattering, IXS2010, October11-14,2010, ESRF, France, pp175.
    59P. Glatzel, F. M. F. de Groot, U. Bergmann, Synchrotron Radiation News,2009;22,12-16
    60E. Kleymenov, J. A. van Bokhoven, C. David, P. Glatzel, M. Janousch et al. Rev.Sci. Instrum.2011;82,065107
    61D. Sokaras, D. Nordlund, T.-C. Weng, R. A. Mori, P. Velikov et al. Rev. Sci.Instrum.2012;83,043112
    62J. L. Hazemann, O. Proux, V. Nassif, H. Palancher, E. Lahera, C. Da Silva, A.Braillard, D. Testemale, M.-A. Diot, I. Alliot, W. Del Net, A. Manceau, F. Gélébart, M. Morand, Q. Dermigny, A. Shukla, J. Synchrotron Rad.2009;16,283-292
    63P. Glatzel, M. Sikora, G. Smolentsev, M. Fernández-García, Catalysis Today,2009;145,294-299
    64U. Bergmann, P. Glatzel, Photosynth Res.2009;102,255-266
    65G. Peng, F. M. F. deGroot, K. H m l inen, J. A. Moore, X. Wang, M. M. Grush, J.B. Hastings, D. P. Siddons, W. H. Armstrong, O. C. Mullins, S. P. Cramer, J. Am.Chem. Soc.1994;116,2914-2920
    66U. Bergmann, S. P. Cramer, SPIE,1998;3448,198-209
    67E. Collart, A. Shukla, F. Gélébart, M. Morand, C. Malgrange, N. Bardou, A.Madouri, J.–L. Pelouard, J. Synchrotron Rad.2005;12,473-478
    68S. Huotari, F. Albergamo, Gy. Vankó, R. Verbeni, and G. Monaco, Rev. Sci.Instrum.2006;77,053102
    69T. Matsushita, R. P. Phizackerley, Jpn. J. Appl. Phys.1981;20,2223-2228
    70G. D. Sheng, S. T. Yang, Y. M. Li, X. Gao, Y. Y Huang, X. K Wang, Radiochim.Acta in press.
    71Nriagu, J.O. Pacyna, J.M. Quantitative assessment of worldwide contamination ofair, water and soils by trace metals. Nature1988,333:134-139.
    72Zhang, Y. Li Y. Li, J. Hu, L. Zheng, X. Enhanced removal of nitrate by a novelcomposite: Nanoscale zero valent iron supported on pillared clay. Chem. Eng. J.2011,171:526-531.
    73Zhang, Y. Li, Y. Zheng, X. Removal of atrazine by nanoscale zero valent ironsupported on organobentonite. Sci. Total Environ.2011,409:625-630.
    74Li, Y. Zhang, Y. Li, J. Zheng, X. Enhanced removal of pentachlorophenol by anovel composite: Nanoscale zero valent immobilized on organobentonite.Environ. Pollut.2011,159:3744-3749.
    75Zhao, D. Wang, Y. Xuan, H. Chen, Y. Cao, T. Removal of radiocobalt fromaqueous solution by Mg2Al layered double hydroxide. J. Radioanal. Nucl. Chem.2013,295:1251-1259.
    76Zhang, Y.L. Li, Y.M. Li, J. Sheng, G. Zhang, Y. Zheng, X. Enhanced Cr(VI)removal by using the mixture of pillared bentonite and zero-valent iron. Chem.Eng. J.2012,185-186:243-249.
    77Li, J. Li, Y. Meng, Q. Removal of nitrate by zero-valent iron and pillaredbentonite. J. Hazard. Mater.2010,174:188-193.
    78Li, Y. Li, J. Zhang, Y.L. Mechanism insights into enhanced Cr(VI) removal usingnanoscale zerovalent iron supported on the pillared bentonite by macroscopic andspectroscopic studies. J. Hazard. Mater.2012,227-228:211-218.
    79Tan, X.L. Wang, X.K. Geckeis, H. Rabung, Th. Sorption of Eu(III) on humic acidor fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS andbatch techniques. Environ. Sci. Technol.2008,42:6532–6537.
    80Tan, X.L. Fan, Q.H. Wang, X.K. Grambow, B. Eu(III) sorption to TiO2(anataseand rutile): batch, XPS, and EXAFS studies. Environ. Sci. Technol.2009,43:3115-3121.
    81Fan, Q.H. Tan, X.L. Li, J.X. Wang, X.K. Wu, W.S. Montavon, G. Sorption ofEu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ.Sci. Technol.2009,43:5776-5782.
    82Sheng, G. Hu, B. Role of solution chemistry on the trapping of radionuclideTh(VI) using titanate nanotubes as an efficient adsorbent. J. Radioanal. Nucl.Chem. doi:10.1007/s10967-012-2389-3.
    83Sheng, G. Dong, H. Shen, R. Li, Y. Microscopic insights into the temperaturedependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS,XAFS and batch technique. Chem. Eng. J. doi.org/10.1016/j.cej.2012.10.076.
    84Sheng, G. Shen, R. Dong, H. Li, Y. Colloidal diatomite, radionickel and humicsubstance interaction: A combined batch, XPS and EXAFS investigation. Environ.Sci. Pollut. Res. doi:10.1007/s11356-012-1278-1.
    85Sheng, G. Li, Y. Dong, H. Shao, D. Environmental condition effects onradionuclide64Cu(II) sequestration to a novel composite: Polyaniline graftedmultiwalled carbon nanotubes. J. Radioanal. Nucl. Chem.2012,293:797-806.
    86Sheng, G. Dong, H. Li, Y. Characterization of diatomite and its application for theretention of radiocobalt: role of environmental parameters. J. Environ. Radioact.2012,113:108-115.
    87Schlegel, M.L. Pointeau, I. Coreau, N. Reiller, P. Mechanism of europiumretention by calcium silicate hydrates: an EXAFS study. Environ. Sci. Technol.2004,38:4423-4431.
    88Kraemer, S. M. Xu, J.D. Raymond, K.N. Sposito, G. Adsorption of Pb(II) andEu(III) by oxide minerals in the presence of natural and synthetic hydroxamatesiderophores. Environ. Sci. Technol.2002,36:1287-1291.
    89Montavon, G. Markai, S. Andrés, Y. Grambow, B. Complexation studies of Eu(III)with alumina-bound polymaleic acid: effect of organic polymer loading and metalion concentration. Environ. Sci. Technol.2002,36:3303-3309.
    90Stumpf, T. Curtius, H. Walther, C. Dardenne, K. Ufer, K. Fangh nel, T.Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study. Environ.Sci. Technol.2007,41:3186-3191.
    91Sheng, G. Yang, S. Li, Y. Gao, X. Huang, Y. Wang, X. Retention mechanisms andmicrostructure of Eu(III) on manganese dioxide studied by batch and highresolution EXAFS technique. Radiochim. Acta in press.
    92Tan, X.L. Fang, M. Li, J.X. Lu, Y. Wang, X.K. Adsorption of Eu(III) onto TiO2:effect of pH, concentration, ionic strength and soil fulvic acid. J. Hazard. Mater.2009,168:458-465.
    93Stumpf, Th. Hennig, C. Bauer, A. Denecke, M.A. Fangh nel, Th. An EXAFS andTRLFS study of the sorption of trivalent actinides onto smectite and kaolinite.Radiochim. Acta2004,92:133-138.
    94Tertre, E. Berger, G. Simoni, E. Castet, S. Giffaut, E. Loubet, M. Catalette. H.Europium retention onto clay minerals from25to150°C: Experimentalmeasurements, spectroscopic features and sorption modeling. Geochim.Cosmochim. Acta2006,70:4563-4578.
    95Bradbury, M.H. Baeyens, B. Sorption of Eu on Na-and Ca-montmorillonites:experimental investigation and modeling with cation exchange and surfacecomplexation. Geochim. Cosmochim. Acta2002,66:2325-2334.
    96Hu, J. Xie, Z. He, B. Sheng, G. Chen, C. Li, J. Chen, Y. Wang, X. Sorption ofEu(III) on GMZ bentonite in the absence/presence of humic acid studied by batchand XAFS techniques. Sci. China B: Chem.2010,53:1420-1428.
    97Shao, D.D. Fan, Q.H. Li, J.X. Niu, Z.W. Wu, W.S. Chen, Y.X. Wang, X.K.Removal of Eu(III) from aqueous solution using ZSM-5zeolite. Micro. Macro.Material.2009,123:1-9.
    98Kumar, S. Kar, A.S. Bhattacharyya, D. Tomar, B.S. XAFS spectroscopy study ofEu(III) sorption on γ-alumina: Effect of pH. J. Radioanal. Nucl. Chem.2012,294:109-113.
    99Sheng, G. Yang, S. Zhao, D. Sheng, J. Wang, X. Adsorption of Eu(III) on titanatenanotubes studied by a combination of batch and EXAFS technique. Sci. China:
    100Rakovan, J. Newville, M. Sutton, S. Evidence of heterovalent Eu in zonedLlallugau apatite using wavelength dispersive XANES. Am. Mineral.2001,86:697-700.
    101Post, J. E. Manganese oxide minerals: Crystal structures and economic andenvironmental significance. Proc. Natl. Acad. Sci. USA1999,96:3447-3454.
    102Zhu, M.Q. Ginder-Vogel, M. Sparks, D.L. Ni(II) sorption on biogenic Mn-oxideswith varying Mn octahedral layer structure. Environ. Sci. Technol.2010,44:4472-4478.
    103Brennecka, G.A. Wasylenki, L.E. Bargar, J.R. Weyer, S. Anbar, A.D. Uraniumisotope fractionation during adsorption to Mn-oxyhydroxides. Environ. Sci.Technol.2011,45:1370-1375.
    104Lafferty, B.J. Ginder-Vogel, M. Sparks, D.L. Arsenite oxidation by a poorlycrystalline Manganese-oxide1: stirred-flow experiments. Environ. Sci. Technol.2010,44:8460-8466.
    105Pan, G. Qin, Y.W. Li, X.L. Hu, T.D. Wu, Z.Y. Xie, Y.N. EXAFS studies onadsorption-desorption reversibility at manganese oxides-water interfaces I.Irreversible adsorption of zinc onto manganite (γ-MnOOH). J. Colloid Interf. Sci.2004,271:28-34.
    106Li, X.L. Pan, G. Qin, Y.W. Hu, T.D. Wu, Z.Y. Xie, Y.N. EXAFS studies onadsorption–desorption reversibility at manganese oxide-water interfaces II.Reversible adsorption of zinc on δ-MnO2. J. Colloid Interf. Sci.2004,271:35-40.
    107Bochatay, L. Persson, P. Sjoberg, S. Metal ion coordination at thewater-manganite (γ-MnOOH) interface I. An EXAFS study of cadmium(II). J.Colloid Interf. Sci.2000,229:584-592.
    108Bochatay, L. Persson, P. Metal ion coordination at the water-manganite(γ-MnOOH) Interface II. An EXAFS study of zinc(II). J. Colloid Interf. Sci.2000,229:593-599.
    109Hazemann, J. Proux, O. Nassif, V. Palancher, H. Lahera, E. Silva, C. Braillard, A.Testemale, D. Diot, M. Alliot, I. Net, W. Manceau, A. Gelebart, F. Morand, M.Dermigny, Q. Shukla, A. High-resolution spectroscopy on an X-ray absorptionbeamline. J. Synchrotron Rad.2009,16:283-292.
    110Takahashi, Y. Uruga, T. Tanida, H. Terada, Y. Nakai, S. Shimizu, H. Applicationspeciation of trace Os in iron meteorites. Analytica Chimica Acta2006,558:332-336.
    111Goulon, J. Rogalev, A. Goujon, G. Gauthier, Ch. Moguiline, E. Solé, A. Feite, S.Wilhelm, F. Jaouen, N. Goulon-Ginet, Ch. Dressler, P. Rohr, P. Lampert, M.O.Henck. R. Advanced detection systems for X-ray fluorescence excitationspectroscopy. J. Synchrotron Radiat.2005,12:57-69.
    112Machek, P. Welter, E. Drger, G. Brüggmann, U. Fr ba, M. A new X-rayspectrometer with large focusing crystal analyzer. J. Synchrotron Radiat.2005,12:448-454.
    113M. Ramstedt, C. Norgren, A. Shchukarev, S. Sj berg, P. Persson, Co-adsorptionof cadmium(II) and glyphosate at the water–manganite (γ-MnOOH) interface. J.Colloid Interf. Sci.2005,285:493-501.
    114Lou, X. Wu, X. Zhang, Y. A study about γ-MnOOH nanowires as anode materialsfor rechargeable Li-ion batteries. J. Alloys Compd.2013,550:185-189.
    115Li, Z. Bao, H. Miao, X. Chen, X. A facile route to growth of γ-MnOOH nanorodsand electrochemical capacitance properties. J. Colloid Interf. Sci.2011,357:286-291.
    116Ankudinov, A.L. Rehr, J.J. Relativistic calculations of spin-dependent X-rayabsorption spectra. Phys. Rev. B1997,56:1712-1715.
    117Allen, P.G. Bucher, J.J. Shuh, D.K. Edelstein, N.M. Craig, I. Coordinationchemistry of trivalent lanthanide and actinide ions in dilute and concentratedchloride solutions. Inorg. Chem.2000,39:595-601.
    118Hu, B. Cheng, W. Zhang, H. Sheng, G. Sorption of radionickel to goethite: effectof water quality parameters and temperature. J. Radioanal. Nucl. Chem.2010,285:389-398.
    119Sheng, G. Yang, S. Sheng, J. Zhao, D. Wang, X. Influence of solution chemistryon the removal of Ni(II) from aqueous solution to titanate nanotubes. Chem. Eng.J.2011,168:178-182.
    120Hu, B. Cheng, W. Zhang, H. Yang, S. Solution chemistry effects on sorptionbehavior of radionuclide63Ni(II) in illite-water suspensions. J. Nucl. Mater.2010,406:263-270.
    121Wu, C.H. Lin, C.F. Horng, P.Y. Adsorption of copper and lead ions ontoregenerated sludge from a wWater treatment plant. J. Environ. Sci. Health A2004,39:237-252.
    122Wu, C.H. Studies of the equilibrium and thermodynamics of the adsorption ofCu2+onto as-produced and modified carbon nanotubes. J. Colloid Interface Sci.2007,311:338-346.
    123Hayes, K.F. Leckie, J.O. Modeling ionic strength effects on cation adsorption athydrous oxide/solution interfaces. J. Colloid Interface Sci.1987,115:564-572.
    124Sheng, G. Li, Y. Yang, X. Ren, X. Yang, S. Hu, J. Wang, X. Efficient removal ofarsenate by a versatile magnetic graphene oxide composites, RSC Adv.2012,2:12400-12407.
    125Sheng, G. Hu, J. Jin, H. Yang, S. Ren, X. Li, J. Chen, Y. Wang, X. Effectof humic acid, fulvic acid, pH, ionic strength and temperature on63Ni(II) sorption to MnO2, Radiochimica Acta,2010,98:291-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700