用户名: 密码: 验证码:
工程治理后岩质边坡稳定性评价标准及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通建设项目向西部山区开展,在工程建设过程中形成了很多高陡边坡。据初步统计,在云南省2003年后投入运营的高速公路中,需要及时评价且高度大于30m的工程边坡就有700多处,其中全长147km的元(江)-磨(黑)高速公路在施工期间出现病害并进行过工程治理的边坡就有182处。建立工程治理后边坡稳定性评价标准和评价方法,科学合理地评价工程治理后边坡的安全性,是工程管理部门亟需解决的问题。
     当前,国内外学者在工程治理前边坡的稳定性评价方面作了大量工作,取得了丰富的研究成果,而对工程治理后边坡的稳定状态和工程治理效果评价方面的研究相对较少。从公开发表的文献来看,大多是针对某一具体工点采用传统计算方法重新计算边坡的稳定系数或者是从治理工程的经济指标方面对边坡治理效果进行评价,缺乏统一的评价方法和相应的评价标准。
     基于此,本文以国家西部交通科技项目《元磨高速公路边坡病害群治理工程效果评价及应对措施研究》为依托,针对边坡锚固工程治理效果的评价标准和评价方法进行了较系统的研究。主要内容如下:
     (1)对比分析了边坡工程治理前稳定性评价与工后治理效果评价之间的不同点,从高速公路管理、维护和安全运营的角度提出了边坡工程治理效果评价的概念和评价内容。
     (2)考虑工程风险因素,根据治理后边坡的破坏类型、规模以及对运营工程的影响程度制定了边坡工程治理效果评价分级标准,并提出了相应的应对措施。
     (3)根据锚固工程特点,建立了基于1.00、1.10和1.20三个安全系数值的边坡工程治理效果评价分级标准,提出了锚固工程治理效果的单因素评价标准及方法,进而从边坡破坏模式、岩土体力学参数取值和锚固工程受力机制方面分析了锚固工程在崩塌、错落、滑坡和坡面变形破坏等边坡病害治理中的适宜性。
     (4)采用室内直接剪切试验,结合Barton模型讨论了岩石边坡结构面强度参数取值的准确性。研究表明,Barton模型可以准确、快速地确定岩石结构面强度指标,而室内直接剪切试验方法测得的内聚力明显偏高,在实际应用中应取其1/10或者更低。
     (5)基于理论分析、经验公式和规范推荐方法,综合分析了锚索锚固段的受力机制及其设计长度的合理性,并与现场试验数据进行了对比。分析表明,现今使用规范中的设计参数取值偏于保守,基于规范计算的锚固段长度比现场实测得到的长度大2.2~5.1倍。
     (6)基于边坡三维地质信息,采用Fish语言编制程序,建立了用于模拟分析边坡工程治理前后破坏模式的数值计算模型。计算结果表明,数值模拟方法可以准确地模拟边坡工程治理前后的效果,同时证明预应力锚索有效地防治了边坡的潜在滑动趋势,达到了良好的治理效果。
     (7)采用二次曲线、GM(1,1)和指数平滑模型分析预测了锚固工程在施工阶段和锚索长期工作阶段预应力的变化趋势。分析表明:施工锚固阶段锚索拉力变化符合二次曲线特征;GM(1,1)和指数平滑模型可以较高精度地预测锚索拉力变化趋势,可用于锚固工程治理效果的预测预警。
     (8)针对边坡工程治理效果评价内容和目的,选取了包括边坡地质条件因素、防治工程技术状况和边坡宏观迹象特征的9个评价因子,采用层次分析法确定了各级评价指标权重,基于模糊数学理论建立了边坡工程治理效果的综合评价模型,并采用此模型对元磨高速公路119处边坡进行了评价。研究表明,所建模型能够很好地区分评价等级,可以广泛应用于边坡工程治理效果评价中。
     (9)基于边坡工程治理效果评价的内容、目标和方法开发了边坡工程治理效果评价与监测预警系统,首次从边坡工程治理效果评价角度建立了边坡基本信息、监测信息数据库系统和各数据库资料相互查询机制,实现了边坡工程治理效果的单因素评价和综合评价计算过程的程序化以及基于实时监测数据的预测预警功能。
Recently, fast progress of traffic construction projects being carried at the mountain areas in western China, a large number of high-steep slopes were formed during the engineering constructions. Statistically, there are more than700slopes higher than30m that need to be evaluating the treatment effect.182slopes had loose stability and been treated while constructing along the area between Yuan-Jiang to Mo-Hei expressway (147km distance).
     Therefore, finding scientific methods that can maintain of high-steep slopes is of great importance for the safety of the proposed highway operation. Although local and external scholars have reached great achievements on stability evaluation for the untreated engineering slope at present, the studies on the post evaluation of the stability of engineering slope and the engineering treatment effects are relatively scarce. The evaluation methods for treatment effect in most of the current published literatures are normally using the traditional methods to re-evaluate the slope stability, or calculating the engineering economic indicators.
     Based on the western traffic science and technology project 《Researth on evaluation of treatment effect and the countermeasure for Yunnan YuanMo expressway》, this thesis concerned mainly to systematically study the criterion, evaluation method on the treatment effect of anchors engineering. The main contents are as follows:
     (1) The concept and content of post evaluation of the treatment effect were put forward from the point of view the highway operation, management and maintain, considering the difference between the stability evaluation of the untreated and post treatment effect of engineering slope.
     (2) Considering the risk of engineering, scale and extent of influence on operation of the treated slopes, and based on the failure type, the classification criterions for treatment effect evaluation of the slope engineering were designed, and solving measures were proposed.
     (3) According to the characters of anchor engineering, classification criterions were established for evaluation of treatment effect for the engineering slope, which based on three coefficients of safety (1.00,1.10and1.20). Furthermore, the suitability of anchorage engineering in different aspects of slope failure such as rock fall, collapse, landslide, deformation failure in slope were analyzed, considering the mechanical parameters of rock mass and the anchorage engineering mechanical behaviors.
     (4) The accuracy of strength parameters of structural planes in rock slope were discussed with the method of laboratory direct shear test and empirical evaluation method. The results show that the Barton model can determine the strength parameters of structural planes easily and accurately. However, the value of cohesion gained from the laboratory test is significantly higher, and it is proper to take one tenth of the laboratory test value or less in practical application.
     (5) Mechanical behaviors and design depth of anchorage segment was synthetically analyzed through theoretical analysis、empirical equations and normative recommended methods. In addition the calculated data was also compared with practical data collected from field test. The result suggests that the design parameters recommended by the current norms is evident conservative, and the value of design depth is2.2-5.1times as much as which gained through practical monitoring and theoretical calculations.
     (6) Based on3D geological information and numerical calculation model, which compiled in Fish language was constructed to analyze the failure model of slope before and after treatment. The results of calculations show that the method of numerical simulation can accurately simulate the treatment effect. In addition, it also proves that the pre-stress anchor cable can efficiently prevent the potential sliding trend and achieve the good treatment effect.
     (7) The trend changing of the pre-stress in the course of the construction anchorage and working stage was predicted by means of second order curve, GM(1,1) and exponential smoothing. The results show that the stress changes of anchorage segment accord with the characters of the second order curve, but the GM(1,1) and exponential smoothing models can predict the changes trend of pre-stress accurately, therefore, they can be used in risk prediction of treatment effect for the slope.
     (8)Base on the fuzzy mathematics theory and project risk evaluation contents, a comprehensive evaluation model for the slope engineering treatment effect was established. This model considers three aspects (nine evaluation factors), which include slope geological condition, slope prevention engineering and macroscopic indications. Then the index weight at every level was established by the analytic hierarchy process method. The treatment effect of119slopes along Yuan-Mo highway is evaluated. This research is approved that this model can effectively distinguish the treatment effect of evaluation levels, so it can be widely used to evaluate the treatment effect of the slope engineering.
     (9)Based on the content, objectives and method of the slope engineering treatment effect evaluation, a monitoring and early warning system were developed. This is the first time to construct a slope basic and monitory information database from the angle of slope treatment effect evaluation, and to establish an interactive query mechanism in different database. This work can realize both the single factor and comprehensive evaluations for the treatment effect of slope engineering. Moreover, it can make the early warning on the analysis of the real-time data.
引文
[1]GB50330-2002.建筑边坡工程技术规范[S].2002.
    [2]JTGD30-2004.公路路基设计规范[S].2004.
    [3]GB50330-2002.建筑地基基础设计规范[S].2002.
    [4]GB50021-2001.岩土工程勘察规范[S].2001.
    [5]GB50007-2002.建筑地基基础设计规范[S].2002.
    [6]张玉芳,王春生,张丛明.边坡病害及治理工程效果评价.科学出版社,2009.10
    [7]梁炯望.锚固与注浆技术手册[M].1999.
    [8]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].人民交通出版社,2004.
    [9]胡厚田.崩塌与落石[M].中国铁道出版社,1989.
    [10]张丛明,李国峰等著.公路边坡治理措施及安全评价方法.人民交通出版社,2009.8
    [11]李中国,张玉芳.高陡预应力锚索框架在加固路堑边坡中的应用[S].铁道建筑,2005(2):53~55.
    [12]郑明新.滑坡工程治理效果评价研究[D].河海大学,2005.
    [13]夏雄.桩锚结构设计理论及安全性评价[D].西南交通大学,2002.
    [14]王艳芬.预应力锚索加固岩体的机理分析及数值模拟计算[D].华中科技大学,2007.
    [15]齐明柱.预应力锚索框架结构的现场原型试验研究[D].铁道科学研究院,2007.
    [16]房锐.公路边坡治理工程效果评价系统研究[D].中国铁道科学研究院,2009.
    [17]张梁,张业成,罗元华.地质灾害灾情评估理论与实践.地质出版社,1998.
    [18]四川省紫坪铺开发有限责任公司,四川准达岩土工程公司.自由式单孔多锚头防腐型预应力锚索研制与应用[R].2000.
    [19]李英勇.岩土预应力锚固系统长期稳定性研究[D].北京交通大学,2008.
    [20]洪海春.边坡岩体锚固性能研究及其工程应用[D].河海大学,2007.
    [21]Kaiser P K, Yazici S, Nose J. Effect of stress change on the bond strength of fully grouted cables[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon,1992,29(3):293-306.
    [22]Hyett A J, Bawden W F, Reichert R D. The effect of rock mass confinement on the bond strength of fully grouted cable bolts[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon,1992,29(5):503-524.
    [23]Hyett A J, Bawden W F, Macsporran G R, et al. A constitutive law for bond failure of fully-grouted cable bolts using a modified Hoek cell[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon,1995,32(1): 11-36.
    [24]Yazici S, Kaiser P K. Bond strength of grouted cable bolts[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon,1992,29(3): 279-292.
    [25]Kilic A, Yasar E, Celik A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and underground space technology,2002,17(4): 355-362.
    [26]Jarred, D. J. and Haberfield, C. Tendon Ground interface performance. Ground anchorages and anchored structures [M]. Thorns Telford. London,1997:3-14.
    [27]Briaud L. and Weatherby, D. E. Should grouted anchors have short tendon bond length. [J]. ASCE Journal of Geptechnical and environmental Engineering. ASCE,1998, 124:110-119.
    [28]BYE A R, BELL F G, Stability assessment and slope design atSandsloot open pit, South Africa[J], International Journal of RockMechanics and Mining Sciences,2001, 38(3):449-466.
    [29]Woods R I, Barkhordari K. The influence of bond stress distribution on ground anchor design[C]//Proc. Int. Symp. on Ground Anchorages and Anchored Structures. London: Themas Telford,1997:55-64.
    [30]Thorne C P. Penetration and load capacity of marine drag anchors in soft clay[J]. Journal of geotechnical and geoenvironmental engineering,1998,124(10):945-953.
    [31]Sarma S K. Stability analysis of embankments and slopes[J]. Journal of the Geotechnical Engineering Division,1979,105(12):1511-1524.
    [32]Janbu N. Slope stability computations [J]. Publication of:Wiley (John) and Sons, Incorporated,1973.
    [33]Littlejohn, S. Ground anchorage technology aforward look [A]. Grouting, soil improvement and Geosynthetics [C]. Geotechnical Special Publications, ASCE,1992 No.30:163-107.
    [34]Brahim B., Mohamed C., Haixue X. Long-term service behavior of cement grouted anchors in the laboratory and field [C]. Mchors in Theory and Practice.Widmann (ed.).Balkema, Rotterdam,1995:396-403.
    [35]Benmokrane B, Ballivy G. Five-year monitoring of load losses on prestressed cement-grouted rock anchors [J]. Canadian Geotechnical Journal,1991,28(5):668-677.
    [36]Shield, D. R. Schnabel, H. JR, wegtherby. Load transfer in pressure injected anchors of the Geotech. Eng. Division. ASCE. D. E.1978, GT9:1183-1196.
    [37]Benmokrane B, Xu H, Bellavance E. Bond strength of cement grouted glass fibre reinforced plastic (GFRP) anchor bolts[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon,1996,33(5):455-465.
    [38]Benmokrane B, Chekired M, Xu H. Monitoring behavior of grouted anchors using vibrating-wire gauges[J]. Journal of geotechnical engineering,1995,121(6):466-475.
    [39]杨俊凯.边坡稳定性评价方法综述[J].中国科技信息,2009,16:65-66.
    [40]姚环,郑振,简文彬,沈骅,秦刚.公路岩质高边坡稳定性的综合评价研究[J].岩土工程学报,2006(5):558-563.
    [41]黄建文,李建林,周宜红.基于AHP的模糊评判法在边坡稳定性评价中的应用[J].岩石力学与工程学报,2007(S1):2627-2632.
    [42]刘楚乔,梁开水.岩质高边坡稳定性监测与评价方法研究综述[J].工业安全与环保,2008(3):19-21.
    [43]沈良峰,廖继原,张月龙.边坡稳定性分析评价方法研究及趋向[J].建筑科学,2004(6):43-46.
    [44]夏元友,朱瑞赓.斜坡稳定性综合评价方法的集成式因素权重赋值方法[J].中国有色金属学报,1998(1):168-172.
    [45]夏元友.边坡工程集成式智能决策支持系统研究[J].岩石力学与工程学报,1999,18(1):115-115.
    [46]于莉.基于可靠度的裂隙岩质边坡稳定性评价[D].吉林大学,2011.
    [47]谢桂华.岩土参数随机性分析与边坡稳定可靠度研究[D].中南大学,2009.
    [48]李东升.基于可靠度理论的边坡风险评价研究[D].重庆大学,2006.
    [49]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [50]刘明维,郑颖人.岩质边坡结构面抗剪强度参数的实用确定方法研究[J].工程勘察,2006(5):6-9.
    [51]刘明维,何平,钱志雄,郑颖人,何沛田.岩质边坡结构面实用分类方法研究[J].地下空间与工程学报,2007(5):811-817.
    [52]刘明维,郑颖人.边坡岩体结构面抗剪强度参数确定方法探讨[J].重庆交通大学学报(自然科学版),2007(5):97-102.
    [53]刘明维,傅华,吴进良.岩体结构而抗剪强度参数确定方法的现状及思考[J].重庆交通学院学报,2005(5):65-67.
    [54]雍睿,唐辉明,胡新丽,等.结构面抗剪强度参数线性拟合方法适用性研究[J].岩土力学,2012,33(S2):118-124
    [55]蒋明杰.两种岩体结构而抗剪强度参数取值方法对比分析[J].湖南交通科技,2012,38(3):7-8.
    [56]杨朝发,刘发祥.综合评价法确定岩质顺向坡软弱结构面的强度参数[J].探矿工程岩土钻掘工程,2012(8).
    [57]高大水,曾勇.三峡永久船闸高边坡锚索预应力状态监测分析[J].岩石力学与工程学报,2001,20(5):653-656.
    [58]Zischinsky U. On the deformation of high slopes[C]//1st ISRM Congress.1966.
    [59]张镜剑,李志远.土石坝可靠度分析的初步研究[C]//工程结构可靠性——中国土木工程学会桥梁及结构工程学会结构可靠度委员会全国第三届学术交流会议论文集.1992.
    [60]陈祖煜.边坡稳定的极限平衡法和极限分析法[J].海峡两岸土力学及基础工程地工技术学术研讨会论文集,1994.
    [61]姚耀武,陈东伟.土坡稳定可靠度分析[J].岩土工程学报,1994,16(2):80-87.
    [62]孙慕群,陈晓平.土坡稳定可靠度分析[J].武汉水利电力大学学报,1999,32(2):18-21.
    [63]程心恕.土坡可靠度的随机BISHOP法[J].福州大学学报:自然科学版,1995,23(4):63-68.
    [64]陈谦应.堤坡可靠性设计极限状态方程及参数敏感性分析[J].岩土力学,1995,16(3):13-21.
    [65]邱贤德,高先良.矿山边坡可靠度分析的研究[J].化工矿山技术,1998,27(1):2-5.
    [66]章德根,剡公瑞.岩体高边坡流变学性状有限元分析[J].岩土工程学报,1999,21(2):166-170.
    [67]张建仁.挡土墙结构稳定性的可靠度分析[J].中国公路学报,1997,10(003):53-58.
    [68]张永荣.岩质高边坡稳定性的可靠性研究[J].勘察科学技术,2001(4):23-26.
    [69]徐邦栋.滑坡分析与防治[M].中国铁道出版社,2001.
    [70]张永杰,曹文贵,赵明华.基于区间理论与GSI的岩质边坡稳定可靠性分析方法[J].土木工程学报,2011,44(3):93-100.
    [71]赵志明,吴光,王喜华,寇川.金沙江特大桥左岸岸坡岩体结构面强度参数取值及工程稳定性评价[J].工程地质学报,2012,20(5):768-773.
    [72]赵志明.南昆铁路某滑坡变形的灰色预测[J].四川大学学报(工程科学版),2003,35(4):22-24.
    [73]刘东升,张浪,宋强辉,杨凯.岩体结构面强度的可靠度分析[J].岩土力学,2009,30(2):328-332.
    [74]张发明,刘宁,赵维炳等.岩质边坡预应力锚索加固的优化设计方法[J].岩土力学,2002,23(2):187-190.
    [75]陈静曦,章光,袁从华等.顺层滑移路堑边坡的分析和治理[J].岩石力学与工程学报,2002,21(1):48-51.
    [76]柴贺军,陈谦应,石豫川.缓倾角顺层边坡变形的破坏机制及其防治的优化设计[J]. 广西交通科技,2002,27(3):9-12.
    [77]黄润秋.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报,2008,27(8):1525-1544.
    [78]邓荣贵,周德培,李安洪等.层岩质边坡不稳定岩层临界长度分析[J].岩土工程学报.2002,24(2):78-182.
    [79]范文,愈茂宏,李同录等.层状岩体边坡变形破坏模式及滑坡稳定性数值分析[J].岩石力学与工程学报,2000,19(增):983-986
    [80]李桂荣,佘成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验及有限元分析[J].岩石力学与工程学报,1997,16(4):305-311.
    [81]CORKUM A G, MARTIN C D. Analysis of a rock slide stabilized with a toeberm:a case study in British Columbia, Canada [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41 (7):1109-1121.
    [82]Kinakin D. Occurrence and genesis of alpine linears due to gravitational deformation in south western British Columbia[D]. Department of Earth Sciences-Simon Fraser University,2004.
    [83]Kieffer S. Influence of cross jointing on block slump stability[C]//Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS).2006.
    [84]Yan M, Elmo D, Stead D. Characterization of step-path failure mechanisms:A combined numerical modelling-field based study[C]//Proceeding of the 1st Canada-US Rock Mechanics Symposium. Vancouver, BC.2007:493-501.
    [85]Yan M, Elmo D, Stead D. Characterization of step-path failure mechanisms:A combined numerical modelling-field based study[C]//Proceeding of the 1st Canada-US Rock Mechanics Symposium. Vancouver, BC.2007:493-501.
    [86]Goodman R E. A hierarchy of rock slope failure modes[J]. Felsbau,2003,21(2):8-12.
    [87]MacLaughlin M M, Sitar N M. Kinematics of sliding on a hinged failure surface[C]//2nd North American Rock Mechanics Symposium.1996.
    [88]Brideau M A, Stead D. Controls on block toppling using a three-dimensional distinct element approach[J]. Rock mechanics and rock engineering,2010,43(3):241-260.
    [89]Yan M. Numerical modelling of brittle fracture and step-path failure:from laboratory to rock slope scale[D]. Dept. of Earth Sciences-Simon Fraser University,2008.
    [90]Galic D, Glaser S D, Goodman R E. Calculating the shear strength of a sliding asymmetric block under varying degrees of lateral constraint[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1287-1305.
    [91]赵建军.公路边坡稳定性快速评价方法及应用研究[D].成都理工大学,2007.
    [92]巨能攀,赵建军,邓辉等.山高速滑移弯曲边坡变形机制分析及应急治理对策[J].地球科学进展,2008,23(5):474-481.
    [93]黄润秋,赵建军,巨能攀等.汤屯高速公路顺层岩质边坡变形机制分析及治理对策研究[J].岩石力学与工程学报,2007,26(2):239-246.
    [94]夏元友,朱瑞赓.岩质边坡稳定性多人多层次模糊综合评价系统研究[J].工程地质学报,1999,7(1):46-53.
    [95]黄建文,李建林,周宜红.基于AHP的模糊评判法在边坡稳定性评价中的应用[J].岩石力学与工程学报,2007,26(1):2627-2631.
    [96]秦植海,秦鹏.高边坡稳定性评价的模糊层次与集对分析耦合模型[J].岩土工程学报,2010,32(5):706-711.
    [97]Saaty T L. Axiomatic foundation of the analytic hierarchy process[J]. Management science,1986,32(7):841-855.
    [98]Saaty T L. A scaling method for priorities in hierarchical structures[J]. Journal of mathematical psychology,1977,15(3):234-281.
    [99]Zahedi F. The analytic hierarchy process-a survey of the method and its applications[J]. interfaces,1986,16(4):96-108.
    [100]Saaty T L. How to make a decision:the analytic hierarchy process[J]. Interfaces, 1994,24(6):19-43.
    [101]Saaty T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences,2008,1(1):83-98.
    [102]Vargas L G. An overview of the analytic hierarchy process and its applications[J]. European journal of operational research,2006,48(1):2-8.
    [103]Ramanathan R. A note on the use of the analytic hierarchy process for environmental impact assessment[J]. Journal of Environmental Management,2001,63(1):27-35.
    [104]Saaty R W. The analytic hierarchy process-what it is and how it is used[J]. Mathematical Modelling,1987,9(3):161-176.
    [105]吴燕玲,曾凯波,周麟等.层次分析法在大冶高陡边坡危险性分析中的应用[J].武汉工程大学学报,2010,32(1):12-15.
    [106]张雷,王晓雪.边坡工程风险评估与风险因子比率分析[J].地下空间与工程学报,2009,5(2):390-394.
    [107]张永兴,陈云,文海家,等.边坡灾害风险评估系统研究及应用[J].重庆建筑大学学报,2008,30(1):30-33.
    [108]李典庆,吴帅兵.考虑时间效应的滑坡风险评估和管理[J].岩土力学,2006,27(12):2239-2245.
    [109]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报1983,2(1):67-75.
    [110]罗缵锦.岩质边坡破坏模式初探[J].广东公路交通,2001,71(增刊):11-14.
    [111]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990:5-10.
    [112]Amadei B, Wibowo J, Sture S, et al. Applicability of existing models to predict the behavior of replicas of natural fractures of welded tuff under different boundary conditions [J]. Geotechnical and Geological Engineering,1998,16(2):79-128.
    [113]Barton N. Rock Slope Performance as Revealed by A physical Joint Model, In: Advances in Rock Mechanics, Pro,3rd Congress of the International Society for Rock Mechanics (Denver,1974), Washington D. C:National Academy of Sciences, Vol IIB: 1974:765-773.
    [114]Barton N, Bandis S. Review of predictive capabilities of JRC-JCS model in engineering practice[J]. Publikasjon-Norges Geotekniske Institutt,1991,182:1-8.
    [115]Barton N, Choubey V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics and Rock Engineering,1977,10(1):1-54.
    [116]Beer G. An isoparametric joint/interface element for finite element analysis[J]. International Journal for Numerical Methods in Engineering,1985,21:585-600.
    [117]Brady B H G, Brown E T. Rock mechanics for Underground Mining[M].2nd edition, London:1993:626.
    [118]Hart R, Cundall P A, Lemos J. Formulation of a three-dimensional distinct element model-Part Ⅱ. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon,1988,25(3):117-125.
    [119]Deere D U, Miller R P. Engineering classification and index properties for intact rock[R]. ILLINOIS UNIV AT URBANA DEPT OF CIVIL ENGINEERING,1966
    [120]Einstein H H, Hirschfeld R C. Model studies on mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division,1973,99(3):229-248.
    [121]Ghaboussi J, Wilson E L, Isenberg J. Finite element for rock joints and interfaces[J]. Journal of the soil mechanics and foundations division,1973,99(10):849-862.
    [122]Goodman R E, Taylor R L; Brekke T L. A model for the mechanics of jointed rock. Journal of the 51 Soil Mechanics and Foundations Division, ASCE 1968:637-659.
    [123]Hoek E. Lectures Notes:Practical Rock Engineering.2007 Edition, http://www. rocscience. com/hoek/corner/4.
    [124]Hoek E, Bray JW. Rock Slope Engineering.3rd ed, London:Institution of Mining and Metallurgy, New York,1981:358.
    [125]Itasca Consulting Group, Inc.. Fast Language Analysis of continua in 3 dimensions, Version 3.0, user's manual. Itasca Consulting Group, Inc.,2005.
    [126]Ladanyi B, Archambault G. Direct and indirect determination of shear strength of rock mass[C]//AIME Annual Meeting, Las Vegas, Preprint.1980 (80-25):16.
    [127]Leichnitz W. Mechanical properties of rock joints[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon,1985,22(5): 313-321.
    [128]Lemos J V, Hart R D, Cundall P. A generalized distinct element program for modelling jointed rock mass. In Proceedings of the International Symposium on Fundamentals of Rock Joints, Bjorkliden, Sweden,1985:335-343.
    [129]Lemos J V, Hart R D, Cundall P A. A generalized distinct element program for modelling jointed rock mass[C]//International Symposium on Fundamentals of Rock Joints. Bjokliden, Sweden,1985:335-343.
    [130]Ortigao J A R, Sayao A S F J. Handbook of slope stabilisation [M]. Springer,2004
    [131]Manfredini G, Martinetti S, Ribacchi R. Inadequacy of limiting equilibrium methods for rock slopes design[C]//The 16th US Symposium on Rock Mechanics (USRMS). 1975.
    [132]Patton F D. Multiple modes of shear failure in rock[C]//1st ISRM Congress.1966.
    [133]Pande G N, Beer G, Williams J R. Numerical methods in rock mechanics. New York, 1990:327.
    [134]Saeb S, Amadei B. Modelling rock joints under shear and normal loading[C]. Int J Rock Mech Min Sci.1992(29):267-78.
    [135]Stacey T R. Stability of Rock Slope in Mining and Civil Engineering Situation, National Mechanical Engineering Research Institute. Council for Industrial Research, CSIR Report ME 1202, Pretoria, South Africa,1973:217.
    [136]Stead D, Eberhardt E, Coggan J S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Journal of Engineering Geology,2006 (83):217-235.
    [137]Wittke W. Rock Mechanics:Theory and Applications with Case Histories. Springer, Berlin,1990.
    [138]Zhao Z, Wu G, Ali E, Wang X, Kou C. Rock slope Stability Evaluation in Static and Seismic Conditions:Left bank of JinSha River Bridge along Li-Xiang Railway, China[J]. Journal of Modern Transportation,2012,20(3):121-128.
    [139]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质出版社,2004,18-19.
    [140]李俊芳,吴小萍.基于AHP-FUZZY多层次评判的城市轨道交通线网规划方案综合评价[J].武汉理工大学学报,2007,31(2):205-208.
    [141]阳岳龙,何文勇,林剑.贵州三贵高速公路地质灾害危险度分段评价[J].公路,2009(3):52-57.
    [142]杜春兰,陆文风,李剑锋,等.地质灾害危险度研究-以重庆市渝北区为例[J].地下空间与工程学报,2008,4(6):1169-1176.
    [143]邓亚虹,彭建兵,卢全中,等.地铁工程地质灾害危险性综合评估定量方法—以西安地铁一号线为例[J].地球科学与环境学报,2009,31(3):291-298.
    [144]张春山,张业成,马寅生等.区域地质灾害风险评价要素权值计算方法及应用以黄河上游地区地质灾害风险评价为例[J].水文地质与工程地质,2006,6:84-88.
    [145]鲁光银,韩旭里,朱自强.地质灾害综合评估与区域模型[J].中南大学学报:自然科学版,2005,36(5):877-881.
    [146]黄贯虹,方刚.系统工程方法与应用[M].广州:暨南大学出版社,2005:88.
    [147]王恭先.高边坡设计与加固问题的讨论[J].甘肃科学学报,2003,15(8):5-9.
    [148]张电吉,汤平,白世伟.节理裂隙岩质边坡预应力锚索锚固监测与机理研究[J].岩石力学与工程学报,2003(8):1276-1280.
    [149]袁培进,吴铭江,陆遐龄,张昌仁.长江三峡永久船闸高边坡预应力锚索监测[J].岩土力学,2003(S1):198-201.
    [150]张玉芳,李奇平,张治平.预应力锚索抗滑桩工程中锚索拉力实测与分析[J].中国铁道科学,2003(3):22-26.
    [151]王树仁,何满潮,金永军.拉力集中型与压力分散型预应力锚索锚固机理[J].北京科技大学学报,2005(3):278-282.
    [152]汪海滨,高波.预应力锚索荷载分布机理原位试验研究[J],岩石力学与工程学报,2005(12):2113-2118.
    [153]熊文林,何则干,陈胜宏.边坡加固中预应力锚索方向角的优化设计[J].岩石力学与工程学报,2005(13):2260-2265.
    [154]朱玉,卫军,廖朝华.确定预应力锚索锚固长度的复合幂函数模型法[J].武汉理工大学学报,2005(8):60-63.
    [155]赵静波,高谦,李莉.层状岩质边坡预应力锚索加固工程应用分析[J].岩土力学,2005(8):1338-1341.
    [156]高俊启,施斌,张巍,朱虹,等.分布式光纤传感器监测预应力锚索应力状态的试验研究[J].岩石力学与工程学报,2005(S2):5604-5610.
    [157]刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法[J].岩石力学与工程 学报,2004,15:2568-2572.
    [158]何思明,王成华.预应力锚索破坏特性及极限抗拔力研究[J].岩石力学与工程学报,2004,17:2966-2971.
    [159]刘小丽,张占民,邓建辉.边坡加固中预应力锚索框架地梁的杆系有限元分析[J].岩土力学,2004(7):1027-1031.
    [160]张端良,董燕军,唐乐人,胡毅夫.预应力锚索锚固段周边剪应力分布特性的弹性理论分析[J].岩石力学与工程学报,2004(S2):4735-4738.
    [161]朱宝龙,杨明,胡厚田,陈强.土质边坡加固中预应力锚索框架内力分布的试验研究[J].岩石力学与工程学报,2005(4):697-702.
    [162]尤春安,战玉宝.预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报,2005(6):925-928.
    [163]刘宝奎,张玉芳,王荣,尚艳亮.预应力锚索框架用于高边坡加固的实测与分析[J].铁道建筑,2006,01:59-61.
    [164]杜斌,李勇,孔思丽,黄质宏.预应力锚索抗滑桩中锚索预应力损失的试验研究[J].岩土工程界,2006(1):74-76.
    [165]梁瑶,周德培,赵刚.预应力锚索框架梁支护结构的设计[J].岩石力学与工程学报,2006(2):318-322.
    [166]张思峰,周健,宋修广,李术才.预应力锚索锚固效应的三维数值模拟及其工程应用研究[J].地质力学学报,2006(2):166-173.
    [167]周永江,何思明,杨雪莲.预应力锚索的预应力损失机理研究[J].岩土力学,2006(08):1353-1356.
    [168]李宁,张鹏,于冲.边坡预应力锚索加固的数值模拟方法研究[J].岩石力学与工程学报,2007(2):254-261.
    [169]范雄娃,预应力锚索框架加固路堑边坡施工技术[J],隧道建设,2007,No.11402:72-74.
    [170]郑明新,蒋新龙,殷宗泽,吴继敏.预应力锚索抗滑桩工程效果的数值计算评价[J].岩土力学,2007(7):1381-1386.
    [171]田亚护,刘建坤,张玉芳.预应力锚索框架内力计算的有限差分法[J].北京交通大学学报,2007,(4):22-25.
    [172]刘玉堂,庞有超,白彦光.预应力锚索锚固段长度的确定方法[J].预应力技术,2006(5):3-7.
    [173]郭光宇.边坡加固预应力锚索框架梁在高速公路中的应用[J].浙江建筑,2007(11):41-44.
    [174]何正文,张治平.预应力锚索框架的原型试验研究[J].铁道建筑,2008(12):67-70.
    [175]丁秀丽,盛谦,韩军,程良奎,白世伟.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报,2002(7):980-988.
    [176]肖世国,周德培.岩石高边坡一种预应力锚索框架型地梁的内力计算[J].岩土工程学报,2002(4):479-482.
    [177]刘小丽,周德培,杨涛,预应力锚索抗滑桩设计中确定锚索预应力值的一种方法[J],工程地质学报,2002,03:317-320.
    [178]王道颖.框架梁与预应力锚索在高速公路边坡加固中的应用[J].西部探矿工程,2001(S1):327.
    [179]李英勇,张顶立,张宏博,宋修广.边坡加固中预应力锚索失效机制与失效效应研究[J].岩土力学,2010,31(1):144-150.
    [180]王光勇,冉隆飞.软岩高边坡预应力锚索框架梁支护结构的试验研究[J].铁道科学与工程学报,2010,7(5):20-24.
    [181]丁多文,白世伟,罗国煜.预应力锚索加固岩体的应力损失分析[J].工程地质学报,1995(1):65-69.
    [182]付敬,盛谦.高边坡预应力锚索加固的数值模拟分析[J].长江科学院院报,1996(3):55-58.
    [183]邓宗伟,冷伍明,邹金锋,唐葭.预应力锚索荷载传递与锚固效应计算[J].中南大学学报(自然科学版),2011,42(2):501-507.
    [184]张永兴,胡居义,文海家.滑坡预测预报研究现状述评[J].地下空间,2003(2):200-202.
    [185]殷坤龙.滑坡灾害预测预报分类[J].中国地质灾害与防治学报,2003,04:15-21.
    [186]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展[J].地球科学进展,2004(3):478-483.
    [187]杨志法,陈剑.关于滑坡预测预报方法的思考[J].工程地质学报,2004(2):118-123.
    [188]王念秦,王永锋,罗东海,姚勇.中国滑坡预测预报研究综述[J].地质论评,2008(3):355-361.
    [189]杨蕾,阮永芬.京珠高速公路边坡变形原因分析及治理效果评价[J].科学技术与工程,2010,1017:4320-4324.
    [190]赵华祥,周亦唐,李睿,杨科.云南某二级公路牟村段滑坡稳定性分析及治理效果评价[J].科学技术与工程,2010,1019:4852-4856.
    [191]朱赵辉,袁培进,孙建会,等.马延坡滑坡群治理效果分析[J].水电能源科学,2011,29(3):118-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700