用户名: 密码: 验证码:
柱式桥台前坡改造土中骨架结构加固机理及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路基宽度不足是被交路升级改建中立体交叉路段的关键制约因素之一。由于环境条件和建设成本等原因,柱式桥台被大量应用在立体交叉路段的立交桥中,在被交路提升等级改建时,利用上跨公路柱式桥台能够为被交路提供通行空间的潜力,在不拆除重建、不中断交通、不影响通行安全的前提下,挖除台前填土,增设挡墙成为最经济途径。但在施工及运营过程中,不能回避的问题是,由于台前填土、锥坡的挖除和挡墙基坑的开挖,桥台填土外露面垂直,坡度大、边坡高,在路基与路面结构自重、行车荷载、桥头跳车的作用下,失稳破坏造成安全事故的危险较高。
     针对特殊的工程条件和施工要求,开展室内模型试验,在研究袖阀管劈裂注浆加固路基荷载响应特性,探察微桩与劈裂土体的浆液在土中形成层状骨架结构的基础上,利用解析和有限元数值计算的方法对土中骨架结构的轮载静、动力特性以及加固参数、边坡稳定性进行扩展分析;以工程实例为背景,开展边坡填土分段分级顺序挖除、台前台后注浆加固的数值模拟和分析,并经现场验证;采用数值计算和现场检测相结合的方法研究锚拉式挡墙墙后土压力、墙体应力与位移、锚杆轴力在施工和运营过程中的分布及演变规律。提出了对台背填土及台前地基土进行袖阀管劈裂注浆加固,分段分级挖除填土并采用锚拉式钢筋混凝土挡土墙进行支护的柱式桥台改建方法。
     本课题取得了如下创新性研究成果:
     (1)通过室内路基模型的毛细水上升试验、分级循环加载试验、袖阀管劈裂注浆加固试验,研究其在4级荷载作用下稳定性衰减的原因和规律,微桩及浆液在土中的形态和分布。结果表明:粉土具有强烈的毛细水作用,导致路基土体含水率增大,潜水位以上60cm为近饱和状态,饱和区含水率达27.5%,毛细水作用区比新建路基时的含水率平均高出7.2%,土体的抗剪强度下降,路基的总体刚度降低70%,超载作用下路基顶面竖向塑性累积变形随着荷载的增大而快速增加,呈破坏趋势;衰减路基模型的竖向应力分量减小而水平应力分量增大,应力分量的变化反应了路基模型边坡有侧滑破坏的趋势;袖阀管劈裂注浆加固路基模型中土体的竖向应力及水平应力都显著减小,浆液劈裂土体水平成层,并不与被加固粉土路基土体渗透掺混,成层的凝固浆液不仅阻断了土中毛细水上升的通道,而且与微桩形成土中骨架结构,这种土中骨架结构可使衰减路基的总体刚度提高到新建路基的116%。
     (2)土中骨架结构的劈裂层及微桩采用混凝土损伤塑性模型、土体采用Mohr-Coulomb模型,通过分离建模嵌入技术模拟劈裂层的加固作用,实现对刚度相差较大的土中骨架结构轮载响应的弹塑性数值分析;土中骨架把荷载分散传递到土体的深部,路面与土体的整体刚度增大,弯沉变形减小;顶部桩间土体竖向应力在加固前、后相差大约50%,加固深度应大于轮载产生的附加应力的影响范围,大约10m。土中骨架结构轮载动力分析时位移值变小,基层层底拉应力降低,但波动影响范围增大,土基以上各路面结构层在移动荷载下的竖向位移时程曲线一致,其中沥青面层位移值最大为0.16mm,小于静力下的0.26mm;位移峰值延后应力峰值0.005s,土中骨架结构荷载响应快。加固参数的分析表明,劈裂层间距越大,顶面弯沉值就越大,从1.0m至2.0m的变化对弯沉值的影响较大,劈裂层间距应控制在1.0m以内。土中骨架结构加固边坡的稳定性分析表明,边坡点的水平位移在强度折减系数3.80时突变(数值计算收敛),而加固前为1.85(数值计算不收敛),边坡的稳定安全系数提高了一倍多。
     (3)数值模拟台前填土不同挖除顺序的施工过程,分析开挖土体的稳定性和成拱效应,得到一定高度下跳槽开挖最大宽度为12m;以极限破坏状态时对应的PEMAG塑性区域分布和滑裂面的位置为参考确定施工加固区域。现场验证了柱式桥台前坡挡墙化改造方法,台后主动土压力区和台前被动土压力区的注浆加固,有效提高了加固区土体的抗剪强度和抗变形能力,挖除施工过程中无坍塌、掉落、滑移等现象,施工中上跨高速公路通行正常。
     (4)锚拉式挡墙在施工过程中的静力、桥头跳车冲击动力的数值模拟及现场锚杆拉拔、墙体位移、锚杆拉力监测和工后检测分析表明:墙后土压力沿墙高自上而下逐渐增大,但土压力的分布受锚杆影响,下层锚杆影响区土压力最大,上层次之,中层最小;墙后土压力沿墙宽从中到边逐渐减小,挖除对墙后土压力分布影响较大;注浆加固后墙后土体的侧压力系数降低。相邻节段挖除过程中,墙顶水平位移不断增大,从第1级至第4级墙顶水平位移增大了0.66mm,与检测结果(0.65mm)相符。锚杆轴力在墙高方向底层最大,中层次之,顶层最小;在墙宽方向,锚杆轴力分布不均,墙中最小,墙1/4处最大。锚拉式挡墙在施工过程中柔性变形,墙后土压力的分布复杂,不能按静止土压力理论计算。锚杆在试验拉拔力范围内与锚固土体粘结良好,拉拔力与伸长值呈线性相关,处于弹性范围内。试验锚杆在施工期处应力松驰阶段,锚杆拉力没有突然变化,说明墙后土体整体稳定;墙顶位移随时间逐渐增大,而后趋于平缓,位移增长期主要是施工期,最大位移为lmm。运营过程中各锚杆呈应力松驰状态而后趋于稳定,不同位置的锚杆拉力降低幅值也不一样,拉力降低最多的是行车道挡墙的下层锚杆,其次为上层锚杆,而内侧超车道挡墙锚杆拉力降低幅值基本一致,这说明行车道的墙后土体有向侧前方滑移变形的趋势,而超车道墙后土体侧向变形小。工后检测表明,墙土结构稳定。
     最后,对后续研究工作的方向进行了简单的讨论。
With the development of the economy and society, the capacity of many highway is no longer meet the needs of development because of the increasing volume of traffic and the relative scarcity of land resources, it shall be in the construction peak for road grade to be upgraded in current and future of a certain period. The lack of subgrade width is one of the key constrained factors in upgrading and improvement at the interchange section. Buried abutment is designed generally and widely used in the overpass because of construction costs and environmental conditions. The buried abutment slope can be transformed as potential space to provide clearance for the interchange section. Without bridge demolition and reconstruction, and not interrupting the traffic, slope soil excavation and anchored retaining wall by tie rods construction are the most economical way. But during construction and operation, the risk of accidents caused by soil instability and failure will be high, because the soil excavation outer face of the conical slope, abutment slope and foundation pit of retaining wall is vertical, high, and dangerous, especially under the weight load of embankment and pavement structure, traffic, and bridgehead vibration.
     Because of the special conditions for the engineering and construction requirements, a series of studies was carried out relying on the G1511highway interchange reconstruction project at Linyi section. First, a large-scale indoor model test was carried out in the study of the attenuation law of strength and stiffness for silt embankment with the action of capillary water, and the reinforcement effect of the embankment by the Soletanche method. Then, based on the model test observation of concrete skeleton in soil formed from micro-piles and fracture grouting layers, analytical and finite element methods are used for concrete skeleton in soil to solve stress, strain and displacement with static loads and dynamic loads of vehicle. The reinforcement parameters and slope stability analysis are also studied with Abaqus6.10. Third, with an engineering example as the background and certificated on-site, the slope soil excavation order in section horizontally and in layer vertically, soil reinforcement by the Soletanche method to active pressure soil and passive pressure soil of the abutment are simulated by numerical method. Finally, the distribution and the variation of lateral earth pressure, stress and displacement of the retaining wall and axial force of the bolt are studied by numerical method and site detections during construction and operation. In brief, an internal and external dual reinforcement program is proposed to the soil excavation, the internal program is soil reinforcement by the Soletanche method to active pressure soil and passive pressure soil of the abutment, the external program is anchored retaining wall by tie rods to the soil after slope excavation in section horizontally and in layer vertically.
     The main achievements of this thesis are as follows:
     1. The attenuation reason and law of strength, stiffness and stability for silt embankment with the action of capillary water, the morphology and distribution of micro-pile and grouting, are studied by soil indoor model of capillary water rise test of subgrade, grading cyclic loading test, and the Soletanche method reinforcement test at load level4. The results indicate that:the capillary water in the silt soil is serious and makes the soil moisture of subgrade increasing near to saturation at60cm above dive water level, the moisture of saturated district can up to27.5%, and higher7.2%compare to the original subgrade model. The general stiffness of the silt embankment will reduce70%because of the capillary water, and the shear strength of embankment soil will decline, the vertical plastic deformation of the embankment increases rapidly with the increasing load. The vertical soil stress component of the attenuation subgrade model reduces but horizontal stress component increases, this changes of stress component indicates the sideslip damage trend of the model. The vertical and horizontal stress are significantly reduces in the Soletanche method reinforcement model, the horizontal layered fracture grouting not only blocks the rising channels of capillary water, but also forms concrete skeleton with the bottom expansion micro-piles to bear the load together, of about50%. This concrete skeleton can promote the overall stiffness in soil reinforcement subgrade to116%, compared to the original subgrade model.
     2. The elastic and plastic mechanical properties of concrete skeleton in soil under wheel loads were calculated from static to dynamic analysis. The micro-pile and split crack layer of the concrete skeleton in soil used concrete damage plastic model, the soil used Mohr-Coulomb model, and the layered grouting reinforcement role was simulated by embedded technology of Abaqus6.10. The static analysis results indicate that:the load is transferred to the depth of the soil by the concrete skeleton, the general stiffness of the pavement and subgrade enlarged and the deflection reduced. The vertical soil stress in top reinforced department among micro-piles is less about50%than before. The depth of reinforcement soil is about10m and should be greater than the attached stress effects range produced by wheel loads. The dynamic analysis results indicate that: the displacement of the concrete skeleton in soil and the base layer tension stress of pavement structure reduce, but the fluctuations effects range enlarges. The vertical displacement time-history curve of every pavement layers is consistent, which the top asphalt concrete surface layer maximum for0.16mm, small than0.26mm of static. The displacement peak delayed the stress peak0.005s, so the concrete skeleton in soil response to load faster than before. The analysis of reinforcement parameter indicates that the distance among grouting layers larger, the deflection greater, especially varies from1.0m to2.0m, so the distance should be controlled less than1.0m. The reinforcement soil slope stability analysis of concrete skeleton indicates that the horizontal displacement of the key slope point suddenly increases when the strength reduction factor is3.80(numerical convergence), while it is1.85before the reinforcement (numerical computation does not converge), safety factor of slope stability is2-time more than before.
     3. The different soil excavation sequence of the slope is simulated to analysis the stability and arching effect during construction program, the maximum12m width of the excavation is determined under a certain height. The reinforcement construction area is determined as a reference according to the PEMAG distribution at critical damage state and slip surface position. The soil reinforcement by the Soletanche method to active pressure soil and passive pressure soil of the abutment improves the shear strength and the resistance to deformation, there is no collapse, fall, and slip at the site construction. The relevant results provide reliable technical references to similar project for design and construction.
     4. The numerical simulation of the anchored retaining wall by tie-rods in slope transformation under static and dynamic load, the anchor rod pulled out detection test in site, the displacement of the retaining wall and anchor rod force monitoring, and post-construction inspection show that:
     The lateral earth pressure gradually increases from up to down in the height direction of the wall, but the distribution of the pressure is up to the anchor rod, lower anchor rod effects district soil pressure maximum, upper followed, the middle minimum. The lateral earth pressure along wall width direction reduces gradually from side to center, slope excavation at adjacent section influence the pressure distribution. The lateral earth pressure coefficient reduces after soil reinforcement by grouting. The horizontal displacement at top of the retaining wall increases during the adjacent slope section excavation from the1th to4th level, the horizontal displacement increases0.66mm and matches the test results (0.65mm).The bolt axial force is not the same in height direction along the retaining wall; the bottom bolt is maximum, then the middle, and top minimal. The bolt axial force is neither the same in width direction, the minimum axial force at the center bolt of the wall, the maximum axial force at the one-fourth. The deformation of the anchored retaining wall by tie-rods is flexible during the construction, and the lateral earth pressure distribution is complex, it cannot be calculated by at-rest earth pressure theory. The bolt bonds with soil well at the bolt pulling force test range, pulling force and elongation values linearly correlated in the elastic range. There are no suddenly tension stress changes to the test bolt during the construction; the bolt is at the stress relaxation stage, which indicates the stability of the wall and soil in general. The displacement at the top of the retaining wall increases gradually with time, mainly increases at the construction period, and then increases slowly, and the maximum displacement is1mm.The anchor bolts are at the stress relaxation stage, and then tend to stable at the process. The reducing amplitude of bolt tension force differs with the location in the retaining wall; the most one is the lower anchor rod at carriage way, then the upper anchor rod, but the bolt tension force reducing amplitude is about the same at overtaking lane, which means the front sideslip deformation trend of the soil behind the wall at carriage way, and the soil deformation is small at overtaking lane. Post-construction inspection proves the stability of the retaining wall and the soil.
     Finally, the further research works have been briefly discussed.
引文
[1]刘松玉.公路地基处理[M].东南大学出版社,2000.
    [2]王哲,龚晓南,程永辉,et al.劈裂注浆法在运营铁路软土地基处理中的应用[J].岩石力学与工程学报,2005,09):1619-23.
    [3]邹金锋,李亮,杨小礼,et al.劈裂注浆能耗分析[J].中国铁道科学,2006,02):52-5.
    [4]雷风.分层劈裂注浆作用机理及应用[J].煤炭科学技术,2007,05):42-4.
    [5]周继凯,李原.袖阀管注浆法加固长江漫滩相路基的工程应用,F,2004[C].
    [6]赵光德,易鑫.劈裂注浆技术理论分析[J].山西建筑,2007,34):122-3.
    [7]章书录.土坝灌浆原理及工艺[J].水利水电技术,1987,18(2):22-34.
    [8]孙锋,张顶立,陈铁林.基于流体时变性的隧道劈裂注浆机理研究[J].岩土工程学报,2011,01):88-93.
    [9]孙锋,陈铁林,张顶立,et al基于宾汉体浆液的海底隧道劈裂注浆机理研究[J].北京交通大学学报,2009,04):1-6.
    [10]罗恒.注浆理论研究及其在公路工程中的应用[D];中南大学,2010.
    [11]NONVEILLER E. Grouting: theory and practice [M]. Elsevier,1989.
    [12]刘长生.袖阀管注浆法在公路路基病害处治中的应用[J].山西建筑,2008,13):308-9.
    [13]许岩.袖阀管劈裂注浆在道路工程软基处理中的应用[J].山西建筑,2011,20):156-7.
    [14]曹少谦.劈裂注浆在太祁跨线桥地基加固工程中的应用[J].山西交通科技,2002,S1):85-8.
    [15]何永华,李治国.钢花管劈裂注浆施工技术[J].施工技术,2008,S1):254-6.
    [16]章耿.上海软土地基劈裂注浆现场试验[J].建筑施工,1995,05):26-9.
    [17]袁波.浅析压力注浆法在处理高填路堤病害中的施工[J].中国新技术新产品,2009,09):92.
    [18]尹玉成,孔德萍.高压劈裂注浆加固滑体施工工法[J].城市道桥与防洪,1998,04):11-3.
    [19]李世龙.浅谈劈裂注浆法在路基加固中的施工技术[J].科技信息,2011,06):325.
    [20]何宁辉.劈裂注浆加固技术及应用[J].公路与汽运,2008,05):91-3.
    [21]耿丽英,张德贤.高速公路路基工程中注浆技术的应用[J].交通标准化,2010,Z1):156-60.
    [22]邝健政,昝月稳,王杰.岩土注浆理论与工程实例[J].北京:科,2001,
    [23]陈进杰,王祥琴.劈裂灌浆及其效果分析[J].石家庄铁道学院学报,1995,02):124-9.
    [24]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,06):839-41.
    [25]郝哲,王来贵,刘斌.岩体注浆理论与应用[M].地质出版社,2006.
    [26]赵明阶,何光春,王多垠.边坡工程处治技术[J].2003,
    [27]张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报,2008,02):181-4.
    [28]邹金锋,李亮,杨小礼.劈裂注浆扩散半径及压力衰减分析[J].水利学报,2006,03):314-9.
    [29]王民寿,樊天龙,蒋晓明.地基劈裂灌浆的本构关系——冶勒水电站第三岩组灌浆机理分析[J].四川水力发电,1997,04):82-7.
    [30]孙锋,张顶立,陈铁林,et al.土体劈裂注浆过程的细观模拟研究[J].岩土工程学报,2010,03):474-80.
    [31]朱登元,张庆涛.袖阀管劈裂注浆加固技术数值模拟研究[J].铁道建筑,2012,11):73-5.
    [32]白云,侯学渊.软土地基劈裂注浆加固的机理和应用[J].岩土工程学报,1991,02):89-93.
    [33]马丽娜,严松宏.劈裂注浆模拟试验设计及工程应用[J].路基工程,2010,05):67-9.
    [34]张忠苗,邹健,贺静漪,et al.黏土中压密注浆及劈裂注浆室内模拟试验分析[J].岩土工程学报,2009,12):1818-24.
    [35]龚健,陈仁朋,陈云敏,et al.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,20):3541-6.
    [36]郑刚,李帅,刁钰.刚性桩复合地基支承路堤稳定破坏机理的离心模型试验[J].岩土工程学报,2012,11):1977-89.
    [37]李早,黄茂松.隧道开挖对群桩竖向位移和内力影响分析[J].岩土工程学报,2007,03):398-402.
    [38]李波,黄茂松,程岳,et al路堤荷载下长短桩组合型复合地基现场试验与数值模拟[J].中国公路学报,2013,01):9-14.
    [39]沈伟,池跃君,宋二祥.考虑桩、土、垫层协同作用的刚性桩复合地基沉降计算方法[J].工程力学,2003,02):36-42.
    [40]李曰辰,邢克勇,刘浩,et al考虑土-桩-结构相互作用的PHC管桩抗震性能试验研究[J].岩石力学与工程学报,2013,02):401-10.
    [41]王成华,刘庆晨.考虑基坑开挖影响的群桩基础竖向承载性状数值分析[J].岩土力学,2012,06):1851-6.
    [42]韩煊,李宁.复合地基中群桩相互作用机理的数值试验研究[J].土木工程学报,1999,04):75-80.
    [43]唐传政,舒武堂.微型钢管群桩在基坑工程事故处理中的应用[J].岩石力学与工程学报,2005,S2):5459-63.
    [44]汤斌,陈晓平.群桩效应有限元分析[J].岩土力学,2005,02):299-302.
    [45]石名磊,战高峰.群桩荷载位移特性研究[J].岩土力学,2005,10):86-90.
    [46]刘金砺,黄强,李华,高文生.竖向荷载下群桩变形性状及沉降计算[J].岩土工程学报,1995,06):1-13.
    [47]刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题[J].土木工程学报,2004,01):78-83.
    [48]黄茂松,李波.往复荷载下层状地基柔性筏板-群桩共同作用分析[J].岩土力学,2012,08):2388-94.
    [49]郭院成,张四化,李明宇.长短桩复合地基试验研究及数值模拟分析[J].岩土工程学报,2010,S2):232-5.
    [50]高盟,高广运,杨成斌,et al层状地基群桩沉降计算的剪切位移解析算法[J].岩土力学,2010,04):1072-7.
    [51]梁正召,张永彬,唐世斌,et al岩体尺寸效应及其特征参数计算[J].岩石力学与工程学报,2013,06):1157-66.
    [52]晏莉,阳军生,张学民,et al水平互层岩体并行隧道中间岩柱稳定分析[J].岩石力学与工程学报,2009,S1):2898-904.
    [53]丁秀丽,付敬,刘建,et al软硬互层边坡岩体的蠕变特性研究及稳定性分析[J].岩石力学与工程学报,2005,19):12-20.
    [54]刘社豪.节理岩体等效本构关系研究及工程应用[D];大连理工大学,2011.
    [55]朱万成,张敏思,张洪训,et al节理岩体表征单元体尺寸确定的数值模拟[J].岩土工程学报,2013,06):1121-7.
    [56]张红亮,王水林,李春光.基于数值试验的节理岩体变形特性REV研究[J].岩石力学与工程学报,2008,S2):3643-8.
    [57]尹小涛,葛修润,李春光,et al基于数值实验的岩石试样最佳长径比研究[J].岩石力学与工程学报,2010,S2):3608-15.
    [58]安玉华,王清.基于三维裂隙网络的裂隙岩体表征单元体研究[J].岩土力学,2012,12):3775-80.
    [59]熊良宵,杨林德.互层状岩体黏弹塑性流变特性的数值分析[J].岩石力学与工程学报,2011,S1):2803-9.
    [60]杨春和,李银平.互层盐岩体的Cosserat介质扩展本构模型[J].岩石力学与工程学报,2005,23):4226-32.
    [61]杨乐,向文华,吴德伦,et al. Cosserat理论在互层岩体洞室有限元分析中的应用[J].岩土工程学报,2009,02):218-22.
    [62]熊良宵,杨林德.互层状岩体的粘弹性流变模型及数值分析[J].同济大学学报(自然科学版),2010,09):1281-6.
    [63]陈卫忠,杨建平,邹喜德,et al裂隙岩体宏观力学参数研究[J].岩石力学与工程学报,2008,08):1569-75.
    [64]BRUCE J, RUEL M, ANSARI N. Design and construction of a micropile wall to stabilize a railway embankment; proceedings of the Deep Foundations Institute Annual Conference on Deep Foundations:Emerging Technologies Vancouver:[sn], F,2004 [C].
    [65]GALLI A, DI PRISCO C. Displacement-based design procedure for slope-stabilizing piles [J]. Canadian Geotechnical Journal,2012,50(1):41-53.
    [66]HATZOR Y H, ARZI A A, ZASLAVSKY Y, et al. Dynamic stability analysis of jointed rock slopes using the DDA method:King Herod's Palace, Masada, Israel [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):813-32.
    [67]BRUCE D A, DIMILLIO A F, JURAN I. A primer on micropiles [J]. Civil Engineering,1995, 65(12):
    [68]ARMOUR T,MICROPILE DESIGN AND CONSTRUCTION GUIDELINES IMPLEMENTATION MANUAL,2000.
    [69]吕凡任,陈云敏,梅英宝.小桩研究现状和展望[J].工业建筑,2003,33(4):56-9.
    [70]苏媛媛,张占民,刘小丽.微型抗滑桩设计计算方法综述与探讨[J].岩土工程学报,2010,S1):223-8.
    [71]王丽艳,袁新明.微型桩复合地基沉降和动力特性研究[J].水利学报,2005,12):1492-7.
    [72]辛建平,郑颖人,唐晓松,et al.三排微型桩内力分布的数值模拟[J].重庆建筑,2012,09):71-5.
    [73]邹立垒.超载作用下微型群桩与边坡相互作用机理的数值研究[D];山东建筑大学,2011.
    [74]孙书伟.微型桩结构加固边坡受力机制和设计计算理论研究[D];中国铁道科学研究院,2009.
    [75]张玉军,刘谊平.层状岩体的三维弹塑性有限元分析[J].岩石力学与工程学报,2002,21(11):1615-9.
    [76]HARRISON J P, HUDSON J A. Engineering rock mechanics-an introduction to the principles [M]. Access Online via Elsevier,2000.
    [77]ABELA J M, POTTS D M, VOLLUM R L, et al. Geotechnical analysis of blinding struts in cut-and-cover excavations [J]. Computers and geotechnics,2013,48(Mar.):179-91.
    [78]BISHOP A W. The use of the slip circle in the stability analysis of slopes [M]. 万方数据资源系统, 1955.
    [79]王复来.土石坝边坡的滑动稳定计算[J].水利水电技术,1979,09):1-9.
    [80]张雄.边坡稳定性分析的改进条分法[J].岩土工程学报,1994,03):84-92.
    [81]ZIENKIEWICZ O, HUMPHESON C, LEWIS R. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique,1975,25(4):671-89.
    [82]MATSUI T, SAN K C. Finite element slope stability anlysis by shear strength reduction technique [J]. Soils and Foundations,1992,32(1):P59-70.
    [83]GRIFFITHS D, LANE P. Slope stability analysis by finite elements [J]. Geotechnique,1999,49(3): 387-403.
    [84]LANE P, GRIFFITHS D. Assessment of stability of slopes under drawdown conditions [J]. Journal of geotechnical and geoenvironmental engineering,2000,126(5):443-50.
    [85]DAWSON E, ROTH W, DRESCHER A. Slope stability by strength reduction [J]. Geotechnique, 1999,49(6):835-40.
    [86]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,10):57-61+78.
    [87]郑颖人,赵尚毅,李安洪,et al有限元极限分析方法及其在边坡中的应用[M].北京:人民交通出版社,2011.
    [88]张建海,范景伟,何江达.用刚体弹簧元法求解边坡、坝基动力安全系数[J].岩石力学与工程学报,1999,5(4):0.
    [89]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,04):553-6+60.
    [90]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析[J].岩石力学与工程学报,2007,12):2385-94.
    [91]郑颖人,叶海林,黄润秋,et al边坡地震稳定性分析探讨[J].地震工程与工程振动,2010,02):173-80.
    [92]吴兆营,薄景山,刘红帅,et al.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报,2004,03):237-41.
    [93]朱维申,李术才,白世伟,et al.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报,2003,10):1586-91.
    [94]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].科学出版社,1995.
    [95]朱维申,王平.动态规划原理在洞室群施工力学中的应用[J].岩石力学与工程学报,1992,04):323-31.
    [96]杜菊红.小间距隧道动态施工力学研究[D];同济大学,2008.
    [97]才庆祥,周伟,舒继森,et al大型近水平露天煤矿端帮边坡时效性分析及应用[J].中国矿业大学学报,2008,06):740-4.
    [98]赵尚毅,郑颖人,唐树名.路堑边坡施工顺序对边坡稳定性影响数值模拟分析[J].地下空间,2003,04):370-4+454.
    [99]姚裕春,姚令侃,袁碧玉,et al施工时序对边坡稳定性影响的离心模型试验及数值分析[J].岩石力学与工程学报,2006,05):1 075-80.
    [100]赵晓彦,胡厚田,唐茂颖.类土质高边坡开挖效应的离心模型试验及数值模拟研究[J].岩石力学与工程学报,2006,S2):4046-51.
    [101]许湘华,王强,方理刚.高速公路路堑边坡施工过程动态稳定性分析[J].中南大学学报(自然科学版),2006,05):1008-12.
    [102]黄井武,陈晓平,周秋娟.路堑边坡施工过程离心模型试验及数值模拟研究[J].岩土力学,2010,S2):422-7.
    [103]CONTI R, VIGGIANI G M B, CAVALLO S. A two-rigid block model for sliding gravity retaining walls [J]. Soil Dynamics and Earthquake Engineering,2013,55(0):33-43.
    [104]CONTI R, VIGGIANI G M B. A new limit equilibrium method for the pseudostatic design of embedded cantilevered retaining walls [J]. Soil Dynamics and Earthquake Engineering,2013,50(0): 143-50.
    [105]BENMEBAREK S, KHELIFA T, BENMEBAREK N, et al. Numerical evaluation of 3D passive earth pressure coefficients for retaining wall subjected to translation [J]. Computers and Geotechnics, 2008,35(1):47-60.
    [106]ASKARI F, TOTONCHI A, FARZANEH O. Application of admissible stress fields for computation of passive seismic force in retaining walls [J]. Scientia Iranica,2012,19(4):967-73.
    [107]张永兴,陈林.挡土墙非极限状态主动土压力分布[J].土木工程学报,2011,04):112-9.
    [108]杨雪强,吴子超,杨宗轲.一般应力状态下挡土墙上主动土压力研究[J].中国公路学报,2010,02):25-9+70.
    [109]胡俊强,张永兴,陈林,et al非极限状态挡土墙主动土压力研究[J].岩土工程学报,2013,02):381-7.
    [110]陈页开.挡土墙上土压力的试验研究与数值分析[J].岩石力学与工程学报,2002,08):1275.
    [111]WU Y, KANG H, WU J, et al. Deformation and support of roadways subjected to abnormal stresses [J]. Procedia Engineering,2011,26(0):665-74.
    [112]LOH H Y, UY B, BRADFORD M A. The effects of partial shear connection in composite flush end plate joints Part I - experimental study [J]. Journal of Constructional Steel Research,2006,62(4): 378-90.
    [113]LIN S-R, HUANG C-C, CHENG S-C. Safety evaluation for bolting design of a transportable storage canister of spent nuclear fuels [J]. International Journal of Pressure Vessels and Piping,2012, 90-91(0):22-7.
    [114]DIAS D. Convergence-confinement approach for designing tunnel face reinforcement by horizontal bolting [J]. Tunnelling and Underground Space Technology,2011,26(4):517-23.
    [115]CAO C, JAN N, REN T, et al. A study of rock bolting failure modes [J]. International Journal of Mining Science and Technology,2013,23(1):79-88.
    [116]张乐文,李术才.岩土锚固的现状与发展[J].岩石力学与工程学报,2003,S1):2214-21.
    [117]林杭,曹平.锚杆长度对边坡稳定性影响的数值分析[J].岩土工程学报,2009,03):470-4.
    [118]付文光,杨志银.复合土钉墙整体稳定性验算公式研究[J].岩土工程学报,2012,04):742-7.
    [119]宋修广,张宏博,王松根,et al黄河冲积平原区粉土路基吸水特性及强度衰减规律试验研究[J].岩土工程学报,2010,10):1594-602.
    [120]姚占勇,商庆森,崔十强,et al黄泛区公路土的处置技术研究[M].人民交通出版社,2013.
    [121]赵宇坤,刘汉东,乔兰.不同浸水时间黄河堤防土体强度特性试验研究[J].岩石力学与工程学报,2008,S1):3047-51.
    [122]肖军华,刘建坤,彭丽云,et al黄河冲积粉土的密实度及含水率对力学性质影响[J].岩土力学,2008,02):409-14.
    [123]HUANG Y H. Pavement analysis and design [J]. Englewood Cliffs, New Jersey,1993,7632(317.
    [124]庄茁,由小川,廖剑辉.基于ABAQUS的有限元分析和应用[M].清华大学出版社,2009.
    [125]姚占勇等.黄泛区公路土的处置技术研究[M].北京:人民交通出版社,2013.4.
    [126]廖公云,黄晓明ABAQUS有限元软件在道路工程中的应用[M].东南大学出版社,2008.
    [127]钱振东,张磊,陈磊磊.路面结构动力学[M].南京:东南大学出版社,2010.11.
    [128]张肇伸.锚定板挡土结构的有限单元分析[J].岩土工程学报,1983,02):22-34.
    [129]孟庆山,孔令伟,陈能远,et al桩锚挡墙联合支护残积土边坡离心模型试验研究[J].岩土力学,2010,11):3379-84+96.
    [130]唐仁华,陈昌富.锚杆挡土墙可靠度分析与计算方法[J].岩土力学,2012,05):1389-94+401.
    [131]何昌荣,李彤,陈群,et al.新型预应力锚拉式桩板墙的三维有限元计算分析[J].岩石力学与工程学报,2003,05):843-8.
    [132]SHUCAI L, WEISHEN Z, WEIZHONG C, et al. MECHANICAL MODEL OF MULTI-CRACK ROCKMASS AND ITS ENGINEERING APPLICATION [J]. Acta Mechanica Sinica,2000,04): 357-65.
    [133]CHEN Z, WANG X, HABERFIELD C, et al. A three-dimensional slope stability analysis method using the upper bound theorem:Part I:theory and methods [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3):369-78.
    [134]陈祖煜,弥宏亮,汪小刚.边坡稳定三维分析的极限平衡方法[J].岩土工程学报,2001,05):525-9.
    [135]张均锋,丁桦.边坡稳定性分析的三维极限平衡法及应用[J].岩石力学与工程学报,2005,03):365-70.
    [136]袁闻,徐青,陈胜宏,et al边坡稳定分析的三维极限平衡法及工程应用[J].长江科学院院报,2013,04):56-61+84.
    [137]陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,01):1-11.
    [138]崔新壮,姚占勇,商庆森,et al加筋土坡临界高度的极限分析[J].中国公路学报,2007,01):1-6.
    [139]崔新壮,金青,朱维申, et al圆形放坡基坑临界深度极限分析[J].土木工程学报,2007,01):60-4+94.
    [140]郑颖人,赵尚毅,邓楚键, et al有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学,2006,12):39-61+112.
    [141]张传庆,周辉,冯夏庭.基于破坏接近度的岩土工程稳定性评价[J].岩土力学,2007,28(005):888-94.
    [142]杨文东,张强勇,宋萌勃,et al基于破坏接近度和强度折减法的边坡稳定性评价[J].山东大学学报(工学版),2010,06):82-7.
    [143]朱登元,姚占勇,管延华,et al路面结构平衡的破坏接近度分析[J].山东大学学报(工学版),2012,42(6):74-9.
    [144]ZHANG C, ZHOU H, FENG X. An Index for Estimating the Stability of Brittle Surrounding Rock Mass:FAI and its Engineering Application [J]. Rock Mechanics and Rock Engineering,44:401-14.
    [145]BENMEDDOUR D, MELLAS M, FRANK R, et al. Numerical study of passive and active earth pressures of sands [J]. Computers and Geotechnics,2012,40(0):34-44.
    [146]李萍,温学涛.框架预应力锚杆在深路堑边坡工程中的应用[J].四川建筑,2009,04):90-2+5.
    [147]王梅,李镜培.考虑土拱效应的刚性挡墙主动土压力计算方法[J].岩土工程学报,2013,05):865-70.
    [148]肖成志,栾茂田,杨庆,et al加筋挡土墙长期工作性能的黏弹塑性有限元分析[J].岩石力学与工程学报,2006,10):1990-6.
    [149]吴曙光,张永兴,刘新荣.三峡库区某桩锚挡墙失稳机理分析[J].重庆建筑大学学报,2007,01):1-4+30.
    [150]邓学钧.车辆-地面结构系统动力学研究[J].东南大学学报(自然科学版),2002,03):474-9.
    [151]王崇涛.路桥过渡段差异沉降与动力响应研究[D];长安大学,2010.
    [152]丁勇,诸葛萍,谢旭,et al考虑车轮-路面接触长度的桥头跳车动力荷载分析[J].振动与冲击,2013,09):28-34.
    [153]丁勇,谢旭,区达光,et al基于分布式弹簧-阻尼单元的桥头跳车动力荷载分析[J].土木工程学报,2012,12):127-35.
    [154]丁勇,谢旭,黄剑源.考虑车轮滚动轨迹的桥头跳车动力荷载计算方法及影响因素分析[J].工程力学,2013,02):135-42+49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700