用户名: 密码: 验证码:
复杂网络隧洞群施工通风技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电工程地下洞室群施工十分复杂,作业面多,钻孔,爆破,装渣,运输,喷锚支护,二次衬砌等多道工序平行作业,在无轨运输的大环境下,施工通风是不仅影响整个施工进度,而且关系到施工人员的生命安全。本论文以锦屏二级电站引水隧洞群施工通风为工程背景,基于引水隧洞“断面大,洞室长,界面广,无露头,内燃作业,无轨运输,污染量大”等工程重难点,通过综合采用技术调研、工程类比、理论分析和数值模拟、现场测试和现场试验、归纳总结等研究手段,针对压入式通风辅以支洞射流通风技术、壁面粗糙度对通风效果的影响、隧洞施工通风的计算流体动力学分析技术、巷道式联合通风技术、通风效果现场测试进行了深入研究。本论文主要研究工作和研究成果体现在以下几个方面:
     (1)由于支洞断面尺寸的限制,在支洞顶部布置的2条风管直径不能大于2.0m的条件下研究极限通风距离,以能见度达到20m为衡量标准,将极限通风距离的最小风速确定为0.1m/s。在通风管理水平1.5%的漏风率情况下,压入式通风的极限距离控制在5000m比较合适。根据辅助洞西端的经验并结合西引支洞断面与最大风速设计,计划安装75kw强力射流风机7台,可满足施工需要,与实际施工现场射流风机台数布置一致。
     (2)通过建立典型粗糙壁面模型就粗糙形状、粗糙高度、粗糙间距以及同一粗糙条件下断面直径对隧洞施工通风的影响进行了深入分析,研究结果表明,在近粗糙壁面,除了正弦模型外,方形、三角形、混合形三种粗糙模型近壁附近速度分布都出现了涡流,正弦粗糙模型对通道内空气的流通以及CO快速排出起到的阻碍作用比其它三种粗糙模型小。在同样的粗糙间距下,粗糙高度越大,对流体流通的阻碍作用越大;在同样的粗糙高度下,粗糙间距越大,对流体流体的阻碍作用越小。在同一粗糙条件下(相同的粗糙形状、高度、间距),断面越大,粗糙壁面对流体流通的影响相对越小。以隧洞实际开挖轮廓线和设计开挖轮廓线之间包络的面积与取样长度两者的比值定义了隧洞壁面平均粗糙高度,并提出了壁面粗糙常数的取值计算的模型分解法和主要粗糙度法。
     (3)锦屏引水隧洞壁面粗糙参数为平均粗糙高度0.231m,粗糙常数Rc值为0.46。对锦屏引水隧洞及排水隧洞联合施工通风系统数值计算,优化了射流风机和轴流风管在隧洞内的布置方式。研究结果表明,15分钟之后1#-4#洞工作区域(距掌子面300m范围内)已达到施工要求;横通道布置射流风机时最好将风机布置在靠近横通道一侧气流的下风向,且射流风机距离横通道不宜太远并尽可能将风机安装于隧洞上方,否则通风效果将变差。掌子面所用的风管的有效射程在30m左右。引水隧洞在交叉口处的射流风机布置在距离支洞与引水隧洞交线15m位置处的隧洞右侧对支洞内新鲜风流的引入效果较好。中间横通道附近射流风机升压过高,会造成引入的风流较大,从而影响引水隧洞风流的主流方向。
     (4)将运营通风射流技术引入到无露头多洞室群的施工通风中,从理论研究结合现场通风测试,探讨了射流通风的需风量、风机台数计算公式及相关参数的取值原则。研究结果表明实际风机台数与理论计算风机台数相差2台,属于正常范围,并且实际施工空气质量满足规范和人员健康的要求。风机数量与通风阻力与风机升压比有关,其中沿程阻力系数λ=0.1-0.3,粗糙度大取大,锚喷可取大,二衬砼可取小。按照进风洞少、污风洞多的原则进行布置射流风机,有轴流风机的洞多布置、无轴流风机的洞少布置。巷道式通风通过换边,有利于洞内开展多工序平行作业,并能达到满意的通风效果。
     (5)通过对隧洞内通风效果的现场测试发现,在引水隧洞主洞独头掘进2000米之前,基本能够保证洞内通风质量,洞内平均污风排出速度大于0.15m/s,能见度大于50m;但随着开挖的深入,通风效果急剧下降,特别是在换成巷道式通风之前(主洞掘进到3300米左右),最差时洞内能见度不足10m。实施巷道式联合通风,洞内空气质量良好,主洞内平均风速大于0.2m/s,施工支洞及排水隧洞内平均风速2-4m/s。开挖爆破后5min内掌子面50m范围内即清晰可见,出碴时引水隧洞内能见度大于150m。这些技术成果的研究成功及在设计施工中的应用,为实现锦屏引水隧洞施工安全、快速、高效、优质地完成,确保施工工发挥了非常重要的作用,必将为国内外类似地下工程建设提供了非常有价值的参考和借鉴。
Construction of underground caverns is very complex, with multi-surface operations, including multi-process and parallel operation of drilling, blasting, loading slag, transporting, shotcrete-bolt supporting and secondary lining. Under the environment of trackless transport, construction ventilation is not only affecting the entire construction progress, but also to the lives and safety of construction workers. Taking the construction ventilation of diversion tunnels in Jinping Ⅱ hydropower project as engineering background, based on the project features of super long tunnels with large section, wide interface, no outcrop, internal combustion operation, trackless transportation, large pollution in Jinping diversion tunnels, by utilizing an integrated method of literature review, engineering analogy, theoretical analysis and numerical modeling, field tests and field monitoring, induction and summarization, etc. A series of questions were researched including:(1) The influence of wall roughness to the ventilation effect,(2) computational fluid dynamics analysis techniques of construction ventilation in tunnel,(3) forced ventilation technology supplemented jet ventilation in branch tunnel,(4) gallery ventilation technology,(5) field test of ventilation effect. The main wok done and achievements in this dissertation are as follows:
     The extreme ventilation distance of forced ventilation under the branch tunnel section size restricted is first obtained, the calculation of the extreme ventilation distance is as the visibility to reach20m, the minimum wind speed of the extreme ventilation distance is determined to be0.1m/s. The research results shows that the extreme distance of forced ventilation is more appropriate in the5000m. On the basis the experience of Jinping auxiliary tunnel combined with west branch tunnel section and maximum wind speed design, seven sets of75kw power jet fans can meet the construction need, fans arrangement in branch tunnel are the same as the calculation results.
     This study conducted a deep analysis of the influence of the rough element shape, height, spacing and tunnel section diameter under the same rough conditions on the tunnel construction ventilation, the results show that except for the sinusoidal model, the velocity distribution of the square, triangle and mixed model appeared eddy current near the rough wall, the hindering effect for air circulation and CO rapid discharge of the sinusoidal rough model is less than the other three rough model. The impediment for the fluid flow increased with increase of the rough height increases under the same roughness spacing. The larger rough spacing, the less impediment for the fluid flow under the same roughness height and the larger tunnel section diameter, the less impediment for the fluid flow in the same rough conditions(the same roughness shape, height, spacing). The average roughness height on wall surface in tunnel is first defined by the envelope area of actual tunnel excavation contour and design excavation contour divided by the sampling length. The calculation method of roughness constant is first proposed, including the model decomposition method and main roughness method.
     The average wall roughness height is0.231m and the roughness constant is0.46in Jinping diversion tunnels. Numerical calculation on construction ventilation system of Jinping diversion tunnels and drainage tunnel optimizes the arrangement of jet fans and axial duct in the tunnel. It is found that work area (within300m from the tunnel face) of1#to4#tunnel has reached the construction requirements after15minutes. The best layout of the jet fan is aroud the transverse channel under the direction of airflow and jet fans should not be too far away from the transverse channel and install the fans at the top of the tunnel as far as possible, or the ventilation will deteriorate. The effective range of duct in tunnel face is about30m. The jet fans at the intersection arranges at15m from the branch tunnel and diversion tunnel cross line at the right side of the tunnel will introduce fresh air effect better in the branch. The introduction strong wind caused by the high boost of the jet fans near intermediate cross-channel has influences the main flow direction of the air flow in the diversion tunnel.
     The jet technology in operation ventilation is introduced to construction ventilation, the required airflow of jet ventilation, the calculation formula of jet fan number and the adoption principleis of related parameters is studied by theoretical research combined with field test of ventilation. The research results shows that the difference between the number of units with the theoretical calculation and the actual fans in the number of units2, within the normal range, and the actual construction air quality can meet the requirements of the specification and the health of persons. The number of fans are related to the ratio of ventilation resistance and fan boost, the frictional resistant coefficient λ is0.1-0.3, the larger roughness, the larger λ, in the shotcrete position the λ is relatively large and in the secondary lining the λ is relatively small. Fans layout in accordance with the principle of less fans in the air inlet and more fans in the air outlet, more jet fans in the tunnel with axial flow fan and less jet fans in the tunnel with no axial flow fan. The gallery ventilation through exchanging side is conducive to the tunnel to carry out multi-step parallel operations, and achieve satisfactory ventilation effect.
     It is found from the field monitoring of ventilation effect that the average wind speed of polluted air is greater than0.15m/s and the visible distance greater than50m to ensure the tunnel ventilation quality before the diversion tunnel is excavated to2000m. But along with the tunnel advancing, the ventilation effect declines sharp and the worst visible distance is less than10m, especially the diversion tunnel is excavated to3300m. The air quality is good when the gallery ventilation is applied, the average wind speed is greater than0.2m/s in diversion tunnels and the average wind speed is2-4m/s in the construction branch tunnel and drainage tunnel. The visible distance at the work face is greater than50m at5minutes after ventilation and greater than150m during mucking in the diversion tunnels.
     These technical achievements and their application in the design and construction played a very important role in achieving a safe, fast, effective construction with high quality and in time, which can surely provide a very valuable reference for the construction of similar underground projects world wide in the future.
引文
[1]中铁二局,西南交大.锦屏辅助洞(西端)“特长隧道无轨运输巷道式射流施工通风技术研究与运用”[R].成都:中铁二局,2008.
    [2]中铁二局,西南交大.锦屏辅助洞(西端)“无露头特长隧洞群无轨运输施工通风技术研究”[R].成都:中铁二局,2012.
    [3]中华人民共和国交通部.JTJ 026.1-1999,公路隧道通风照明设计规范[S].北京:人民交通出版社,2000.
    [4]刘钊春,柴军瑞,贾晓梅.压入式通风掘进面有害气体浓度扩散数值模拟[J].岩土力学,2009,30(增2):536-539.
    [5]谢尊贤,朱永全,陈绍华.高原隧道长距离施工通风方法研究[J].现代隧道技术,2011,48(3):113-116.
    [6]夏永旭,王永东,赵峰.秦岭终南山公路隧道通风方案探讨[J].长安大学学报(自然科学版),2002,22(5):48-50.
    [7]陶坤.压入式通风在隧道施工中的动态设计与应用分析[J].公路交通科技(应用技术版),2008,(6):168-171.
    [8]孙亮.太行山隧道1号斜井及正洞独头压入式通风技术[J].铁道标准设计,2007(4):41-43.
    [9]赖涤泉.隧道施工通风与防尘[M].北京:中国铁道出版社,1994.
    [10]陈宝智.掘进巷道压入式通风的风流结构及排尘作用的研究[J].东北工学院学报,1981,28(3):97-104.
    [11]文柯.乌鞘岭隧道斜井施工通风研究与实施[J].现代隧道技术,2006,43(3):20-22.
    [12]陈琳.公路隧道无轨运输条件下长距离施工通风技术[J].铁道建筑,2011,(8):33-35.
    [13]邱维军.长大隧道独头压入式通风技术[J].科技信息,2010,(18):324-325.
    [14]王海峰,张春雨,张吉钊.杨家坝隧道无轨运输长独头施工通风技术[J].铁道建筑技术,2002(增刊):39-40.
    [15]罗荣生,马威.压入式通风技术在大隧道中的应用[J].辽宁省交通高等专科学校学报,2006,9(3):19-20.
    [16]VON GLEHN, F.H., BLUHM, S.J.. Ventilation and Cooling of TBM Drives in High Temperature Conditions[J]. Journal of the Mine Ventilation Society of South Africa,1995(5):146-158.
    [17]Carvel R.O., Beard, A.N., Jowitt, P.W., etc. The influence of tunnel geometry and ventilation on the heat release rate of a fire[J]. FireTechnology,2004,40(1):5-26.
    [18]刘树年.辅助坑道在长大隧道施工通风中的利用[J].铁道建筑,1988,(4):20-22.
    [19]陆茂成,罗占夫,范鹏,等.华蓥山瓦斯隧道施工通风介绍[J].西部探矿工程,1999,11(3):58-59.
    [20]樊进强.巷道式通风在摩天岭隧道的应用[J].隧道建设,2007,27(3):101-104.
    [21]杨立新,赵军喜,周镕义.圆梁山特长隧道的施工射流通风技术[J].隧道建设,2005,25(4):36-40.
    [22]刘赦.秦岭特长隧道施工通风设计[J].西部探矿工程,2001,68(1):75-76.
    [23]Heng ZHANG, Shougen CHEN, Liang CHEN. A Study on Large Power Jet Ventilation Technology in Long Tunnel Construction[J]. Applied Mechanics and Materials 2011, Vols.94-96: 1800-1804.
    [24]张恒,杨家松,高辉.锦屏隧道施工通风研究[J].广西水利水电,2008(5):11-13.
    [25]谢国权.某特长隧道无轨运输施工通风技术研究及应用[J].人民长江,2007,38(11):48-50.
    [26]杨家松.特长隧道采用巷道式射流施工通风技术与工程应用[J].隧道建设,2008,28(4):456-459.
    [27]张恒,陈寿根,赵玉报.长大隧道射流风机的布置对CO排除效果的影响[J].铁道建筑,2011(9):50-53.
    [28]卿三惠,杨家松,黄世红.高压富水地层超深埋特长隧道施工技术研究[J].铁道工程学报,2009(1):86-91.
    [29]杨家松,王崇绪.复杂地质条件下特长隧道施工关键技术[J].西部探矿工程,2008(10):194-198
    [30]李骥良.锦屏水电站辅助洞施工通风设计[J].现代隧道技术,2004,41(5):16-20.
    [31]张忠伟,周洪波,杨安林.锦屏水电站辅助洞巷道式射流施工通风技术[J].四川水力发电,2011,30(16):132-134.
    [32]李法叙.日本青函隧道的防灾调度及防灾设施—赴日研修报告[J].铁道工程学报,1993(2):109-114.
    [33]Dietmar Oettl, Peter Johann Sturm, Michael Bacher, Gerhard Pretterhofer, Raimund Alforns Almbauer. A simple model for the dispersion of pollutions from a road tunnel portal[J]. Atmospheric Environment,2002,36,2943-2953.
    [34]J.Armstrong, E.C.Bennett. Three-dimensional Flows in a Circular Section Tunnel Ventilation[C], 8h International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels,1994, 743-756.
    [35]W.A.Woods, C.W.PoPe. On the range of validity ofsimplified one dimensional theories for calculating unsteady flows in railway tunnel[C], in:Proceedings of 3th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnel, England,1979
    [36]N.H.Danziger and W.D.Kennedy. Longitudinal Ventilation Analysis for the Glenwood Canyon Tunnels[C].4h International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels,1982,169-177.
    [37]Gao P.Z, Liu S.L, Chow W.K, Fong N.K. Large eddy simulations for studying tunnel smoke ventilation[J].Tunnelling and Underground Technology,2004,19(6):577-586.
    [38]Jojo S.M.Li, W.K.Chow. Numerical studies on performance evaluation of tunnel ventilation safety systems[J]. Tunnelling and Underground SpaeeTechnology,2003, (18):435-452.
    [39]M.Dobashi, T.Imai, H.Yanagi, A.Mizuno. Numerical simulation of the emergeney tunnel ventilation for a tunnel with longitudinal and transverse systems combined.10th International Symposium on the Aerodynamics & Ventilation of Vehiele Tunnels,2000.
    [40]E Migoya, A CresPo, J Garcia, J Hernandez. A simplified model of fires in road tunnels. Comparison with three-dimensional models and full-scale measurements[J], Tunnelling and Underground Space Technology,2009:37-52.
    [41]高辉.特长隧道锦屏辅助洞施工通风技术研究[D].成都:西南交通大学硕士论文,2008.
    [42]舒宁,徐建闽,钟汉枢,林钢.计算流体力学在纵向式公路隧道火灾通风中的仿真[J].水动力学研究与进展,2001,16(4):511-516.
    [43]郭磊.长距离独头随洞施工通风数值模拟研究[D].兰州:兰州交通大学硕士论文,2010.
    [44]彭海游.公路穿煤隧道的揭煤防突及施工通风[D].重庆:重庆大学硕士论文,2012.
    [45]刘雪朋.水电站地下主厂房施工通风动态数值模拟与优化[D].天津:天津大学硕士论文,2008.
    [46]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京清华大学出版社,2007.
    [47]谭信荣,陈寿根,张恒.基于洞内空气质量测试的长大隧道施工通风优化[J].现代隧道技术,2012,49(6):152-157.
    [48]官习艳,杨春生,崔向玲,等.哈尔滨地铁车站通风方案CFD模拟研究[J].建筑科学,2007,23(10):23-27.
    [49]李祖伟,何川,方勇,王明年.运营公路隧道空气污染物纵向分布的数值模拟[J].现代隧道技术,2005,42(4):68-71.
    [50]金文良,李宁军,李清.新七道梁隧道通风系统局部数值仿真模拟研究[J].公路隧道,2006,3:6-10.
    [51]于建伟,张欢,于燕玲.污水隧道纵向通风CFD仿真模拟与试验研究[J].山东建筑大学学报,2007,22(4):320-325.
    [52]D.G.E.Grigoriadis, J.G.Bartzis, A.Goulas. Efficient treatment of complex Geometries for large eddy simulation of turbulent flows. Computers and Fluids,2004,33(2):201-222.
    [53]Yunan Hu. Control design for mine ventilation network systems. Decision and Control, Proceedings of the 41st IEEE Conference,2002(1):10-13.
    [54]Alan Vardy. On Semi-Transverse Ventilation Systems.7th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels,1991:629-646.
    [55]Nakayama. In-situ measurement and simulation by CFD of methane gas distribution at a heading faces[J]. Shigen-to-Sozai,1998,114(11):769-775.
    [56]Hargreaves D.M., Lowndes I.S. The computational modeling of the ventilation flows within a rapid development drivage[J]. Tunnelling and Underground Space Technology,2007, 5(22):150-160.
    [57]L Gidhagen, C Johansson,J Strom, A Kristensson, E Swietlieki. Model Simulation of Ultrafine Particles inside A Road Tunnel[J]. Atmospheric Environment,2003,37:2023-2036.
    [58]S.Laslandes, C.Sace. Transport of particles by a turbulent flow around an obstacle-a numerical and a wind tunnel approach[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, 74(3):577-587.
    [59]R.Klemens, P.Kosinski, P.Wolanski, etal. Numerical study of dust lifting in a channel with vertical obstacles[J]. Journal of Loss Prevention in the Process Industries,2001,14(6):469-473.
    [60]Y.S.Chen, S.W.Kim. Computation of turbulent flows using an extended k-s turbulence closure model[J]. NASA CR-179204,1987.
    [61]Lance.M, Bateille.J. Turbulence in liquid and phase of a uniform bubbly air-water flow[J]. Journal of Fluid Mechanics,1991,222:95-118.
    [62]Gosman, A.D., Issa, R.I., Lekakou, C., Looney, M.K., and Politis, S. Multidimensional modeling of turbulent two-phase flows in stirred vessels[J]. AICHE Journal,1992,38(12):1946-1956.
    [63]F.H.VON GLEHN, S.J.BLUHM. Practical Aspects of the Ventilation of High-speed Developing Tunnels in Hot Working Environments[J]. Journal of the South African Institute of Mining and Etallurgy,2000.
    [64]S KUMAR, G COX. Mathematical modelling of fires in road tunnels[C]. Proceedings of the 5th International Symposium on the Aerodynamics & Ventilation of Vehicle Tunnels. Lille, France, BHRA, the Fluid Engineering Centre,1985,61-76.
    [65]Peter V Nielson. The box method a practical Procedure for introduetion of an air terminal device in CFD caleulation[D]. Dept of Building Technology and Structural Engineering. Aalborg University, Danmark,1997.
    [66]D.Makarov, A.Karpov, Osami Sugawa, and Takashi Tsuruda. CFD Modeling of Garage Fire and Gaseous Fire Suppression[J]. Fire Science and Technology,2000,20(3):273-291.
    [67]L.K. Bandyopadhyay, S.K. Sinha. Development of an Expert System for On-line Ventilation Network Analysis and Graphic Representation of Mine Ventilation Parameters[J]. Journal of the South African Institute of Mining and Etallurgy,2002.
    [68]Caterina Arcangeli, Anna Rita Bizzarri, Salvatore Cannistraro. Long-term molecular dynamics simulation of copper azurin:structure,dynamics and functionality [J]. Biophysical Chemistry, 1999(78):247-257.
    [69]E.Karakas.The control of highway tunnel ventilation using fuzzy logic[J]. Engineering Application of Artificial Intel-ligence,2003(16),10-12.
    [70]Silas KL, William DK. A CFD analysis of station fire conditions in the Buenos Aires subway system[J]. ASHRAE Transactions,1999,105(2):411-413.
    [71]WangY.J. Solving Mine ventilation networks with fixed and non-fixed branches[J]. Mining Engineering,1990,1342-1346.
    [72]LAMONT, D.R. ealth, Safety and Ventilation[J]..World Tunnelling,1998,11(9):448-454.
    [73]VON GLEHN, F.H., BLUHM, S.J.. Heat Genneration and Climatic Control in the Operation of Tunnel Boring Machines[C]. Proceedings of the sixth International Mine Ventilation Congress, Pittsburgh, PA, SME,1997.
    [74]S. Sarac, C. Sensogut. Mathematical Solutions to the Multiplefan Ventilation Systems[J]. Journal of the South African Institute of Mining and Etallurgy,2002.
    [75]Lund, T.S., Wu, X. and Squires, K.D.. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. J.Comp.Physics,1988(140):233-258.
    [76]王明年,杨其新,曾艳华.秦岭终南山特长公路隧道网络通风研究[J].公路交通科技,2002,19(4):65-68.
    [77]王明年,杨其新,曾艳华.终南山特长公路隧道火灾模式下网络通风研究[J].地下空间,2002,22(1):65-71.
    [78]杨其新,王明年,曹智明.长大双洞公路隧道火灾模式下横通道风流研究[J].地下空间,2004,24(2):220-223.
    [79]祝兵,关宝树,郑道坊.公路长隧道纵向通风的数值模拟[J].西南交通大学报,1999,34(2):133-137.
    [80]何川,李祖伟,方勇.公路隧道通风系统的前馈式智能模糊控制[J].西南交通大学报,2005,40(5):575-579.
    [81]曾艳华,关宝树.公路隧道全射流纵向通风方式的适用长度[J].公路,1999(1):38-41.
    [82]付修华,杨其新,刘化冰.对特长公路隧道火灾防灾救援安全策略的思考[J].公路交通科技,2004,21(3):56-59.
    [83]孙三祥,高孟理,武金明,等.双向行车公路隧道射流通风系统优化分析[J].公路交通科技,2006,23(12):106-110.
    [84]许云峰,高孟理.隧道射流通风流场数值的计算方法[J].兰州铁道学院学报(自然科版)2003,22(4):138-142.
    [85]邢利英,高孟理.隧道射流通风效率的实验研究[J].现代隧道技术,2008,45(3):50-53.
    [86]张京龙,孙三祥,李含.公路隧道双洞互补式通风系统横通道角度研究[J].公路交通技术, 2012,4(2):109-113.
    [87]王莉平.乌鞘岭特长铁路隧道施工通风计算要点[J].公路,2007,(6):190-192.
    [88]胡自林,彭立敏,刘胜利.中长公路隧道纵向通风计算模型[J].湘潭矿业学院学报,2003,18(2):34-37.
    [89]王永东,夏永旭.公路隧道纵向通风系统局部影响数据模拟[J].西安公路交通大学学报,2001,21(3):50-54.
    [90]危宁,李力,王春燕.隧道施工通风中的有害气体浓度变化分析[J].三峡大学学报(自然科学版),2006,28(4):324-327.
    [91]李力,危宁.隧道施工通风系统模糊控制方法研究[J].人民长江,2008,39(2):43-47.
    [92]张静,王晓玲,陈红超等.引水隧洞独头掘进工作面风流和粉尘扩散的模拟[J].水力发电学报,2008,27(1):111-117.
    [93]王晓玲,陈红超,刘雪朋等.引水隧洞独头掘进工作面风流组织与CO扩散的模拟[J].水利学报,2008,39(1):121-127.
    [94]王晓玲,刘雪朋,张自强等.水电站地下主厂房施工通风动态数值模[J].工程力学,2009,26(12):175-180.
    [95]王晓玲,陈红超,杨丽丽.新疆八十一大坂引水长隧洞TBM施工通风模拟研究[C].第三届全国水力学与水利信息学大会论文集,2007,692-697.
    [96]杨胜来,黄元平.综采工作面粉尘浓度分布的数值解法[J].中国安全科学学报,1996,6(增刊):64-68.
    [97]杨胜来.综采工作面粉尘运移和粉尘浓度三维分布的数值模拟研究[J].中国安全科学学报,2001,11(4):61-64.
    [98]刘毅,蒋仲安,蔡卫等.综采工作面粉尘浓度分布的现场实测与数值模拟[J].煤炭科学技术,2006,34(4):80-82.
    [99]王晓珍,蒋仲安,刘毅.抽出式通风煤巷掘进面过程中粉尘浓度分布规律的数值模拟[J].中国安全生产科学技术,2006,2(5):24-28.
    [100]王晓珍,蒋仲安,王善文等.煤巷掘进过程中粉尘浓度分布规律的数值模拟[J].煤炭学报,2007,32(4):386-390.
    [101]张静,王晓玲,陈红超,等.引水隧洞独头掘进工作面风流和粉尘扩散的模拟[J].水力发电学报,2008,27(1):111-117.
    [102]张静.引水隧洞施工通风模拟分析与施工方案优化研究[D].天津:天津大学博士论文,2007.
    [103]温玉辉,谢永利,李宁军.特长公路隧道相邻洞口流态三维CFD仿真分析[J].重庆交通学院学报,2006,25(5):33-36.
    [104]蔡能,方标,张泉,等.隧道通风模拟仿真及节能评估体系的研究[J].公路工程,2008,33(6):25-29.
    [105]那艳玲,黄桂兴.深圳地铁车站通风与火灾的仿真模拟及现场测试[J].天津大学学报,2006,39(增刊):213-219.
    [106]刘璞.新龙泉山瓦斯隧道施工危险评估研究[D].成都:西南交通大学硕士论文,2012.
    [107]Waterson,N.P.,Lavedrine J. Evaluation of a simplifled model for the design of ventilation systems in tunnel networks[C].11th International Symposium on the Aerodynamics and Ventilation ofVehicle Tunnels,2003.
    [108]王伟,华高英,赵耀华,李磊.城市地下交通隧道实体通风测试与数值仿真[J].北京工业大学学报,2010,36(2):194-198.
    [109]马德萍,李艳玲,莫政宇,等.向家坝地下洞室群施工通风效果三维数值模拟[J].人民长江,2011,42(1):29-32.
    [110]申明亮,赵彦贤,宋媛媛.溪洛渡地下洞室群施工通风方案仿真与优化[J].长江科学院院报,2008,25(4):36-39.
    [111]叶敏敏,李艳玲,莫政宇,杨兴国.大型地下洞室群施工通风的三维数值模拟[J].中国农村水利水电,2010(4):94-97.
    [112]李雪林.地下长大随洞施工通风方法研究[D].昆明:昆明理工大学硕士论文,2007.
    [113]张建国.深埋特长隧道通风关键技术研究[D].成都:西南交通大学博士论文,2011.
    [114]温玉辉.特长公路隧道纵向通风系统CFD三维仿真分析[D].西安:长安大学硕士论文,2004.
    [115]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio[J]. Building and Environment,2006,7(41): 719-725.
    [116]Nikuradse. Laws of flow in rough flow. Technical Memorandum,1950 (11):1292.
    [117]Moody L F. Friction factors for pipe flow. Journal of Heat Transfer,1944,66:671-684.
    [118]李建中.水力学[M].西安:陕西科学技术出版社,2002.
    [119]Fluent Inc. FLUENT 6.2 Use's Guide,2005.
    [120]邹江,彭晓峰,颜维谋.壁面粗糙度对通道流动特性的影响[J].化工学报,2008,59(1):25-31.
    [121]H. H erwig, D. Gloss, T. Wenterodt粗糙壁面通道内的流动研究[J].中国计量学院学报,2008,19(4):298-303.
    [122]刘成文,李兆敏,李希成.壁面粗糙度对旋风分离器内流场影响的数值模拟[J].环境工程学报,2011,5(10):2331-2336.
    [123]禹静,吴珂,李东升.壁面粗糙度对空气静压系统微振动的影响研究[J].传感器与微系统,2005,30(5):12-15.
    [124]Kandlikar S G. Roughness effects at microscale-reassessing Nikukadse's experiments on liquid flow in rough tubes. Bulletin of the Polish Academy of Sciences Technical Sciences,2005,53(4): 343-348.
    [125]CHEN Xing-fei, CHIEW Yee-meng. Response of Velocity and Turbulence to Sudden Change of Bed Roughness in Open-Channel Flow[J]. Journal of Hydraulic Engineering,2003,(12):35-43.
    [126]Shan H, Zhang Z, Nieuwstadt F T M. Direct numerical simulation of transition in pipe flow under the influence of wall disturbances. International Journal of Heat and Fluid Flow,1998,19(4): 320-325.
    [127]HERWIG H, KOCK F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems[J]. Heat and Mass Transfer,2007,43:207-215.
    [128]HERWIG H, GLOSS D, WENTERODT T. A new approach to understand and model the influence of wall roughness on friction factors for pipe and channel flows[J]. Fluid Mech,2008,613:35-53.
    [129]HUY, WERNER C, LI D. Influence of the three dimensional heterogeneous roughness on electrokinetic transport in microchannels [J]. J of Colloid and Interface Science,2004,280: 527-536.
    [130]KLEINST REU ER C, KOO J. Computational analysis of wall roughness effects for liquid flow in micro conduits[J]. J of Fluids Engineering,2004,126:1-9.
    [131]Suga K, Craft T J, Iacovides H. An annlytical wall-function for turbulent flows and heat transfer over rough walls[J]. International Journal of Heat and Fluid Flow,2006,27(5):852-866.
    [132]杨立新,洪开荣,刘招伟,等.现代隧道施工通风技术[M].北京:人民交通出版社,2012.
    [133]中铁二局集团有限公司.TB 10204-2002铁路隧道施工规范[S].北京:中国铁道出版社,2002:60.
    [134]中交第—公路工程局有限公司.JTJ042-94公路隧道施工技术规范[S].北京:人民交通出版社,2009.
    [135]国家安全生产监督局,国家煤矿安全监察局.煤矿安全规程[S].北京:煤炭工业出版社,2004:54-55.
    [136]国家安全生产监督管理总局.GB 16423-2006金属非金属矿山安全规程[S].北京:中国标准出版社,2006:66.
    [137]冶金工业部,中国有色金属工业总公司,劳动部.冶金地下矿山安全规程[S].北京:中国标准出版社,1990.
    [138]中华人民共和国交通部.公路隧道通风照明设计规范[S].北京:人民交通出版社,2000.
    [139]谭信荣.岩溶地区瓦斯隧道施工关键技术研究[D].成都:西南交通大学硕士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700