用户名: 密码: 验证码:
桥梁健康监测与工作模态分析的理论和应用及系统实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁作为交通土建的重要组成部分,其安全运营具有重要意义。随着科学技术的进步,桥梁朝着“大跨度”、“新材料”及“新体系”的方向发展,这给桥梁的设计、施工及后期运营管理都带来了新的挑战。而已经发生的桥梁事故时刻警醒着我们保证桥梁运营安全的重要性;在这样的背景下,基于动力测试的桥梁健康监测系统成为近年来的研究热点。随着工业制造和仪器仪表业的发展,传感器的精度已经得到很大的提升,硬件设备不再是健康监测的羁绊;而结构损伤识别在桥梁健康监测中的问题更多的是从理论到实际的转化。论文围绕桥梁健康监测与工作模态分析的理论、应用及系统实现展开了以下几个方面的研究:
     1、在现有文献的基础上总结了桥梁健康监测的研究现状。研究了桥梁健康监测信号分析处理方法;分别介绍了桥梁动力信号前处理、基于FFT的稳态频谱分析及时频分析方法。针对实测动力信号的非平稳的特点,重点介绍了时频分析工具Hilbert-Huang变换(HHT),通过仿真信号和实测信号的分析验证了HHT在分析非平稳、非线性信号方面的优势,同时指出了经验模态分解中存在的一些问题;
     2、介绍了环境激励模态参数识别常用方法;按照“结构随机状态模型”、“系统矩阵识别”、“模态参数识别”及“结果不确定度分析”系统地介绍了时域随机子空间识别(SSI)理论;针对SSI中存在的系统阶次难以确定的问题,提出了一种基于奇异值分解的系统阶次加权判定法;针对目前对SSI识别结果的精确性无法衡量的问题,引入了基于敏感性分析的模态参数不确定度量化方法,并结合多个测试组识别结果的方差分析,形成了一套从整体到局部的模态参数不确定度量化方法,构建了识别结果的置信区间;通过一个两自由度振动系统的数值模拟验证了SSI理论和所提出的方法;
     3、首次考虑了结构初始状态对工作模态分析的影响,解决了工作模态分析存在的两大主要问题之一:因环境荷载频带窄而导致高阶振动和扭转模态难以识别。首先从结构输出协方差出发,分析了初始条件对其精度的影响;其次,基于蒙特卡洛方法,利用一个单自由度振动系统分析了采样时间、初始条件、阻尼比等各种参数对工作模态分析精度的影响;最后利用一高速铁路高架桥的工作模态分析,验证了在考虑结构初始状态时,部分高阶模态能被识别,且识别精度满足要求;
     4、研究了经验模态分解(EMD)在模态参数识别中的应用,首先介绍了一种基于EMD和随机减量法的模态参数识别方法;然后针对EMD存在的模态混叠问题和SSI存在的虚假模态问题,提出了基于限制带宽的EMD和SSI的模态参数识别方法;限制带宽的EMD有效地抑制了模态混叠,而利用其分解出的本征模态函数作为SSI的输入,稳定图的虚假模态也得到抑制;通过松头江大桥的试验模态分析验证了这种方法;
     5、基于Visual Studio2010平台开发了一套桥梁健康监测软件(HBHM1.0);介绍了软件的总体设计及各部分功能模块,并介绍了数据结构和数据库的开发;提出了一种数据采集模拟系统,便于软件的初期开发及调试;论文重点介绍了软件的信号处理及模态参数识别模块,同时为了完整性,介绍了软件中的损伤识别及多层次性能评估模块;由于软件考虑多种硬件设备接口,因此可服务于不同工程;并通过宜昌长江大桥的实测数据验证了软件在实际工程中的运行情况。
     最后,给出了论文研究的主要结论,并展望了后续的研究内容。
As an important part of transportation civil engineering, the operational safety of bridge structures is of great meaning. With the development of science and technology, the bridges are heading torward the directions of "long span","new material" and "new structure system", which also brings new chanllenges to the design, construction and operational management of bridges. The already happened bridge failures always remind us the importance of operational safety of civil structures. Under this background, the vibration-based structural health monitoring (SHM) becomes a continuing research topic of recent years. The quick development of industrial manufactory and instrumentation greatly improved the precision of sensors, making them not be a barrier of SHM anymore, while the biggest problem of damage detection in SHM is the transformation from theoretical to application. This dissertation mainly focuses on the signal processing and operational modal analyis in bridge SHM and the related theory, application and implementation are investigated in following aspects:
     1. The state-of-the-art of bridge SHM is summarized based on the existing literatures. The signal processing methods for bridge SHM are studied. The preprocessing methods, stationary spectrum analysis based on Fast Fourier Transform (FFT) and time-frequency analysis are introduced respectively. The Hilbert-Huang Transform (HHT) is especially introduced for the analysis of non-stationary bridge dynamic test signals. Through mathematical simulation and test signal analysis, it is proved that HHT has advantages in dealing with non-stationary and nonlinear signals. Also, the existing problems of HHT are pointed out.
     2. The common used methods for modal parameter identification from ambient vibration test are studied. The stochastic subspace identification (SSI) is systematically investigated following the sequence of "structure stochastic state-space model","system matrices identification","modal parameter identification", and "uncertainty analysis". A weighting judge method is proposed for determining model order in SSI. For the problem of evaluating the accuracy of identified modal parameters, an uncertainty calculation method based on sensitive analysis is introduced. A system modal parameter uncertainty quantification procedure is established. The confidence intervals of modal parameters are constructed. Through a simulation example of a two degree of freedom system, the effectiveness and robustness of SSI and the proposed methods are illustrated.
     3. The effects of initial conditions in operational modal analysis (OMA) are considered for the first time. One biggest problem of OMA, which is the high bending and torsion modes are difficult to identify from output-only data because the frequency content of ambient excitation is usually narrow-banded, is solved. Firstly, the accuracy of output correlation sequence by considering large-amplitude initial conditions is studied. Secondly, the influences of sampling time, initial conditions and damping ratios and many other parameters on the accuracy of OMA are analyzed through a simulation example of a single degree of freedom system based on Monte Carlo Analysis. Finally, a full scale application is presented where the modal parameters of a high speed railway bridge are determined from output-only data. It is found that some additional high bending and torsion modes can be identified with good accuracy when considering initial conditions.
     4. The application of empirical mode decomposition (EMD) in modal parameter identification is studied. Firstly, a modal analysis method based on EMD and random decrement technique (RDT) is introduced. Secondly, in order to deal with the problem of mode mixing of EMD and spurious modes of SSI, a bandwidth restricted EMD based SSI method is proposed for OMA. The test dynamic signals are first decomposed into a series of intrinsic mode functions (IMFs), each of which represents only one frequency component, and then SSI is performed on IMFs to extract modal parameters. The spurious modes in stabilization diagram are greatly restricted. Through the OMA of Songtoujiang railway bridge, the proposed method is proved to be very effective.
     5. The bridge SHM software, HBHM1.0is developed based on Visual studio2010. The overall design and each function mode of HBHM are introduced. The data construction and database are also introduced. A simulated data acquisition system is proposed to the early stage development of the software and also for the debugging. This paper mainly focuses on the implementation of the function modes of signal processing and modal parameter identification. For the completeness of the theory, the function mode of the damage detection and multi-level structure condition assessment are also introduced. As HBHM considered different data interface, it can serve for different bridge SHM projects. At last, the running of the HBHM is fulfilled by the dynamic test of Yichang Yangtze river bridge.
     Finally, the main research contents of the thesis and the basic conclusions are summarized. The outlook for future research is also made.
引文
[1]李亚东.桥梁工程概论[M].西南交通大学出版社,2006.
    [2]范立础.桥梁工程[M].北京:人民交通出版社,2001.
    [3]Lockett W G. The Lesson of the Quebec Bridge[J]. Scientia Canadensis:Canadian Journal of the History of Science, Technology and Medicine,1987,11(2).
    [4]郭耀杰.钢结构稳定设计[M].武汉大学出版社,2003.
    [5]Pearson C, Delatte N. Collapse of the Quebec Bridge,1907[J]. Journal of performance of constructed facilities,2006,20(1):84-91.
    [6]Larsen A. Aerodynamics of the Tacoma narrows bridge-60 years later[J]. Structural engineering international,2000,10(4):243-248.
    [7]Lichtenstein A G. The silver bridge collapse recounted[J]. Journal of performance of constructed facilities,1993,7(4):249-261.
    [8]严国敏.韩国圣水大桥的倒塌[J].国外桥梁,1996(4):47-50.
    [9]余刘文,上官明志.彩虹是怎样消失的?——綦江垮桥的背后[J].四川建材,1999(1):18-19.
    [10]李文琪,贺立新.对宜宾小南门桥事故的思考[J].中国公路,2002(22):47-48.
    [11]刘维.广东九江大桥拆除方案研究[D].西南交通大学桥梁与隧道工程,2009.
    [12]Housner G W, Bergman L A, Caughey T K, et al. Structural control:Past, present, and future[J]. JOURNAL OF ENGINEERING MECHANICS-ASCE,1997,123(9):897-971.
    [13]Li H, Ou J P. Structural Health Monitoring:From Sensing Technology Stepping to Health Diagnosis[J]. PROCEEDINGS OF THE TWELFTH EAST ASIA-PACIFIC CONFERENCE ON STRUCTURAL ENGINEERING AND CONSTRUCTION (EASEC12),2011,14.
    [14]朱宏平,余璟,张俊兵.结构损伤动力检测与健康监测研究现状与展望[J].工程力学,2011(2):1-11.
    [15]Brownjohn J. Structural health monitoring of civil infrastructure[J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES,2007,365(1851):589-622.
    [16]Farrar C R, Worden K. An introduction to structural health monitoring[J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES,2007,365(1851):303-315.
    [17]Hsieh K H, Halling M W, Barr P J. Overview of vibrational structural health monitoring with representative case studies[J]. JOURNAL OF BRIDGE ENGINEERING, 2006,11(6):707-715.
    [18]李惠,周文松,欧进萍,等.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006(2):46-52.
    [19]黄方林,王学敏,陈政清,等.大型桥梁健康监测研究进展[J].中国铁道科学,2005(2):4-10.
    [20]Sohn H, Laboratory L A N. A review of structural health monitoring literature: 1996-2001[M]. Los Alamos National Laboratory Los Alamos,, New Mexico,2004.
    [21]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报(自然科学版),2000(6):687.
    [22]秦权.桥梁结构的健康监测[J].中国公路学报,2000(2):39-44.
    [23]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报(自然科学版),1999(2):59-63.
    [24]Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures[J]. Journal of Guidance, Control, and Dynamics,1991,14(2):251-259.
    [25]吴子燕,何银,简晓红.基于损伤敏感性分析的传感器优化配置研究[J].工程力学,2009(5):239-244.
    [26]黄朝俊,贺瑞,秦权.基于不完备损伤指标和遗传算法的特大桥损伤识别和传感器布点优化[J].工程力学,2008(12):92-97.
    [27]刘晖,瞿伟廉,袁润章.基于灵敏度分析的结构损伤识别中的传感器优化配置[J].地震工程与工程振动,2003(6):85-90.
    [28]马广,黄方林,王学敏.基于混合遗传算法的桥梁监测传感器优化布置[J].振动工程学报,2008(2):191-196.
    [29]谢强,薛松涛.结构健康监测传感器优化布置的混合算法[J].同济大学学报(自然科学版),2006(6):726-731.
    [30]黄维平,刘娟,李华军.基于遗传算法的传感器优化配置[J].工程力学,2005(1):113-117.
    [31]刘福强,张令弥.作动器/传感器优化配置的研究进展[J].力学进展,2000(4):506-516.
    [32]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点[J].工程力学,2000(1):25-34.
    [33]周文松,李惠,欧进萍,等.大型桥梁健康监测系统的数据采集子系统设计方法[J].公路交通科技,2006(3):83-87.
    [34]秦世强,蒲黔辉,施洲.高速铁路桥梁健康监测数据采集系统设计研究[J].铁道标准设计,2010(10):67-71.
    [35]李伟.结构损伤识别技术的发展现状与展望[J].山西建筑,2008(23):66-67.
    [36]李军,于德栋,白会人.基于应变模态的结构损伤定位方法[J].世界地震工程,2007(1):104-109.
    [37]施洲.基于动力测试的桥梁结构损伤识别及性能评定理论与应用研究[D].西南交通大学,2007.
    [38]王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展[J].振动与冲击,2004(4):101-104.
    [39]谢峻,韩大建.一种改进的基于频率测量的结构损伤识别方法[J].工程力学,2004(1):21-25.
    [40]李贵炳.结构损伤识别指标法及其实现[J].太原理工大学学报,2003(5):613-615.
    [41]刘效尧,刘晖.桥梁的损伤识别[J].合肥工业大学学报(自然科学版),2001(3):326-331.
    [42]王应军.大型斜拉桥长期健康监测系统的关键技术研究[D].武汉理工大学,2006.
    [43]谢晓尧.红枫湖大桥健康监测系统关键技术研究[D].武汉理工大学,2007.
    [44]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅰ):系统设计[J].土木工程学报,2006(4):39-44.
    [45]张启伟,周艳.桥梁健康监测技术的适用性[J].中国公路学报,2006(6):54-58.
    [46]孙晓燕.桥梁结构健康监测技术研究进展[J].中外公路,2006(2):141-146.
    [47]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报(自然科学版),2000(6):687.
    [48]Salawu O S, Williams C. Review of full-scale dynamic testing of bridge structures[J]. Engineering Structures,1995,17(2):113-121.
    [49]Sloan T D, Kirkpatrick J, Boyd J W, et al. Monitoring the inservice behaviour of the Foyle Bridge[J]. Structural Engineer,1992,70(7).
    [50]Andersen E Y, Pedersen L. Structural monitoring of the great belt east bridge[J]. Strait crossings,1994,94:189-195.
    [51]Kaloop M R, Li H. Monitoring of bridge deformation using GPS technique[J]. KSCE Journal of Civil Engineering,2009,13(6):423-431.
    [52]Muria-Vila D, Gomez R, King C. Dynamic structural properties of cable-stayed Tampico Bridge[J]. Journal of Structural Engineering,1991,117(11):3396-3416.
    [53]Shahawy M A, Arockiasamy M. Field Instrumentation to Study the Time-Dependent Behavior in Sunshine Skyway Bridge. I[J]. Journal of Bridge Engineering,1996,l(2):76-86.
    [54]Shahawy M A, Arockiasamy M. Analytical and measured strains in Sunshine Skyway Bridge. II[J]. Journal of Bridge Engineering,1996,1(2):87-97.
    [55]Kulcu E, Qin X, Barrish Jr R A, et al. Information technology and data management issues for health monitoring of the Commodore Barry Bridge, SPIE's 5th Annual International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure, 2000[C]. Newport Beach, CA,2000.
    [56]Barrish Jr R A, Grimmelsman K A, Aktan A E. Instrumented monitoring of the Commodore Barry bridge, SPIE's 5th Annual International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure,2000[C]. International Society for Optics and Photonics,2000.
    [57]Kim S, Culler D, Demmel J, et al. Structural health monitoring of the golden gate bridge[EB/OL]. http://sukunkim.com/research/ggb/.
    [58]Kim S, Pakzad S, Culler D, et al. Health monitoring of civil infrastructures using wireless sensor networks:Proceedings of the 6th International Conference on Information Processing in Sensor Networks., Cambridge,MA,USA,2007[C]. IEEE Xplore,2007.
    [59]Hu W, Moutinho C, Caetano E, et al. Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection[J]. Mechanical Systems and Signal Processing,2012,33(0):38-55.
    [60]Magalhles F, Cunha A, Caetano E. Vibration based structural health monitoring of an arch bridge:From automated OMA to damage detection[J]. Mechanical Systems and Signal Processing,2012,28(0):212-228.
    [61]Magalhaes F, Caetano E, Cunha A. Operational modal analysis and finite element model correlation of the Braga Stadium suspended roof[J]. Engineering Structures, 2008,30(6):1688-1698.
    [62]Magalhaes F, Caetano E, Cunha A, et al. Ambient and free vibration tests of the Millau Viaduct:Evaluation of alternative processing strategies[J]. Engineering Structures, 2012,45(0):372-384.
    [63]Magalhaes F, Cunha A. Explaining operational modal analysis with data from an arch bridge[J], Mechanical Systems and Signal Processing,2011,25(5):1431-1450.
    [64]Magalhaes F, Cunha A, Caetano E. Dynamic monitoring of a long span arch bridge[J]. Engineering Structures,2008,30(11):3034-3044.
    [65]Magalhaes F, Cunha A, Caetano E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing, 2009,23(2):316-329.
    [66]Devriendt C, De Sitter G, Guillaume P. An operational modal analysis approach based on parametrically identified multivariable transmissibilities[J]. Mechanical Systems and Signal Processing,2010,24(5):1250-1259.
    [67]Devriendt C, De Sitter G, Vanlanduit S, et al. Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements[J]. Mechanical Systems and Signal Processing,2009,23(3):621-635.
    [68]Devriendt C, Guillaume P. Identification of modal parameters from transmissibility measurements[J]. Journal of Sound and Vibration,2008,314(1-2):343-356.
    [69]El-Kafafy M, Guillaume P. Direct calculation of modal parameters from matrix orthogonal polynomials[J]. Mechanical Systems and Signal Processing,2011,25(7):2375-2387.
    [70]Harri K, Guillaume P, Vanlanduit S. On-line damage detection on a wing panel using transmission of multisine ultrasonic waves[J]. NDT & E International, 2008,41(4):312-317.
    [71]Vanherzeele J, Guillaume P, Vanlanduit S. Improved Fourier analysis using parametric frequency-domain transfer-function estimators[J]. Mechanical Systems and Signal Processing,2007,21(4):1704-1716.
    [72]Vanlanduit S, Guillaume P, Linden G V D. On-line monitoring of fatigue cracks using ultrasonic surface waves[J]. NDT & E International,2003,36(8):601-607.
    [73]Brownjohn J M W, Magalhaes F, Caetano E, et al. Ambient vibration re-testing and operational modal analysis of the Humber Bridge[J]. Engineering Structures, 2010,32(8):2003-2018.
    [74]Brownjohn J M W, Pavic A. Experimental methods for estimating modal mass in footbridges using human-induced dynamic excitation[J]. Engineering Structures, 2007,29(11):2833-2843.
    [75]Moyo P, Brownjohn J M W, Suresh R, et al. Development of fiber Bragg grating sensors for monitoring civil infrastructure[J]. Engineering Structures,2005,27(12):1828-1834.
    [76]Peter Carden E, Brownjohn J M W. ARMA modelled time-series classification for structural health monitoring of civil infrastructure[J]. Mechanical Systems and Signal Processing,2008,22(2):295-314.
    [77]Racic V, Pavic A, Brownjohn J M W. Experimental identification and analytical modelling of human walking forces:Literature review[J]. Journal of Sound and Vibration,2009,326(1-2):1-49.
    [78]Lynch J P, Law K H, Kiremidjian A S, et al. A wireless modular monitoring system for civil structures:Proceedings of the 20th International Modal Analysis Conference,2002[C]. Los Angeles, CA, USA,2002.
    [79]Lynch J P, Sundararajan A, Law K H, et al. Embedment of structural monitoring algorithms in a wireless sensing unit[J]. Structural Engineering and Mechanics,2003,15(3):285-297.
    [80]Lynch J P, Law K H, Kiremidjian A S, et al. Design and performance validation of a wireless sensing unit for structural monitoring applications[J]. Structural Engineering and Mechanics,2004,17(3-4):393-408.
    [81]Lynch J P. An overview of wireless structural health monitoring for civil structures [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007,365(1851):345-372.
    [82]Park J H, Kim J T, Hong D S, et al. Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements [J]. Smart Structures and Systems,2010,6(5-6):711-730.
    [83]He X, De Roeck G. System identification of mechanical structures by a high-order multivariate autoregressive model[J]. Computers & structures,1997,64(1):341-351.
    [84]Peeters B, de Roeck G. Reference-based stochastic subspace identification for output-only modal analysis[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1999,13(6):855-878.
    [85]Xia H, Zhang N, De Roeck G. Dynamic analysis of high speed railway bridge under articulated trains[J]. COMPUTERS & STRUCTURES,2003,81(26-27):2467-2478.
    [86]Reynders E, De Roeck G. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING,2008,22(3):617-637.
    [87]Reynders E, Pintelon R, De Roeck G. Uncertainty bounds on modal parameters obtained from stochastic subspace identification[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING,2008,22(4):948-969.
    [88]Caicedo J, Dyke S J, Johnson E A. Health monitoring based on component transfer functions[J]. Advances in Structural Dynamics,2000,2(2):997-1004.
    [89]Caicedo J M, Dyke S J. Experimental validation of structural health monitoring for flexible bridge structures [J]. Structural Control and Health Monitoring,2005,12(3-4):425-443.
    [90]Giraldo D F, Dyke S J, Caicedo J M. Damage detection accommodating varying environmental conditions[J]. Structural Health Monitoring,2006,5(2):155-172.
    [91]Xu B, He J, Rovekamp R, et al. Structural parameters and dynamic loading identification from incomplete measurements:Approach and validation[J]. Mechanical Systems and Signal Processing,2012,28:244-257.
    [92]Kurata N, Spencer Jr B F, Ruiz-Sandoval M. Risk monitoring of buildings with wireless sensor networks[J]. Structural Control and Health Monitoring,2005,12(3-4):315-327.
    [93]Cho S, Yun C B, Lynch J P, et al. Smart wireless sensor technology for structural health monitoring of civil structures[J]. International Journal of Steel Structures, 2008,8(4):267-275.
    [94]Nagayama T, Moinzadeh P, Mechitov K, et al. Reliable multi-hop communication for structural health monitoring[J]. Smart Structures and Systems,2010,6(5-6):481-504.
    [95]Rice J A, Mechitov K, Sim S H, et al. Flexible smart sensor framework for autonomous structural health monitoring[J]. Smart Structures and Systems,2010,6(5-6):423-438.
    [96]Jang S, Jo H, Cho S, et al. Structural health monitoring of a cable-stayed bridge using smart sensor technology:deployment and evaluation[J]. Smart Structures and Systems, 2010,6(5-6):439-459.
    [97]Johnson E A, Lam H F, Katafygiotis L S, et al. A benchmark problem for structural health monitoring and damage detection[J]. Structural control for civil and infrastructure engineering,2001:317-324.
    [98]Lau C K, Mak W, Wong K Y, et al. Structural health monitoring of three cable-supported bridges in Hong Kong[J]. Structural Health Monitoring,2000:450-460.
    [99]Wong K, Lau C K, Flint A R. Planning and implementation of the structural health monitoring system for cable-supported bridges in Hong Kong:SPIE's 5th Annual International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure,2000[C]. International Society for Optics and Photonics,2000.
    [100]李惠彬,秦权,钱良忠.青马悬索桥的时域模态识别[J].土木工程学报,2001(5):52-56.
    [101]淡丹辉,孙利民.在线监测环境下土木结构的模态识别研究[J].地震工程与工程振动,2004(3):82-88.
    [102]常军,张启伟,孙利民.随机子空间方法在桥塔模态参数识别中的应用[J].地震工程与工程振动,2006(5):183-187.
    [103]孙利民,孙智,淡丹辉,等.我国大跨度桥梁结构健康监测系统研究与应用现状:第十七届全国桥梁学术会议,中国重庆,2006[C].
    [104]常军,张启伟,孙利民.随机子空间产生虚假模态及模态遗漏的原因分析[J].工程力学,2007(11):57-62.
    [105]常军,张启伟,孙利民.稳定图方法在随机子空间识别模态参数中的应用[J].工程力学,2007(2):39-44.
    [106]常军,孙利民,张启伟.基于两阶段稳定图的随机子空间识别结构模态参数[J].地震工程与工程振动,2008(3):47-51.
    [107]焦美菊,孙利民,李清富.基于监测数据的桥梁结构可靠性评估[J].同济大学学报(自然科学版),2011(10):1452-1457.
    [108]李惠,周文松,欧进萍,等.大型桥梁结构智能健康监测系统集成技术研究[J].土木工 程学报,2006(2):46-52.
    [109]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[J].土木工程学报,2006(4):45-53.
    [110]李惠,欧进萍.智能混凝土与结构[J].工程力学,2007:45-61.
    [111]李顺龙,李惠,欧进萍,等.考虑温度和风速影响的桥梁结构模态参数分析[J].土木工程学报,2009(4):100-106.
    [112]杨鸥,刘洋,李惠,等.时变环境与损伤耦合下桥梁结构频率及阻尼比的统计分析[J].计算力学学报,2010(3):457-463.
    [113]贺淑龙,胡柏学,曾威,等.矮寨特大桥结构健康监测系统[J].中外公路,2011(6):10-13.
    [114]李惠,周峰,朱焰煌,等.国家游泳中心钢结构施工卸载过程及运营期间应变健康监测及计算模拟分析[J].土木工程学报,2012(3):1-9.
    [115]李兆霞,李爱群,陈鸿天,等.大跨桥梁结构以健康监测和状态评估为目标的有限元模拟[J].东南大学学报(自然科学版),2003(5):562-572.
    [116]赵翔,李爱群,缪长青,等.润扬大桥结构健康监测系统传感器测点布置[J].工业建筑,2005(1):82-85.
    [117]郭彤,李爱群,缪长青,等.数值模拟联合算法及其在润扬大桥可靠度评估中的应用[J].土木工程学报,2006(9):80-85.
    [118]邓扬,李爱群,丁幼亮,等.基于长期监测数据的大跨桥梁结构伸缩缝损伤识别[J].东南大学学报(自然科学版),2011(2):336-341.
    [119]邓扬,丁幼亮,李爱群.钢箱梁焊接细节基于长期监测数据的疲劳可靠性评估:疲劳可靠度指标[J].土木工程学报,2012(3):86-92.
    [120]宗周红,L WANG T.,Z HUANG D.,等.桥梁健康监测应用与研究现状(英文)[J].福州大学学报(自然科学版),2002(2):127-152.
    [121]宗周红,Jaishi Bijaya,林友勤,等.西宁北川河钢管混凝土拱桥的理论和实验模态分析[J].铁道学报,2003(4):89-96.
    [122]宗周红,孙建林,徐立群,等.大跨度连续刚构桥健康监测加速度传感器优化布置研究[J].地震工程与工程振动,2009(2):150-158.
    [123]宗周红,朱三凡,夏樟华.大跨径连续刚构桥安全性评估的基准有限元模型[J].铁道学报,2011(9):94-101.
    [124]宗周红,高铭霖,夏樟华.基于健康监测的连续刚构桥有限元模型确认(Ⅱ)——不确定性分析与模型精度评价[J].土木工程学报,2011(3):85-92.
    [125]宗周红,高铭霖,夏樟华.基于健康监测的连续刚构桥有限元模型确认(Ⅰ)——基于响应面法的有限元模型修正[J].土木工程学报,2011(2):90-98.
    [126]Xu Y L, Ko J M, Zhang W S. Vibration studies of Tsing Ma suspension bridge[J]. Journal of Bridge Engineering,1997,2(4):149-156.
    [127]Chen J, Xu Y L, Zhang R C. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor:EMD-HT method[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(10):805-827.
    [128]王学敏,黄方林,陈政清.Hilbert-Huang变换在桥梁振动分析中的应用[J].铁道学报,2005(2):80-84.
    [129]王学敏,黄方林,刘建军.大型桥梁模态参数识别的一种方法[J].工程力学,2007(2):110-114.
    [130]王秋芬,黄方林,马广.Fisher最优分割在桥梁健康监测门槛值分级中的应用[J].铁道科学与工程学报,2009(2):55-58.
    [131]任伟新,韩建刚,孙增寿.小波分析在土木工程结构中的应用[M].中国铁道出版社,2006.
    [132]林友勤,任伟新.基于随机状态空间模型的工程结构损伤检测[J].振动工程学报,2007(6):599-605.
    [133]任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型[J].计算力学学报,2007(5):609-614.
    [134]任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J].土木工程学报,2008(12):73-78.
    [135]王超,任伟新,黄天立.基于离散小波变换的时变结构物理参数识别[J].中南大学学报(自然科学版),2010(2):655-660.
    [136]徐晓霞,任伟新,韩建刚.基于响应协方差小波变换和SVD的结构工作模态参数识别[J].振动工程学报,2010(2):194-199.
    [137]Ren W X, Peng X L, Lin Y Q. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge[J]. ENGINEERING STRUCTURES, 2005,27(4):535-548.
    [138]Yu D J, Ren W X. EMD-based stochastic subspace identification of structures from operational vibration measurements[J]. ENGINEERING STRUCTURES, 2005,27(12):1741-1751.
    [139]单德山.智能桥梁健康监测与损伤评估[M].北京市:人民交通出版社,2010.
    [140]单德山,李乔.铁路曲线连续梁桥车桥耦合振动研究[J].振动与冲击,2005(4):62-65.
    [141]单德山,李乔.基于车致振动的桥梁损伤识别[J].西南交通大学学报,2009(1):60-65.
    [142]张育智,李乔,单德山.复杂结构损伤识别的广义子结构法[J].西南交通大学学报,2009(2):160-165.
    [143]付春雨,单德山,李乔.基于支持向量机的静力损伤识别方法[J].中国铁道科学,2010(5):47-53.
    [144]付春雨,单德山,李乔.列车行驶时桥梁结构损伤预警的时域方法[J].振动与冲击,2011(1):27-32.
    [145]单德山,付春雨,李乔.铁路桥梁损伤的统计模式识别[J].桥梁建设,2011(1):18-21.
    [146]苏木标,杜彦良,邹振祝,等.郑州黄河大桥远程振动监测系统研究[J].铁道学报,2006(6):105-111.
    [147]李剑芝,孙宝臣,杜彦良,等.混凝土裂缝的监测[J].传感技术学报,2006(4):1129-1132.
    [148]高占凤,杜彦良,苏木标,等.基于虚拟仪器的桥梁远程状态数据采集系统[J].仪器仪表学报,2006(10):1361-1364.
    [149]高占凤,杜彦良,刘玉红,等.基于LabVIEW的远程数据采集与传输系统[J].微电子学与计算机,2007(3):102-104.
    [150]苏木标,杜彦良,孙宝臣,等.芜湖长江大桥长期健康监测与报警系统研究[J].铁道学报,2007(2):71-76.
    [151]杜彦良,姬来,刘新福.高速铁路路基施工期沉降量的灰色预测模型及应用[J].铁道科学与工程学报,2009(1):36-40.
    [152]杜彦良,张玉芝,赵维刚.高速铁路线路工程安全监测系统构建[J].土木工程学报,2012:59-63.
    [153]Kirkegaard P H, Andersen P. State space identification of civil engineering structures from output measurements[R].Dept. of Building Technology and Structural Engineering, Aalborg University,1996.
    [154]MI F, JET P. Model reduction using dynamic and iterated IRS techniques[J]. Journal of Sound and Vibration,1995,186(2):311-323.
    [155]Penny J, Friswell M I, Garvey S D. The automatic choice of measurement locations for dynamic testing, PROCEEDINGS OF THE INTERNATIONAL MODAL ANALYSIS CONFERENCE,1992[C]. SEM SOCIETY FOR EXPERIMENTAL MECHANICS INC, 1992.
    [156]Breitfeld T. A method for identification of a set of optimal measurement points for experimental modal analysis, PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING,1995[C]. SPIE INTERNATIONAL SOCIETY FOR OPTICAL,1995.
    [157]Kammer D C. CONTROL AND DYNAMIC SYSTEMS, VOL.54[J]. System performance improvement and optimization techniques and their applications in aerospace systems, 1992,54:175.
    [158]Guyan R. Reduction of mass and stiffness matrices[J]. AIAA Journal,1965,3(2):380.
    [159]Larsen M. Finding an optimal match window for Spruce top detection based on an optical tree model, Proc. International Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria,1998[C]. British Columbia, Canada, 1998.
    [160]Rytter A. Vibrational based inspection of civil engineering structures[D]. unknown,1993.
    [161]Sanayei M, Nelson R B. Identification of structural element stiffnesses from incomplete static test data[D]. UCLA,1986.
    [162]Banan M R, Mehdi-Pour Y. Detection and assessment of damage in 2D structures using measured modal response[J]. Journal of Sound and Vibration,2007,306(3):803-817.
    [163]Liu P L, Chian C C. Parametric identification of truss structures using static strains[J]. Journal of structural Engineering,1997,123(7):927-933.
    [164]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法[J].同济大学学报(自然科学版),2000(1):5-8.
    [165]张清华,李乔.斜拉桥结构损伤识别的概率可靠度法[J].东南大学学报(自然科学版),2005:80-83.
    [166]Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods[J]. Shock and Vibration Digest,1998,30(2):91-105.
    [167]Kaouk M, Zimmerman D C. Structural damage assessment using a generalized minimum rank perturbation theory[J]. AIAA journal,1994,32(4):836-842.
    [168]Cobb R G, Liebst B S. Sensor placement and structural damage identification from minimal sensor information[J]. AIAA journal,1997,35(2):369-374.
    [169]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002(1):78-82.
    [170]方圣恩.基于有限元模型修正的结构损伤识别方法研究[D].中南大学,2010.
    [171]Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies[J]. The Journal of Strain Analysis for Engineering Design,1979,14(2):49-57.
    [172]Hearn G, Testa R B. Modal analysis for damage detection in structures[J]. Journal of Structural Engineering,1991,117(10):3042-3063.
    [173]谢峻.基于振动的桥梁结构损伤识别方法研究[D].华南理工大学,2003.
    [174]杜思义.桥梁结构损伤识别的应变模态方法研究[D].郑州大学,2002.
    [175]Ewins D J. Modal testing:theory and practice[M]. Research studies press,1995.
    [176]Pandey A K, Biswas M. Damage detection in structures using changes in flexibility [J]. Journal of sound and vibration,1994,169(1):3-17.
    [177]Catbas F N, Gul M, Burkett J L. Conceptual damage-sensitive features for structural health monitoring:laboratory and field demonstrations[J]. Mechanical Systems and Signal Processing,2008,22(7):1650-1669.
    [178]陈隽,李杰.振动信号趋势项提取的几种方法及其比较[J].福州大学学报(自然科学版),2005:42-45.
    [179]Nyquist H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers,1928,47(2):617-644.
    [180]Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of computation,1965:297-301.
    [181]孙鹤泉.实用Fourier变换及C++实现[M].科学出版社,2009.
    [182]Gabor D. Theory of communication. Part 1:The analysis of information[J]. Electrical Engineers-Part Ⅲ:Radio and Communication Engineering, Journal of the Institution of, 1946,93(26):429-441.
    [183]Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932,40(5):749.
    [184]Ville J. Theorie et applications de la notion de signal analytique[J]. Cables et transmission, 1948,2(1):61-74.
    [185]Morlet J, Others. Sampling theory and wave propagation[J]. Nato ASI Series, 1981,1:233-261.
    [186]郭健,孙炳楠.基于小波变换的桥梁健康监测多尺度分析[J].浙江大学学报:工学版,2005,39(1):114-118.
    [187]李宏男,孙鸿敏.基于小波分析和神经网络的框架结构损伤诊断方法[J].地震工程与工程振动,2003(5):141-148.
    [188]姚昌荣.基于小波与分形理论的斜拉桥健康监测系统研究[D].西南交通大学,2008.
    [189]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES,1998,454(1971):903-995.
    [190]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:The Hilbert spectrum[J]. ANNUAL REVIEW OF FLUID MECHANICS,1999,31:417-457.
    [191]曹冲锋,杨世锡,杨将新.一种抑制EMD端点效应新方法及其在信号特征提取中的应用[J].振动工程学报,2008(6):588-593.
    [192]Deering R, Kaiser J E. The use of a masking signal to improve empirical mode decomposition[J].2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5:SPEECH PROCESSING, 2005:485-488.
    [193]禹丹江.土木工程结构模态参数识别[D].福州大学,2006.
    [194]Ibrahim S R. A time domain vibration test technique[D]. University of Calgary,1973.
    [195]Cole H A. On line failure detection and damping measurement of aerospace structures by random decrement signatures. [R].NASA CR-2205,1973.
    [196]Overschee P V, Moor B, Hensher D A, et al. Subspace Identification for the Linear Systems: Theory--Implementation[M]. Kluwer academic publishers,1996.
    [197]Peeters B, De Roeck G. Reference based stochastic subspace identification in civil engineering[J]. Inverse Problems in Engineering,1999,100(1):1-28.
    [198]Brincker R, Zhang L, Andersen P, et al. Modal identification from ambient responses using frequency domain decomposition:Proceedings of the 18th international modal analysis conference,2000 [C]. Society of Experimental Mechanics,2000.
    [199]李中付,华宏星,宋汉文,等.非稳态环境激励下线性结构的模态参数辨识[J].振动工程学报,2002(2):19-23.
    [200]陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用[J].振动工程学报,2003(3):129-134.
    [201]陈隽,徐幼麟,李杰.Hilbert-Huang变换在密频结构阻尼识别中的应用[J].地震工程与工程振动,2003(4):34-42.
    [202]禹丹江,任伟新.基于经验模式分解的随机子空间识别方法[J].地震工程与工程振动,2005(5):63-68.
    [203]徐士代.环境激励下工程结构模态参数识别[D].东南大学,2006.
    [204]王学敏.基于Hilbert-Huang变换的桥梁监测信号分析与处理和时变模态参数识别[D].中南大学,2008.
    [205]何启源.基于现代时频分析的环境激励模态参数识别方法研究[D].重庆大学,2009.
    [206]Brincker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition[J]. Smart materials and structures,2001,10(3):441.
    [207]Peeters B. System identification and damage detection in civil engineering[D]. KU Leuven, 2000.
    [208]James Ⅲ G H, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines[R].Sandia National Labs., Albuquerque, NM (United States),1993.
    [209]韩建平,李达文.基于Hilbert-Huang变换和自然激励技术的模态参数识别[J].工程力 学,2010(8):54-59.
    [210]常军.随机子空间方法在桥梁模态参数识别中的应用研究[D].同济大学,2006.
    [211]克拉夫R.,彭津J.,王光远等译校.结构动力学[M].北京市:高等教育出版社,2006.
    [212]Juang J N. Applied system identification[M]. PRT Prentice-Hall, Englewood Cliffs, NJ USA,1994.
    [213]Reynders E, Roeck G D. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis[J]. Mechanical Systems and Signal Processing,2008,22(3):617-637.
    [214]Pintelon R, Guillaume P, Schoukens J. Uncertainty calculation in (operational) modal analysis[J], MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007,21(6):2359-2373.
    [215]Reynders E, Schevenels M, De Roeck G. MACEC 3.2:A Matlab toolbox for experimental and operational modal analysis[R].University of Leuven--KU Leuven, Belgium,2011.
    [216]Sadeghi N, Fayek A R, Pedrycz W. Fuzzy Monte Carlo simulation and risk assessment in construction[J]. Computer-Aided Civil and Infrastructure Engineering,2009,25(4):238-252.
    [217]Swanson J. Ansys 11.0, Ansys[Z]. Inc,2008.
    [218]Liu K. Analysis and Monitoring of Dynamic Effects of Train-Bridge Interaction[D]. University of Leuven--KU Leuven,2010.
    [219]Vandiver J K, Dunwoody A B, Campbell R B, et al. A mathematical basis for the random decrement vibration signature analysis technique[J]. Journal of Mechanical Design, 1982,104(4):307-313.
    [220]Li H L, Yang L H, Huang D R. The study of the intermittency test filtering character of Hilbert-Huang transform[J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2005,70(1):22-32.
    [221]刘代志,钱昌松,吴晓露,等.经验模态分解中模态混叠的若干问题探讨:第八届全国信号与信息处理联合学术会议,中国福建厦门,2009[C].
    [222]施洲,夏招广,葛玉梅.高墩大跨连续梁铁路桥动力试验[J].西南交通大学学报,2006(3):349-354.
    [223]杨松涛.分布式桥梁健康监测数据采集传输系统及其关键技术研究[D].电子科技大学,2008.
    [224]星谷胜著,常宝琦译.随机振动分析[M].北京市:地震出版社,1977.
    [225]蒲黔辉,施洲,秦世强,等.铁道部科技开发项目京沪高铁大型特殊结构桥梁健康监测研究报告[R].西南交通大学,2011.
    [226]曹新谱,李强,曹蕾.数据库原理与应用SQL Server[M].冶金工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700