用户名: 密码: 验证码:
压力分散型锚索锚固机理及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土锚固技术在实际工程中有广泛的应用,特别是20世纪90年代以来,压力分散型锚索才开始在我国的一些工程中得到了应用和发展,对锚固机理的研究虽然做了一些工作,但还未获得公认的成果,影响了这种锚索的进一步推广应用。结合工程界目前广泛关注的热点和难点问题,通过理论分析、地质力学模型试验和数值模拟计算,研究了压力分散型锚索的锚固机理,并在此基础上开展了设计计算方法的研究。取得的主要成果如下:
     (1)揭示了锚索体系的受力和变形特征。
     压力分散型锚索通过承压板将锚索的张拉力转换成作用在各单元锚索注浆体上的压力后,锚索体系表现出三种受力和变形特征:其一,注浆体承受压力作用后会发生径向膨胀变形,浆体周围的岩土体会对这种变形施加约束从而给浆体施加了径向压力,由此在孔壁即浆-岩界面产生的摩阻力是提高锚固力的重要原因;其二,若浆-岩界面的抗剪强度不足或锚固段长度较短,各锚索单元张拉荷载较大时,各单元锚索上的压力在传递过程中会相互影响,发生应力叠加现象;其三,在单元锚索的连接处即承压板处会出现拉应力,该处拉压变形不协调会造成此处注浆体开裂。
     (2)研制了新的模型试验设备。
     压力分散型锚索将张拉力以压力的形式分散作用在各单元锚索的注浆体上,各单元锚索的受力和变形特性及其相互影响,是锚固机理研究的重要内容。为此研制了一套新的地质力学模型试验设备和相应试验方法,可对压力分散型锚索的各单元锚索进行分级循环张拉,研究各单元锚索的受力特征和传力机制。
     (3)提出了基于注浆体径向膨胀变形的锚固力提高值的计算公式。
     根据受压注浆体的径向膨胀变形特性得到了单元锚索轴向应力和剪应力按负指数函数变化的分布规律,单元锚索承载体处的轴向应力和剪应力为其最大值,以后随注浆体长度的增加而逐渐减小。压力分散型锚索较拉力型锚索锚固力提高的原因在于注浆体径向膨胀变形会受到径向约束压力作用,并同时产生了摩阻力,锚固力提高值τa可按照公式τa=Pm tanφ/(3S)计算。
     (4)提出了单元锚固段长度的计算公式。
     坚硬岩体对注浆体径向膨胀变形的约束较大,各锚索单元上的压力在传递过程中不会相互影响,也不会发生应力叠加现象。软弱岩土体对注浆体径向膨胀变形的约束较小,各锚索单元间的应力会相互影响,容易发生应力叠加现象。根据剪应力提高值L和浆-岩界面固有粘结力C值,提出了不发生应力叠加现象条件下单元锚固段长度的计算公式,即lsa=P/πD(τa+C)]
     (5)提出了注浆体压缩变形的验算方法。
     各单元锚索的承载体连接了前后两个单元锚索,张拉荷载通过承压板给本级单元锚索注浆体施加压力的同时,也给与之相连的孔底或单元锚索注浆体施加了拉力。在此连接处的拉压变形不协调时会造成该处出现裂纹而影响锚固效果。基于连接处的拉压变形特性,提出了以注浆体压缩位移来验算注浆体的变形程度,并给出了验算方法和公式:σ0/βE≤[S0],为控制注浆体变形和开裂提供了理论参考。
     (6)对现有设计方法提出了改进建议。
     本文在压力分散型锚索锚固机理、锚固力提高的原因、各锚索单元间的压力传递以及承载体处注浆体的受力与变形等方面取得了较好成果,现有设计方法在这些方面存在不足。在详细分析现有设计方法的基础上,提出了补充和改进建议。
Rock or soil anchoring technology has extensive application in practical engineering, especially since the ninties of the20century, dispersed pressure anchor cable began its application and development in some engineerings of China. Although some study work on anchorage mechanism has been done, the recognized results have not yet obtained, which affected the further application of the anchor cable. Combined with the extensive attention the hot and difficult issues of the engineering profession, the anchorage mechanism of the pressure dispersed anchor cable has been studied by theoretical analysis, geomechanical model test and numerical simulation, the design calculation method has been studied and developed on the anchorage mechanism basis. The main achievements are as follows:
     (1) The features of mechanics and deformation of the cable system have been revealed.
     The pressure dispersed anchor cable transformes the tension load into the pressure of grouting body of the anchor cable unit through the bearing body, anchor cable system exhibits three stress characteristics:one, the radial expansion deformation of the grouting body will occur after the grouting body under pressure, and the hole wall of rock and soil will constrain the radial deformation to exert radial pressure on the grouting body, the radial constraint effect producing the friction resistance along the pulp-rock interface is the very important reason of the anchoring force improved; secondly, if the shear strength of the pulp-rock interface is insufficient or the anchoring segment length is shorter, and the load of each anchor cable unit is very bigger, the pressure on each anchor cable unit will influence each other in the transmission process, the stress superposition phenomenon will occur between the anchor units; thirdly, the tensile stress near the bearing body appears, when the tension and compression deformation of the grouting body deformation of the near units does not coordinate with each other, the grouting body will crack.
     (2) A set of new model test equipment has been studied and developed.
     The dispersed pressure anchor cable apply the tension load on the grouting body of each anchor cable unit in the form of pressure, the characteristics of the mechanics and deformation of each anchorage unit and the influence on each other are the important content of mechanism of anchorage. A set of new geomechanical model test apparatus and test method have been studied and developed, and the tension test can adopt the grading cyclic loading method in each bearing unit of the dispersed pressure anchor cable to study the mechanical characteristics of each anchorage unit and load transfer mechanism.
     (3) The calculation formula of the increased value of the anchoring force based on the radial expansion deformation of the grouting body has been studied and developed.
     According to the radial expansion deformation characteristics of the grouting body under pressure, the distribution laws of negative exponential function changes of the axial stress and shear stress of the anchor cable have been put forward, the maximum value of the axial stress or shear stress bearing is located at the bearing body, and reduced gradually with the grouting body length increased. Compared with tensile type anchor cable, the anchorage force of the dispersed pressure anchor cable increased because of the radial expansion deformation of the grouting body can be affected by radial confinement pressure while frictional resistance produced, the increased value of shear stress in accordance with the calculation formula τa-Pmtanφl(3S).
     (4) The length of anchorage segment of anchor cable unit has been studied and developed.
     The constraint on the radial expansion deformation of grouting body by the hard rock is very larger, the pressure of each anchor cable unit would not be affected in the transmission process, and the stress superposition phenomenon won't produce also, the constraint on the radial expansion deformation of grouting body by the Soft rock is smaller, the stress between the anchor unit will influence each other, which is prone to stress superposition phenomenon. According the increased value φa of the shear intensity of grouting-rock interface and the inherent cohesion C between the grouting body and rock soil, these two part resistance of the cable unit all play out, and consider the structure of the safety coefficient Fs, under the condition of the stress superposition phenomenon eliminated,the calculation formula of the length of anchoring segment of unit la can be replaced by the following formula la=FsP/πD(τa+c).
     (5) The calculation method of grouting body based on compression deformation has been put forward.
     When the bearing body of the anchor cable element connects two elements which are before and after the bearing body, as applying the tension load on the bearing body of the anchor cable element through the bearing body, a pulling force is also applied on the the bottom of the hole or the anchor cable unit.when the grouting body deformation of the near units does not coordinate with each other, the grouting body which is contact with the bearing body will cause tensile crack and affect the the anchorage effect. Based on the feature of the tensile and compressive deformation, the deformation degree of the grouting body calculated by the grouting compressive displacement to has been put forward, the formula for the calculation is s0=S0=σ0la/3e≤[S0], and the theory reference to control the deformation and cracking of the grouting body has been provided.
     (6) The improvement suggestions about the existing design method have been proposed.
     This dissertation achieved good results about the anchorage mechanism of the pressure dispersed anchor cable, the reason of the anchorage force improvement, the transmission of the pressure of the anchor cable units, the stress and the deformation of the grouting body at the bearing body etc. The existing design methods have deficiencies in these aspects. On the basis of detailed analysis of the existing design methods in the foundation, the suggestions of improvement and supplement has been proposed.
引文
[1]刘鸿.双排抗滑桩计算方法研究.西南交通大学研究生学位论文,2007.
    [2]祝传兵.边坡稳定性分析与评价—以元磨高速公路边坡为例.昆明理工大学硕士论文,2005.
    [3]黄润秋.20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报,2007,26(3):433-454
    [4]刘燕,王海平,蒋永才,贺可强.长江三峡库区黄腊石边坡地下水作用规律与动态稳定性评价.岩石力学与工程学报,2005,24(19):3571-3576.
    [5]杨明.桩土相互作用机理及抗滑加固技术.西南交通大学博士论文,2008.
    [6]陈祖煜.岩质边坡稳定分析-原理·方法·程序.中国水利水电出版社,2005.
    [7]刘天云.长江三峡库区某滑坡稳定性评价及治理工程研究.重庆大学硕士论文,2006.
    [8]罗冲.三峡库区重庆市万州区近水平地层滑坡成因机理研究.中国地质大学硕士论文,2006.
    [9]常中华,伍法权,刘海燕,祁生文.三峡库区奉节新县城库岸边坡类型及岩体结构特征.岩石力学与工程学报,2005,24(17):3057-3063.
    [10]王锦国,周云,黄勇.三峡库区猴子石滑坡地下水动力场分析.岩石力学与工程学报,2006,25(增1)::2757-2762.
    [11]张卫中.向家坡滑坡稳定性分析及动态综合治理研究.重庆大学博士学位论文
    [12]王恭先.滑坡防治方案的选择与优化.岩石力学与工程学报,2006,25(增2):3867-3873.
    [13]吕庆.边坡工程灾害防治技术研究.浙江大学博士学位论文,2006.
    [14]邵江.开挖边坡的渐进性破坏分析及桩锚预加固措施研究.西南交通大学博士论文,2007.
    [15]冯君.顺层岩质边坡开挖稳定性及其支护措施研究.西南交通大学博士论文,2005.
    [16]方建瑞.边坡稳定三维有限元直接搜索法及其在隧道施工中的应用.同济大学博士论文,2007.
    [17]刘燕,王海平,蒋永才,贺可强.长江三峡库区黄腊石边坡地下水作用规律与动态稳定性评价.岩石力学与工程学报,2005,24(19):3571-3576.
    [18]俞伯汀.浙江省玄武岩台地区滑坡的成因机理及防治对策.浙江大学博士学位论文,2006.
    [19]胡世起.高边坡复合堆积体稳定性评价及基础处理岩石力学与工程学报,2006,25(2):345-349.
    [20]郑颖人,杨明成.边坡稳定安全系数求解格式的分类统一.岩石力学与工程学报,2006,23(16):2836-2841.
    [21]郑颖人,赵尚毅,时卫民.边坡稳定分析的一些进展.地下空间,2001,21(4):262-271.
    [22]杨涛,周德培,马惠民等.滑坡稳定性分析的点安全系数法.岩土力学,2010,31(3):2836-2841.
    [23]谭晓慧,王建国,刘新荣等.边坡稳定的有限元可靠度计算及敏感性分析.岩石力学与工程学报,2007,26(1):115-122.
    [24]徐卫亚,谈小龙,蒋中明.节理岩体边坡模糊稳定性分析方法研究.岩石力学与工程学报,2007,26(6):1232-1236.
    [25]蒋中明,张新敏,徐卫亚.岩土边坡稳定性分析的模糊有限元方法研究.岩土工程学报,2005,27(8):922-927.
    [26]冯夏庭,王泳嘉.人工智能在矿山岩体边坡工程中应用.化工矿山技术,1995,24(1):1-12.
    [27]赵静波,李莉,高谦.边坡变形预测的灰色理论研究与应用.岩石力学与工程学报,2005,24(增1):5799-5802.
    [28]高长胜,陈生水,徐光明,魏汝龙.堤防边坡稳定离心模型试验技术.岩石力学与工程学报,2006,24(23):4308-4312.
    [29]李邵军,KNAPPETTJA,冯夏庭.库水位升降条件下边坡失稳离心模型试验研究.岩石力学与工程学报,2008,27(8):1586-1593.
    [30]周维垣,林鹏,杨强,杨若琼,周钟.锦屏高边坡稳定三维地质力学模型试验研究.岩石力学与工程学报,2008,27(5):893-901.
    [31]铁道第一勘测设计院.铁路工程设计技术手册(路基).北京:中国铁道出版社,1982.
    [32]李海光,周德培等. 新型支挡结构设计与工程实例.北京:人民交通出版社,2004
    [33]李仁平.软土地基中被动桩与土体的相互作用及其工程应用.浙江大学博士论文,2001.
    [34]池淑兰.路基及支挡结构.北京:中国铁道出版社,2001.
    [35]李荣峰.抗滑桩设计方法研究.长安大学硕士论文,2006.
    [36]熊治文等.全埋式双排抗滑桩的受力分析.路基工程,2002,3:5-10.
    [37]刘小丽.新型桩锚结构设计计算理论研究. 西南交通大学博士论文,2003.
    [38]杨果林,肖宏彬.现代加筋土挡土结构.北京:煤炭工业出版社,2002.
    [39]吴文平,周德培,王唤龙.微型桩结构加固边坡的模型试验与计算探讨.路基工程,2009,3:139-140.
    [40]户巧梅.微型桩加固边坡的内力计算.长安大学硕士论文,2009.
    [41]肖维民.微型桩结构体系抗滑机理研究.西南交通大学硕士论文,2008.
    [42]鲜飞.微型桩组合结构模型试验研究.西南交通大学硕士论文,2010.
    [43]龚小南.深基坑工程设计施工手册.北京:中国建筑工业出版社,1997.
    [44]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.
    [45]黄强.深基坑支护工程设计技术.北京:中国建材工业出版社,1995.
    [46]程良奎.岩土锚固的现状与发展.土木工程学报,2001,34(3):7-34.
    [47]程良奎,韩军.单孔复合锚固法的理论和实践.工业建筑,2001,31(5):35-38.
    [48]程良奎,李象范.岩土锚固·土钉·喷射混凝土-原理、设计与应用.北京:中国建筑工业出版社,2008.
    [49]程良奎.岩土锚固研究与新进展.岩石力学与工程学报,2005,24(21):3803-3811.
    [50]邬爱清,韩军,罗超文等.单孔复合型锚杆锚固体应力分布特征研究.岩石力学与工程学报,2004,23(2):247-251.
    [51]T.H.汉纳著,胡定等译.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987.
    [52]苏加林.丰满大坝加固中预应力锚索的设计.水力发电,1996,1:49-50.
    [53]苗国航.我国预应力岩土锚固技术的现状与发展.地质与勘探,2003,39(3):91-94.
    [54]夏雄,周德培.Winkler弹性地基上预应力锚索地梁内力的计算方法.铁道标准设计,2005,1:46-48.
    [55]刘鸿,周德培,王志斌.压力分散型锚索锚固机制模型试验研究.岩石力学与工程学报,2012,31(增1):3075-3081.
    [56]刘鸿,周德培.压力分散型锚索内力变化规律试验研究.岩土力学,2012,33(4):1040-1050.
    [57]熊文林,何则干,陈胜宏.边坡加固中预应力锚索方向角的优化设计.岩石力学与工程学报,2005,24(13):2260-2265.
    [58]赵洪岭,台佳佳,朱大勇.边坡稳定性计算中锚固力计入方式的讨论.中国水利水电科学研究院学报,2006,4(4):271-276.
    [59]盛宏光.压力分散型锚索锚固性能与设计方法研究.成都:成都理工大学硕士学位论文,2003.
    [60]韩军,陈强,刘元坤,程良奎.锚杆灌浆体与岩(土)体间的粘结强度.岩石力学与工程学报,2005,24(19):3482-3486.
    [61]中冶集团建筑研究总院.岩土锚杆(索)技术规程(CECS 22:2005).北京:中国计划出版社,2005.
    [62]张勇,许蔚峰,盛宏光等.张拉工艺对压力分散型锚索荷载不均匀系数的影响[J].岩石力学与工程学报,2009,28(增1):2954-2959.
    [63]张勇,赵红玲,张向阳.压力分散型锚索锚固段力学性能试验研究.岩石力学与工程学报,2010,29(增1):3052-3056.
    [64]曹兴松,周德培.压力分散型锚索锚固段的设计方法[J].岩土工程学报,2005,(9):1033-1039.
    [65]李海民,刘成洲,李鑫等.大吨位压力分散型锚索的设计与应用研究[J].岩石力学与工程学报,2002,21(增):2284-2289.
    [66]许有飞.压力(分散)型锚索锚固机理及工程应用研究.四川大学硕士论文,2005.
    [67]李国正.压力(分散)型锚索锚固作用的现场试验及数值模拟.四川大学硕士论文,2005.
    [68]朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究.岩土力学,1996,17(2):1-5.
    [69]张永兴,卢黎,饶枭宇,李剑.压力型锚杆力学性能模型试验研究.岩土力学,2010,31(7):2045-2050.
    [70]卢黎.压力型岩锚内锚固段锚国性能及工程应用研究.重庆大学博士学位论文,2010.
    [71]夏元友,陈泽松,顾金才等.压力分散型锚索受力特点的室内足尺模型试验.武汉理工大学学报,2010,32(3):33-37.
    [72]陈琛.压力分散型锚索锚固机制及锚固段设计方法研究.武汉理工大学硕士学位论文,2010.
    [73]郑筱彦.压力分散型锚索加固边坡效应研究.武汉理工大学博士学位论文,2009.
    [74]王建宇,牟瑞芳.按共同变性原理计算地锚工程中黏结型锚头内力//第七次全国岩土锚固工程
    学术大会论文集.北京:人民交通出版社,1998:52-62.
    [75]牟瑞芳,王建宇,张武国.按共同变形原理计算地锚锚固段粘结力分布.路基工程,1999,2:31-34.
    [76]尤春安.压力型锚索锚固段的受力分析.岩土工程学报,2004,(6):828-831.
    [77]董宏晓.锚杆内锚固段应力分布及设计计算方法研究.成都:西南交通大学,2001.
    [78]姚智全,张雁.可拆芯分散承压型锚杆受力分析.徐祯祥等编.岩土锚固技术与西部开发.北京:人民交通出版社,2002,10:97-104.
    [79]雷金山,阳军生,王安正,肖武权.压力分散型锚索锚固段受力特性分析.铁道科学与工程学报,2010,7(3):60-64.
    [80]贾金青,涂兵雄,王海涛等.压力分散型预应力锚杆的力学机理研究.岩土工程学报,2011,33(9):1320-1325.
    [81]程良奎,韩军,张培文.岩土锚固工程的长期性能与安全评价.岩石力学与工程学报,2008,27(5):865-872.
    [82]陈安敏,顾欣,顾雷雨等.锚固边坡楔体稳定性地质力学模型试验研究.岩石力学与工程学报,2006,25(10):2092-2101.
    [83]陈国周.岩土锚固工程中若干问题的研究.大连理T大学博十学位论文,2008.
    [84]朱伯芳.有限单元法原理及应用(第二版).北京:中国水利水电出版社,1998.
    [85]Anagnosti, P. Three dimensional stability of fill dmas. Pro.7th Int. Conf. on Soil Mech, and Found.Engrg., A.A.balkema, Rotterdam, the Neterlands,1969
    [86]Giger, M.W. and Krizek, R.J. Stability of vertical corner cut with concentrated srachrge load.J.Geoteeh.Engerg. Div. ASCE, Vol.102(1),1976, pp:31-40
    [87]Baligh, M.M., Azzouz, A.S. and Ladd, C.C.Line loads on cohesive slopes. Proc.,9thInt. Conf. on soil and Mech. And Found. Engrg., Japan Soc. For soil Mech.And Found. Engrg., Tokyo,2,1977, pp:13-17
    [88]相建南.应用微机进行岩体边坡的三维稳定性分析.水利学报,1985,7:57-61.
    [89]张光斗,周维坦,杨若琼等.基岩稳定的地质力学模型试验与有限元分析.岩石力学与工程学报,1986,5(1):1-14.
    [90]刘波,韩颜辉.FLAC原理、实例与应用指南.人民交通出版社,2006.
    [91]李宁,张鹏,于冲.边坡预应力锚索加固的数值模拟方法研究.岩石力学与工程学报,2007,26(2):254-261.
    [92]盛和太等.ANSYS有限元原理与工程应用实例大全.清华大学出版社,2006.
    [93]庄茁等.基于ABAQUS的有限元分析和应用.清华大学出版社,2009.
    [94]邓华锋,李建林,王乐华.系统锚杆对边坡岩体加固效果的数值模型试验研究.工程地质学报,2006,14(5):644-648.
    [95]邢占清.压力分散型无黏结预应力锚索作用机理及内锚固段长度研究.中国水利水电科学研究院学报,2006,2:88-92.
    [96]夏元友,范卫琴,芮瑞等.压力分散型锚索作用效果的数值模拟分析.岩土力学,2008,11:3144-3148.
    [97]Barley, A. D., Chris R. windsor. Recent advances in ground anchor and ground reinforcement technology with reference to the development of the art. Proc. International Conference on Geotechnical and Geotechnical Engineering. Melbourne, Nov 2000.
    [98]尾高英雄,张满良,岛山三树男.关于荷载分散型锚杆及周边岩土层剪切应力的研究//岩土锚固工
    程技术的应用与发展—国际岩土锚固工程技术研讨会论文集[C].程良奎,刘启琛.北京:万国学术出版社,1996,216-221.
    [99]徐秉业等.弹性力学与塑性力学解题指导及习题集.高等教育出版社,1985.
    [100]杜庆华,余寿文,姚振汉.弹性理论.北京;科学出版社;1986.
    [101]徐芝纶.弹性力学.高等教育出版社,2006.
    [102]Masaki Kuwajima, Jun'iehiNishikawa, Yuki Kusakabe, et al.土锚摩阻力的试验研究,程良奎,刘启深主编.岩士锚固工程技术的应用与发展-国际岩土锚固工程技术研讨会论文集.北京:万国学术出版社,1996年11月,222-227.
    [103]Ostermayer H,Scheele F.Research on ground anchors in non-cohesive soils[A].In:Proceedings of the 9th International Conference on Soil Mechanics and FoundationEngineering[C].Tokyo:The Japanese Society of Soil Mechanics and FoundationEngineering,1977.92-97.
    [104]梁炯鋆.锚固技术十年发展与展望.岩土工程技术与概念发展(梁炯鋆科技文选).北京:中国矿业大学出版社,1998年12月,136-141.
    [105]Barley,A.D.Theory and Practice of the single bore multiple anchor system.Proc.Int.Symp.on Anchors in Theory and Practice. A.A. Balkema:Rotterdam,1995. [106]BS8081:1989.Code of Practice for ground anchorages.B SI Publieation.
    [107]中华人民共和国国家军用标准《岩土工程预应力锚索设计与施工技术规范》(GJB3635-99).中国人民解放军总装备部军标出版发行部,1999年9月.
    [108]中华人民共和国行业标准《铁路路基支挡结构设计规范》(TB10025-2006),中华人民共和国铁道部发布,2006年6月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700