用户名: 密码: 验证码:
小直径钢管排桩抗滑机理及计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小直径钢管排桩作为新型边坡支挡结构,具有施工快捷安全、承载力强、加固见效快、经济效益好等优点。由于缺乏抗滑机理、计算方法等方面的系统研究,严重制约了钢管排桩作为永久支挡结构的推广应用。本文利用工程桩监测试验、原型结构堆载试验、离心机模型试验、理论分析及数值模拟等手段,系统研究了钢管排桩基于桩土相互作用的受力变形规律、抗滑机理、承载力影响因素等内容,提出了力学计算模型和实用设计计算方法,为钢管排桩从应急抢险功能向永久性支挡工程推进提供了基础资料和理论基础。
     1.钢管排桩支挡结构抗滑机理主要表现为:1)在钢管排桩空间框架约束下,桩间土体具有强化效应,框架内土体承载能力得到提高;2)排架土体与钢管桩协调变形,通过桩土相互作用传递荷载、形成桩土复合承载结构,大幅提高钢管排桩承载能力;3)桩间土体具有明显的土拱效应,土拱作用具有维持桩间土稳定、传递桩间荷载的作用,并通过约束排架土体,强化了支挡结构承载能力;4)压力注浆增大钢管桩刚度、改善土体性质,增强了桩土复合结构承载能力。
     2.通过原型结构堆载极限破坏试验,得出了钢管排桩在试验条件下的水平极限承载能力:厚度为8-12m,以硬黏土、块石土为主的滑坡,采用直径133mm直缝钢管、间排距1.5-1.7m、钢筋砼系梁的钢管排桩进行支挡,三排桩承载力为531kN/m,两排桩承载力为390kN/m;实际应用中为确保支挡工程安全,应采用设计安全系数1.5-2,即三排桩承受水平推力一般不大于350kN/m,两排桩承受水平推力一般不大于260kN/m。
     3.通过现场堆载试验、离心机模型试验及数值分析,总结出各相关因子对钢管排桩承载能力影响规律:增加钢管桩排数可增大支挡结构承载能力;桩间距与桩径之比L/d<15时,桩间土通过土拱作用维持稳定,同时为避免出现群桩效应,L/d宜≥8;排距与直径之比b/d为6-12时,桩土复合作用发挥最充分,支挡结构支护能力最强,为避免出现群桩效应,b/d宜≥8;强刚度系梁具有协调钢管桩内力、约束土体加强桩土复合承载的作用;桩间土体物理力学性质越好,桩土复合作用发挥越充分,支挡结构抗滑能力越强。
     4.小直径钢管排桩在水平荷载作用下,排架内土体与钢管桩协调变形;排架土体通过桩土相互作用将水平荷载q传递至其他排桩,各排桩承受荷载qi分布规律与q致,量值为qi=ξq,对于三排桩,ξ1=0.95,ξ2=0.90,两排桩ξ1=0.94,ξ2=0;小直径钢管排桩骨架结构可假定为承受水平荷载q、桩间土传递荷载qi、桩前土体抗力p(少,z)、锚固段抗力p'(y,z)的平面刚架模型,其中桩前土体抗力p(y,z)采用p-y曲线描述,锚固段抗力p'(y,z)采用线性弹簧模拟。
     5.对考虑桩土复合作用的平面刚架计算模型,分别采用弹性地基梁法、p-y曲线法进行内力变形计算,通过与实测资料对比分析,p-y曲线法计算结果与实测值吻合较好,同时该法充分反应了土体弹塑性特征,计算便捷,可作为工程应用推广。
     6.根据钢管排桩抗滑机理、计算方法研究成果,提出了支挡结构按承载力和位移控制的失效准则、实用设计计算方法及步骤、适用条件。
     7.结合工程实践研究了钢管排桩作为永久结构的接管技术和长效防腐方法:钢管接管技术可采用三截面内衬管搭接式焊接法(己获国家实用新型专利,专利号:ZL201220616390.1);防腐方法可采用钢管外壁热喷涂锌,结合管外砂浆包裹隔离防腐。通过工程实践应用,上述钢管连接和防腐方法可保障结构可靠性和耐久性。
As a new type of slope retaining structure, small diameter steel pipe row-pile has advantages of fast and safe construction, strong bearing capacity, fast retaining effect, and good economical benefits. Due to lacking systematically researches of anti-sliding mechanism and calculation method etc, it is severely restricted to be a permanent retaining structure. Making use of field pile monitoring test, prototype pile loading test, centrifuge model test, theoretical analysis and numeral analysis etc, based on pile-soil interaction, the stress and deformation law, anti-sliding mechanism, factors relevant to bearing capacity of the row-pile were studied systematically, the mechanical computation model and practical design and computational methods were put forward which provided basic data and theoretical foundations for the application of the row-pile from emergency to permanent slope retaining.
     1. The anti-sliding mechanism of steel pipe row-pile was as follows:1) Under the restriction of row-pile space frame, the soil body was in three-dimension stress state, the stress strengthening effect enhanced the soil between piles;2) The deformation of the soil body in bent frame coordinated with the row-pile, through pile-soil interaction, the load distributed between soil and piles made the soil and piles a composite bearing structure, which improved the bearing capacity of the steel pipe row-pile structure;3) There was clear anchoring effect in soil between piles which sustained the stability of soil between piles, distributed pile loading and reinforced the bearing capacity of retaining structure through restricting soil in bent frame;4) The pressure grouting reinforced the pile stiffness, improved the soil quality, strengthened bearing capacity of the pile-soil composite structure.
     2. Through field prototype pile loading test, horizontal bearing capacity of the row-pile was obtained. For8-12m thick landslide mainly with hard clay or rubble, the retaining structure was steel pipe row-pile with reinforced connection beam, the diameter of the steel pipe was133mm, the space between piles or rows of piles was1.5-1.7m, the bearing capacity of triple and double rows were respectively531kN/m and390kN/m. For the safety of the retaining structure, the general bearing capacity of triple and double rows of piles were respectively not more than350kN/m and260kN/m.
     3. Through field pile loading test, centrifuge model test and numeral analysis, the influence rules relevant parameters to bearing capacity of the row-piles:setting more rows of steel pipe row-pile would make the retaining system stronger; when ratio between pile space and pile diameter L/d/15, the soil between piles remained stable because of anchoring effect, meanwhile, group pile effect was avoided, L/d should not be less than8; when ratio between row space and pile diameter b/d is6-12, the pile-soil composite was in perfect effect, the retaining structure was strongest, in order to avoid group pile effect b/d should not less than8; the strong stiff connection beam could coordinate the pile internal force, restrict soil and reinforce pile-soil composite bearing capacity; the better the physical and mechanical property of soil were, the more sufficient the pile-soil composite effect revealed, the stronger the anti-sliding capacity of the retaining structure was.
     4. Under horizontal loading, the row-pile stress and deformation law based on pile-soil interaction is:the soil and row-pile deformed coordinate in the bent frame with nearly the same value and rule; through pile-soil interaction, the bent frame soil passes the horizontal loading q, which acts on the back row-pile, on to the middle and front row-pile, the load distribution pattern of the middle and front row-pile are the same with the horizontal loading q, the values are respectively q1=ξ1q、q2=ξ2q, for triple row-piles, ξ1=0.95, ξ2=0.90, for double row-piles, ξ1=0.94, ξ2=0; there is relative displacement between piles and soil between piles, through stress adjustment, the soil anchoring effect is clear.
     5. For plane rigid frame model considering pile-soil composite interaction, beam on elastic foundation method and p-y curve method were adopted respectively to calculate the internal force and deformation, through comparative analysis with field data, the results calculated by p-y curve method coincided with the field data well, meanwhile, the method revealed the soil elastic-plastic characteristic sufficiently, the calculation procedure was easy, which was good for engineering application.
     6. According to the anti-sliding mechanism and calculation method research results of steel pipe row-pile, the retaining structure failure criterion base on bearing capacity and displacement, the design calculation and procedure were put forward.
     7. Combined with engineering practice, takeover technology and long-term anticorrosion method of steel pipe row-pile as a permanent structures are studied:steel pipe takeover technology can adopt three section liner lap welding method; anticorrosion method can adopt steel tube outer wall thermal spray zinc, combined with the pipe anti-corrosion mortar wrapped isolation. Through the engineering practice, the steel pipe takeover and anticorrosion methods described above can guarantee the reliability and durability of the structure.
引文
[1]王恭先.抗滑支挡建筑物的发展动向[C].滑坡文集编委会编.滑坡文集(第十三集).北京:中国铁道出版社,1998.
    [2]Sharpe C F S. Landslide and related phenomena [M]. New York:Cooper Square,1968.
    [3]Zaruba Q,Mencl V. Landslides and their control [M]. NewYork; Springer Verlag,1982.
    [4]山田刚二,渡正亮,小桥澄治.滑坡和斜坡崩塌及其防治[M].北京:科学出版社,1980.
    [5]王恭先,徐峻龄,刘光代.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004.
    [6]Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique,1955,5(1):7-17.
    [7]Janbu N. Earth pressure and bearing capacity calculations by generalized procedure of slices[A].Proc.4th Int. Conf. Soil Mechs.&Foundn. Engng., London; 1957;207-212.
    [8]Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces[J]. Geotechnique,1965,15(1):7-17.
    [9]Franx C, Boonstra G C. Horizoltal Pressure on pile foundations[A]. Proc of 2nd ICSMFE[C]. Rotterdam. Balkema A A,1948.4:131-135.
    [10]Heyman L, Boersma F. Bending moments in piles duet to lateral earth pressure..Proc of 5th ICSMFE[C]..Paris:Balkema A A,1961:425-429.
    [11]Wenz K P. Large Scale Tests for Determination of Lateral Loads on Piles in Soft Collesive Soils [A]..Proc of 8th ICSMFE[C]. Moscow:1973, (2).247-255.
    [12]Heyman L..Measurement of the Influence of Lateral Earth Pressure on Pile Foundations[A]. Proe of 8th ICSMFE[C]. Montreal:1965:257-260.
    [13]Nicu N D, Antes D R, Kessler R S..Field meaaurements on instrtumented piles under overpass abtltment[R]..Highway Researeh Board,1971354:90-99.
    [14]Oteo C S. Discussion of "Analysis of Piles in Soil Undergoing Lateral Movement"[J]. Journal of the Geotechnical Engineering Division 1974,100(4):464-467.
    [15]励国良.锚索抗滑桩与滑坡相互作用的计算[A].滑坡文集(第八集)[C].北京:中国铁道出版社,1991.
    [16]黄晓华.公路边坡病害治理的轻型支挡结构[J].重庆交通学院学报,1999,18(3):90-94.
    [17]郑颖人,陈祖煌,王恭先,等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007.
    [18]You G L., Miura K., Ishito M.. Behavior of Micropile Foundations Under Inclined Loads in Laboratory Tests[J]..Lowland Technology International,2003,5(2):16-26.
    [19]多贺谷宏三,Scott.R.F,纲干寿夫Scale Effect in An-chor PulloutTest by Centrifugal T echnique土质工学会论文报告集,1988,28(3).
    [20]严君凤.小口径钢管组合桩在滑坡应急抢险中的应用[J].探矿工程,2008,7:41-43.
    [21]史佩栋,何开胜.小桩的起源、应用与发展(Ⅰ)[J].岩土工程界,2003,8(8):18-19.
    [22]史佩栋,何开胜.小桩的起源、应用与发展(Ⅱ)[J].岩士工程界,2003,8(9):15-18.
    [23]户巧梅.微型桩加固边坡的内力计算[硕士学位论文][D],西安:长安大学,2009.
    [24]赵明华,陈炳初,刘建华.考虑土拱效应的抗滑桩合理桩间距分析[J].中南公路工 程.2006,31(2):1-3.
    [25]马白虎.用钢管桩加固失稳边坡滑坍堆积体的受力分析及运用[J].公路交通科技(应用技术版),2010,05:68-71.
    [26]肖春锦.微型钢管桩用于滑坡治理及理论分析[J].路基工程,2010,04:94-97.
    [27]唐传政,舒武堂.微型钢管群桩在基坑工程事故处理中的应用[J].岩石力学与工程学报,2005,24(S2):5459-5463.
    [28]何世达,周友华.微型钢管桩在南宁市鼎盛大厦基坑支护中应用[J].岩土工程界,2006,9(10):47-48.
    [29]张维正.钢管桩与注浆技术在某基坑支护中的应用[J].西部探矿工程,2007,01:37-39.
    [30]杨秀竹,雷金山,夏力农.注浆与钢管桩组合方案在电厂跌水井基坑支护中的应用[J].西部探矿工程(岩土钻掘工程),2007,05:18-19.
    [31]姚元涛.向家坝右岸蠕滑边坡钢管桩加固技术研究[J].人民长江,2008,39(07):41-43.
    [32]李玉峰.钢管桩注浆固结法治理顺层滑坡的工程实践[J].企业家天地,2009,04:238-239.
    [33]李国亮,金福喜,张可能.高压双液注浆与钢管桩在深基坑支护中的应用[J].广东建材,2010,05:99-101.
    [34]毛建林.微型钢管桩施工及试验研究[J].西部探矿工程,2002,02:37-38.
    [35]徐化轩.微型钢管压浆桩的设计、检验与施工[J].西部探矿工程,2002,增刊(001):357-359.
    [36]杨汉臣.微型钢管桩在边坡治理中的应用及其机理分析[D].长沙:中南大学,2007.
    [37]Bruce D A, Cadden A W, Sabatini P J. Practical Advice for Foundation Design Micropiles for Structural Support [C]//GSP 131 Contemporary Issues in Foundation Engineering, ASCE. [S.1.]:[s.n.],2005:1-25.
    [38]DR. Mohammed Awad. Lateral Load Tests onMini-piles[J].Islamic University Journa,1. 1999,7(1):15-33.
    [39]Richards JR, ThomasD, RothbauerMark J. LateralLoadson Pin Piles (micropiles) [C]. Proceedings ofSessions of the Geosupport Conference:Innovation and Cooperation in Geo. Reston:Geotech-nical Special Publication, ASCE,2004.
    [40]Thompson M J. Experimental Load Transfer of Piles Subject to Lateral Movement [C]//2004 Transportation Scholars Conference. Iowa:Iowa State University,2004.
    [41]龚健,陈仁朋,陈云敏等.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    [42]闫金凯,殷跃平,门玉明.微型桩群桩受力分布规律及破坏模式的试验研究[J].南水北调与水利科技,2010,8(01):44-48.
    [43]孙书伟,朱本珍,马惠民.框架微型桩结构抗滑特性的模型试验研究[J].岩石力学与工程学报,2010,29(S1):3039-3044.
    [44]孙书伟,朱本珍,马惠民,等.微型桩群与普通抗滑桩抗滑特性的对比试验研究[J].岩土工程学报,2009,31(10):1564-1570.
    [45]鲜飞.微型桩组合结构模型试验研究[D].成都:西南交通大学,2010.
    [46]Aomar Benslimane. Dynamic Behavior of MicroPiles Systems Subjected to Sinusoidal Ground Motion[D]. Doctor Dissertation of Polyteehnie University Januaay,2000:1-2.
    [47]Sung June Lee. Behavior of A Single Micropile in and Under Cyclic Loads[D]. Doctor Dissertation of University of Illinois. Urbana.2004:3.
    [48]Tom Armour, Paul Groneeck, James Keeley, et al. Micropile Design And Construction Guidelines Implementation Manual Priority Technologies (PTP) Project [M]. Publication NO.FHWA-SA97-070.2000.
    [49]JAMP. Design and Execution Manual for Seismic Retrofitting of Existing Pile Foundation with High Capacity Micropiles[R]. Foundation Engineering Research Team, Structure Research Group, Public Works Research Institute, JapPan,2002.
    [50]Chik Z., Abbas J., Taha M., et al. Lateral Behavior of Single pile in Cohesionless Soil Subjected to Both Vertical and Horizontal Loads[J]. European Journal of Scientifie Researeh,2009,29(2):194-205.
    [51]Wayne G Jensen. Anchored Geo-Support Systems for Landslide Stabilization [D]. Doctor Dissertation of University of Wyoming. Laramie. May 2001:10-12-
    [52]ZHANG Lianyang,Silva F.,Grismala R..Ultimate Lateral Resistance to piles in Cohesionless Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(1):78-83.
    [53]Tomio Ito, Tamotsu Matsui, Won Pyo Hong. Design Method for Stabilizing Piles Against Landslide-One Row of Piles[J]. Soil and Foundations,1981,21(1):21-37.
    [54]David R.Shields. Buekling of Micropiles[J]. Journal of Geotechnical & Geoenviromnental Engineering,2007,133(3):334-337.
    [55]戴自航,彭振斌.地基系数法在岩体抗滑桩内力计算中的应用[J].湖南大学学报(自然科学版),2002,29(1):98-104.
    [56]Joseph P. Welsh.Soil Improvement-A Ten Year Updata. Geotechnical Special Publication,1987, (12):35-42.
    [57]Cantoni R., CollottaT, Ghionna V N,et al. A design method for reticulated micropiles structure in sliding slopes[J]. Ground Engineering,1989,22.
    [58]刘永明.小直径钢管排桩抗滑机理分析及计算理论[D].成都:西南交通大学,2008.
    [59]孙书伟.顺层高边坡开挖松动区研究及微型桩加固边坡的内力计算[D].北京:铁道科学研究院,2006.
    [60]沈龙运,余云燕.独立微型桩加固边坡的内力计算[J].兰州交通大学学报,2007,26(04):81一83.
    [61]吴文平.抗滑微型桩组合结构的计算理论研究[D].成都:西南交通大学,2008.
    [62]蒋楚生,周德培.微型桩抗滑复合结构设计理论探讨[J].铁道工程学报,2009,02:39-44.
    [63]丁光文,王新.微型桩复合结构在滑坡整治中的应用[J].岩土工程技术,2004,18(1):47-50.
    [64]朱宝龙.类软土滑坡工程特性及钢管压力注浆型抗滑挡墙的理论研究[D].成都:西南交通大学,2005.
    [65]史佩栋.桩基工程手册:桩和桩基础手册[M].北京:人民交通出版社,2008.7.
    [66]冯君,周德培,江南,等.微型桩体系加固顺层岩质边坡的内力计算模式[J].岩石力学与工程学报,2006,25(02):284-288.
    [67]周德培,王唤龙,孙宏伟.微型桩组合抗滑结构及其设计理论[J].岩石力学与工程学报,2009,28(07):1354-1362.
    [68]肖世国,鲜飞,王唤龙.一种微型桩组合抗滑结构内力分析方法[J].岩土力学,2010,31(08):2554-2559.
    [69]孙书伟,朱本珍,郑静.基于极限抗力分析的微型桩群加固土质边坡设计方法[J].岩土工程学报,2010,32(11):1671-1677.
    [70]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(02):174-184.
    [71]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(03):445-450.
    [72]周应华,周德陪,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学.2006,27(3):455-462.
    [73]曹平,朱宝龙,陈强.微型圆桩加固平面滑坡的桩间距分析[J].西安科技大学学报,2009,29(05):626-630.
    [74]包承纲.饶锡保.土工离心模型的试验原理.长江科学院院报,1998.15(2):1-7.
    [75]杜延龄,土工离心模型实验的基本原理及其若干基本模拟技术研究.水利学报1993,19-36.
    [76]唐志成,土工离心模型实验原理及误差分析[J].重庆交通学院学报,1989,08(04):103-105.
    [77]马青杰.注浆与钢管微型桩组合结构加固滑坡离心模型试验研究[D].成都:西南交通大学,2009.
    [78]张正义.小直径钢管排桩抗滑计算理论及离心模型试验研究[D].成都:西南交通大学,2009.
    [79]JAMP. Design and Execution Manual for Seismic Retrofitting of Existing Pile Foundation with High Capacity Micropiles. Foundation Engineering Research Team, Structures Research Group, Public Works Research Institute, Japan,2002.
    [80]Sung June Lee. Behavior of A Single Micropile in and Under Cyclic Loads[D]. Doctor Dissertation of University of Illinois. Urbana.2004:3.
    [81]Amherst Mass, Coyne AG, Canou J. Model Tests of Micropile Networks Applied to Slope Stabilization. In:Balkema A. Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering [J]. International Conference on soil Mechanics and Foundation Engineering,1997,9:1223-1226.
    [82]吴文平,周德培,王唤龙.微型桩结构加固边坡的模型试验与计算探讨[J].路基工程,2009,3:139-140.
    [83]SADEK M, SHAHROUR I, MROUEH H. Influence of Micro-pile Inclination on The Performance of a Micro-pile Network [J]. Ground Improvement,2006,10(4):165-172.
    [84]BROWN DAN A, SHIE CHINE-FENG. Numerical Experiments into Group Effects on The Response of Piles to Lateral Loading [J]. Computers and Geotechnics,1990, 10(3):221-230.
    [85]周常春,张明义.水平荷载下群桩前后土抗力分布的数值分析[J].地下空间,2003,23(1):17-21.
    [86]周洪波,杨敏,茜平一.水平荷载作用下群桩相互作用的弹塑性数值分析[J].水文地质工程地质,2003,30(3):29-35.
    [87]Duncan J M. State of the art:limit equilibrium and finite-element analysis of slopes[J]. Jornal of Geotechnical engineering,1996,122(7):577-596.
    [88]Zienkiewicz O C. Humpheson C.Lewis R W.Associated and non-associated visco-plasticity And plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671-689.
    [89]Won, J, et al. Coupled effects in stability analysis of pile-slope systems. Computers and Geotechnics,2005.32(4):P.304-315.
    [90]Alsaleh H, Shahrour. Three-Dimensional Nonlinear Finite-Difference Analysis for Seismic Soil-Micropile-Structure Interaction; Effects of Nonlinearity of Soil and Micropile-Soil Interface [A]. GeoCongress 2006; Geotechnical Engineering in the Information Technology Age[A],2006,1-6.
    [91]谢涛,袁文忠,马庭林.水平承载下超大群桩受力变形特性的模型试验研究[J].岩石力学与工程学报,2005,24(009):1582-1587.
    [92]熊辉,尚守平.轴、横向力作用下土一群桩动力效应简化分析[J].岩土力学,2006,27(012):2126-2168.
    [93]韩英才,Novak M.水平荷载作用下群桩动力特性的研究[J].土木工程学报,1992,25(5):24-33.
    [94]王成,邓安福.水平荷载桩桩土共同作用过程分析[J].岩土工程学报,2001,23(4):476-480.
    [95]刘静.基于桩土共同作用下的抗滑桩的计算与应用研究[D].长沙:中南大学,2007.
    [96]蔡亮,鲁子爱,韩洁.横向荷载群桩效应分析[J].水运工程,2003,(1):4-7.
    [97]王士川,陈立新.抗滑桩间距的下限解[J].工业建筑,1997,27(10):32-36.
    [98]王成华,陈永波,林立相.抗滑桩间土拱特性及最大桩间距分析[J].山地学报,2001,19(6):556-559.
    [99]常保平.抗滑桩的桩间土拱和临界问距问题探讨[A].滑坡文集(第十三集)[C].北京:中国铁道出版社,1998:73-78.
    [100]吴昌将,张子新.边坡工程中抗滑桩群桩土拱效应的数值分析[J].地下空间与工程学报,2007,3(07):1305-1309.
    [101]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(01):132-135.
    [102]Rase, P.E. Theory of lateral bearing capacity of piles[M]. Proc, IstICSMFE,1936.
    [103]Broms B. Lateral Resistance of Piles in Cohesive Soil[J]. Journal of the Soil Mechanics and Foundations Division,1964,90(2):27-64.
    [104]Chang Y L. Discussion on"Lateral Pile Loading Tests" by LB Feagin[J].Trans.ASCE, 1937,102:272-278.
    [105]Lymon Reese. Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay[C].Proceedings of Seventh Annual Offshore Technology Conference, Houston, Texas,1975:671-690.
    [106]叶万玲,时蓓玲.桩的水平承载力实用非线性计算方法一NL法[J].岩土力学,2000,21(2):97-101.
    [107]韩理安,赵利平,韩时琳.桩侧土抗力的群桩效率[J].长沙交通学院学报,1998,14(3):74-78.
    [108]赵利平,韩时琳,韩理安.基于非线弹性水平地基系数的群桩实用计算分析方法[J].海洋工程,2004,22(1):93-97.
    [109]吴文平.抗滑微型桩组合结构的计算理论研究[硕士学位论文][D].成都:西南交通大学,2008.
    [110]Cantoni R., CollottaT., Ghionna V N., et al. A Design Method for Reticulated Micropiles Structure in Sliding Slopes[J]. Ground Engineering,1989,22(1):41-47.
    [111]Hassiotis S., Chameau J.L. Gunaratue M. Design Method for Stabilization of Slopes with Piles[J]. Journal of Geotechnical and Geoenvironmental Engneering,1997, 123(4):314-322.
    [112]戴自航,彭振斌.基于抗滑桩内力计算“m”法的有限差分法[J].中南工业大学学报,2001,32(5):461-464.
    [113]杨佑发.弹性抗滑桩内力计算的有限差分“m-K”法[J].重庆建筑大学学报,2002,24(1):13-18.
    [114]王惠初,武冬青,田平.黏土中横向静载桩p-y曲线的一种新的统一法[J].河海大学学报,1991,19(1):9-17.
    [115]Wayne G Jensen. Anchored Geo-Support Systems for Landslide Stabilization [D]. Doctor Dissertation of University of Wyoming. Laramie. May 2001:10-12.
    [116]杨克己,李启新,王福元.水平力作用下群桩性状的研究[J].岩土工程学报1990,12;42-52.
    [117]Misra A, Chen C H. Analytical solution for micropile design under tension and compression [J]. Geotechnical and geological engineering,2004,22(2):199-225.
    [118]杨汉臣.微型钢管桩在边坡治理中的应用及其机理研究[D].中南大学硕士学位论文.长沙.2007.
    [119]吴鸣,赵明华.大变形条件下桩土共同工作及试验研究阴.岩土工程学报,2001,23(4):436-440.
    [120]Reese L C, Van Impe W F. Single piles and pile groups under lateral loading[M].Rotterdam:A.A, Balkema,2001.
    [121]McClelland B, Focht Jr J A·Soil modulus for laterally loaded piles[J]. Transactions of the American Society of Civil Engineers,1958,123(2954):1049-1086.
    [122]王惠初,武冬青.黏土中横向静载桩P-Y曲线的一种新的统一法[J].河海大学学报:自然科学版,1991,19(1):9-17.
    [123]田平,王惠初.黏土中横向荷载桩的P-Y曲线法评述[J].河海大学学报:自然科学版,1994,22(2):72-76.
    [124]章连洋,陈竹昌.粘性土中P-y曲线的计算新方法[J].港口工程,1991(2):29-35.
    [125]张舒羽.水平承载桩静载P-Y曲线研究[D]:南京:河海大学(硕士论文),2001.
    [126]Matlock H. Corrlations for design of laterally loaded piles in soft clay[A]. Proc. Annual Offshore Technology Conference[C]. Houston, Texas:1970:577-594.
    [127]Reese L C, Welch R C. Lateral loading of deep foundations in stiff clay[J]. Journal of the Geotechnical Engineering Division,1975,101(7):633-649.
    [128]Reese L C, Cox W R, Koop F D. Field testing and analysis of laterally loaded piles in stiff clay[A]. Proceedings of 7th Offshore Technology Conference[C], Houston, Texas:1975,2:671-690.
    [129]Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand[A]. Proceedings of 6th Offshore Technology Conference[C], Houston, Texas:1974,2:473-483.
    [130]戴自航,彭振斌.抗滑桩全桩内力计算“m-k”法的有限差分法[J].岩土力学,2002,23(3):321-324.
    [131]戴自航,沈蒲生,彭振斌.弹性抗滑桩内力计算新模式及其有限差分解法[J].土木工程学报,2003,36(004):99-104.
    [132]Hognestad E. A Study of combined bending and axial load in reinforced concrete members [R]. University of Illinois Engineering Experirment Station,1951.
    [133]Rusch H. Researches toward a general flexural theory for structural concrete[J]. Journal Proceedings,1960,57(7):1-28.
    [134]Lizzi F. "Reticulated Root Piles"; To Correct Landslides[A].ASCE Convention and Exposition [C], Chicago, Illinois:1978.
    [135]Plumelle C. Improvement of the bearing capacity of soil by inserts of group and reticulated Micropiles[A]. International Symposium on In-situ Reinforcement of soils and Rocks[C]. Paris:ENPC Presses,1984:83-89.
    [136]Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:John Wiley & Sons,1980.
    [137]Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soil and Foundations,1975,15(4):43-59.
    [138]Hassiotis S, Chameau L, Gunaratne M. Design method for stabilization of slopes with piles [J]. Journal of Geotechnical and Geoenvironmetal engineering,1997, 123(4):314-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700