用户名: 密码: 验证码:
高速动车组转向架柔性构架动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车运行速度的提高,线路对车辆的激扰频率范围更为宽广。在车辆运行时,轻量化承载结构的动态特性问题日渐突出。论文以高速动车组转向架焊接构架为对象,研究其结构刚度特性与车辆系统动力学行为和构架疲劳强度之间的关系,提出了柔性构架的结构强度和刚度设计方法。
     利用有限单元法建立动车组非动力转向架焊接构架的结构动力学分析模型,获得构架在较低频率范围内的振型。采用柔性体动力学理论,建立引入了构架结构刚度特性的车辆系统动力学研究模型,分析车辆在不同计算工况下的动力学响应。研究结果表明,构架扭转振型对车辆运行稳定性和平稳性没有影响。在引入该振型后,转向架系统的扭转刚度较刚体模型低,车辆在扭曲线路上的均载性提高,其轮重减载率和轮轨垂向力的数值降低。基于准静态方法进行分析时,车辆脱轨系数下降。构架弯曲和剪切等振型的振动能量较低,不会改变车辆系统的动力学行为。
     从简化转向架系统扭转刚度试验和计算方法的角度出发,将斜对称载荷与构架垂向变形的比值定义为结构扭转刚度。通过改变材料物理性能,构建了具有不同扭转刚度特性的构架模型,研究扭转刚度对车辆系统动力学行为的影响。分析结果表明,构架扭转刚度的降低将使转向架轮轨垂向作用重新分配,各车轮的均载性得到改善。因此,车辆在通过曲线时的轮轨垂向力和轮重减载率的数值随构架扭转刚度的降低而降低。构架扭转刚度的降低对车辆运行稳定性、平稳性、通过曲线时的脱轨系数和轮轨导向力之和的影响甚小。从提高车辆在扭曲线路上的运行安全性的角度出发,构架扭转刚度应选择低值。
     为克服现有方法的缺陷,采用德国机械工程学会推荐的基于材料利用度的方法(FKM方法)评估构架结构疲劳强度。结合高速动车组转向架焊接构架的制造工艺和服役环境,讨论了平均应力和载荷谱特性等因素对构架疲劳强度的影响。根据单元坐标系下的应力计算方法,确定了构架侧梁腹板与下盖板焊缝焊趾的分析应力谱,计算其材料利用度,并与基于传统方法的评估结果进行比较。在传统方法的框架下,车辆通过曲线这一准静态过程是结构疲劳强度的决定因素,浮沉运动所产生的垂向动态过程的影响较小。FKM方法考虑了准静态和动态过程载荷循环次数的影响,在接头抗疲劳特性一致时,基于该方法得到的结构疲劳强度评估结论较传统方法宽松。采用FKM方法评估结构疲劳强度有利于结构轻量化设计。
     为研究刚度特性对结构疲劳强度的影响,建立了变扭转刚度的构架模型,基于国际铁路联盟UIC515-4标准推荐的试验载荷谱,评估构架疲劳强度。研究结果表明,降低构架扭转刚度将导致斜对称载荷敏感区域变形增大,在较高的应力水平下,该区域的正应力材料利用度、剪应力材料利用度和材料综合利用度均有所上升。在斜对称载荷敏感区域选择应力水平较低的接头是扭转柔性构架强度设计的根本原则。
     对不同形式等截面直梁的弯曲和扭转刚度特性进行了分析。结果表明,在截面壁厚和壁厚中线所围面积相同时,与管截面横梁相比,箱形横梁具有较小的扭转刚度,但其弯曲刚度则较大。基于有限元方法的计算结果表明,构架扭转刚度受横梁弯曲刚度和扭转刚度的共同影响。在不同壁厚条件下,横梁弯曲刚度和扭转刚度对构架扭转刚度的影响程度存在差异。设计扭转柔性构架应着眼于合理协调横梁结构的不同刚度特性,通过提高该区域的柔性化水平降低构架结构扭转刚度。
With the higher running speed of the train, the range of excitation frequency that the line gets to the vehicle is more extensive. While running, the dynamic behavior of light-weight structure is increasingly prominent. The thesis adopts the welded frame of high speed electric multiple unit (EMU) bogies as object, studies the relationship among its structural stiffness characteristic, vehicle system dynamic behavior and frame fatigue strength, and puts forward the designing method for the structural strength and stiffness of torsionally flexible bogie frame.
     The analyzing model for the structural dynamics of EMU trailer bogie welded frame is set up by finite element method, so the vibration mode of frame in the low frequency range is achieved. The flexible multibody dynamic theory is adopted to set up the vehicle system dynamic research model which introduced the stiffness characteristic of bogie frame, and analyze the dynamic response of vehicle under different calculated working condition. The study shows that the bogie distorting vibration has no effect on the stability and ride comfort of the train running. After adopting the frame distorting vibration mode, the distortion stiffness of bogie system is lower than rigid model; while the vehicle is on the warping line, the vertical load of the wheel is approaching to well-distributed, and its wheel unloading ratio and maximum vertical force between wheel and rail have dropped. While analyzing by using quasi-dynamic method, the derailment coefficient has dropped. The vibration power of frame bending and shear mode is low, and the vehicle system dynamic behavior would not be changed.
     To simplify the distortion stiffness experiment and calculating method of bogie system, the ratio of twist load to frame vertical deflection is defined as structural distortion stiffness. The physical properties of material is changed to set up the frame model for the different distortion stiffness characteristic, and to research the effect which distortion stiffness gives to the vehicle system dynamic behavior. The analyzing result shows that, the lowering frame distortion stiffness would let the vertical interaction between vehicle and rail re-allocate, the vertical load of the wheel is approaching to well-distributed. So the maximum vertical force between wheel and rail and the wheel unloading ratio low with the lowering frame distortion stiffness while passing through curve. The low frame distortion stiffness has very little effect on the running stability, ride comfort, derailment coefficient, and the sum of guiding force per axle. Starting from the running safety of vehicle on the warping line, the low figure would be chosen for the frame distortion stiffness.
     In order to overcome the defect of present method, the method based on the degree of utilization is recommended by FKM to evaluate the frame fatigue strength. Considering the manufacturing technology and service condition of high speed EMU welded frame, the effect which the average stress and load spectrum characteristic have given to the frame fatigue strength is illustrated. According to the stress calculating method under element coordinate, the analyzing stress spectrum of the weld toe which connect the web and the bottom cover plate of the side sill are fixed. The degree of utilization is calculated, and is compared with the evaluation result based on the traditional method. In the convention of traditional method, the vehicle passing through curve as a quasi-static process is the determined element for the structural fatigue strength, the effect which the dynamic vertical process made by the bounce movement is quite low. The effect of load cycle in the quasi-static and dynamic loads is considered by FKM method. When the fatigue resistance on the joint gets agreement, the evaluation result for the structural fatigue strength based on this method is looser than the traditional method. Evaluating the structural fatigue strength by FKM method is beneficial for the light-weight structure design.
     In order to study the effect which stiffness characteristic gives to structural fatigue strength, the frame model for variable distortion stiffness is set up. Based on the experimental load spectrum which is recommended by the leaflet UIC515-4, the frame fatigue strength is evaluated. The research result shows that, to low the frame distortion stiffness would make more deflection in twist load sensitive area. In the high stress condition, the normal stress degree of utilization, the shear stress degree of utilization and the overall degree of utilization in this area have all increased. The low stress joint in twist load sensitive area is the basic principle for the torsionally flexible bogie frame strength design.
     The bending and distortion stiffness characteristic of the beam with different section is analyzed. The result shows that, when the wall thickness and the area surround by neutral plane of tube transom and the wall thickness of box transom is equal in quantity, compared with tube transom, the box transom has low distortion stiffness, but its bending stiffness is high. The calculation result based on the finite element method shows that, the frame distortion stiffness has been influenced by both the bending stiffness and distortion stiffness on transom. In different wall thickness condition, the difference exists in the effect that bending stiffness and distortion stiffness on transom give to the distortion stiffness of the frame. The design for torsionally flexible frame should take in coordinating different stiffness characteristic of the transom structure as the basis, and low the distortion stiffness for the frame structure by improving the flexible standard in the transom.
引文
[1]中华人民共和国铁道部.铁路主要技术政策.中国铁道出版社,2013:1
    [2]International Union of Railways. General definitions of highspeed.2013
    [3]International Union of Railways. High speed line in the world.2013
    [4]钱立新.世界高速铁路技术.中国铁道出版社.2003
    [5]Martin Steuger. Velaro-customer oriented further development of a high-speed train. ZEVrail.2009,133 (10)
    [6]华茂崑.中国铁路提速之路.中国铁道出版社.2002
    [7]国家发展和改革委员会.中长期铁路网规划(2008年调整).2008
    [8]张曙光.CRH1型动车组.中国铁道出版社.2008
    [9]张曙光.CRH2型动车组.中国铁道出版社.2008
    [10]张曙光.CRH5型动车组.中国铁道出版社.2008
    [11]侯卫星,刘刚,康熊.0号高速综合检测列车.中国铁道出版社.2010
    [12]川崎重工业株式会社.FEAによる构体强度検證结果.2005
    [13]郭春丽,齐淑萍.CRH3型动车组中间车车体结构强度分析.现代设计与先进制造技术.2010,39(13)
    [14]张雄,王天舒.计算动力学.清华大学出版社.2007
    [15]O. Wallrapp. Flexible bodies in multibody system codes. Vehicle System Dynamics. 1998,30 (3-4):237-256
    [16]钤木康文.车体弹性振动的理论分析.国外铁道车辆.1991,(5):35-40
    [17]曾京,罗仁.考虑车体弹性效应的铁道客车系统振动分析.铁道学报.2007,29(6):19-25
    [18]邬平波,薛世海,杨晨辉.基于弹性车体模型的高速客车动态响应.交通运输工程学报.2005,5(2):5-8
    [19]蒋金夏.基于柔性多体系统动力学的轨道车辆建模研究.同济大学硕士研究生学位论文.2007
    [20]J Zhou, R Goodall, LRen, et al. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2009,223 (5):461-471
    [21]周劲松.铁道车辆振动与控制.中国铁道出版社.2012:138-151
    [22]Pelle Carlbom. Carbody and passengers in rail vehicle dynamics. Doctoral thesis of Royal Institute of Technology.2000
    [23]Pelle F. Carlbom. Combining MBS with FEM for rail vehicle dynamics analysis. Multibody System Dynamics.2001,6 (3):291-300
    [24]A. Striberskya, F. Mosera, W. Rulka. Structural dynamics and ride comfort of a rail vehicle system. Advances in Engineering Software.2002,33 (7-10):541-552
    [25]Giorgio Diana, Federico Cheli, Andrea Collina, et al. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle System Dynamics.2002,38 (3):165-183
    [26]李世亮,王卫东.考虑车体弹性的铰接式高速车辆模型及响应计算分析.中国铁道科学.1997,18(2):77-86
    [27]石芳.高速铝合金客车的弹性振动分析.大连交通大学硕士研究生学位论文.2008
    [28]孙玮光.柔性车体的随机振动性能和动应力分析.大连交通大学硕士研究生学位论文.2008
    [29]黄彩虹,曾京,罗仁,等.牵引拉杆纵向刚度对高速客车车体弹性振动的影响.交通运输工程学报.2010,10(3):46-51
    [30]吴会超.高速动车组车体与车下设备耦合振动研究.西南交通大学博士研究生学位论文.2012
    [31]吴会超,邬平波,曾京,等.车下设备对车体振动的影响.交通运输工程学报.2012,12(5):50-56
    [32]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真.铁道学报.2000,22(6):40-45
    [33]谢云叶.D32平车刚柔系统动态响应及凹底架疲劳强度研究.北京交通大学博士研究生学位论文.2009
    [34]朴明伟.车辆动态系统协同仿真及刚柔耦合关键技术的研究与应用.大连交通大学博士研究生学位论文.2010
    [35]魏鸿亮.刚-柔耦合混合动力学建模及在载重450t落下孔车中的应用.大连交通大学硕士研究生学位论文.2006
    [36]张祥杰.450t钳夹车刚柔耦合动态仿真分析.大连交通大学硕士研究生学位论文.2009
    [37]魏志军.大型特种货车刚柔耦合的仿真研究.大连交通大学硕士研究生学位论文.2009
    [38]赵钦旭.高重心车辆刚柔耦合动态仿真分析.大连交通大学硕士研究生学位论文.2009
    [39]王婷.集装箱平车刚柔耦合仿真及减振对策研究.大连交通大学硕士研究生学位论文.2008
    [40]Holger Claus. Modellierung eines Eisenbahndrehgestells. Diplomarbeit, Institut B fur Mechanik, Universitat Stuttgart.1996
    [41]H. Claus, W. Schiehlen. Modeling and simulation of railway bogie structural vibrations. Vehicle System Dynamics.1998,29 (Supplement 1):538-552
    [42]H. Claus, W. Schiehlen. Symbolic-numeric analysis of flexible multibody systems. Mechanics of Structures and Machines.2002,30 (1):1-30
    [43]Holger Claus. On dynamics of radialelastic railway wheelsets. Istvan Zobory.7th Mini Conference on Vehicle System Dynamics, Identification and Anomalies. Budapest,2000. Budapest University of Technology and Economics,2000:263-270
    [44]Holger Claus, Werner Schiehlen. System dynamics of railcars with radial-and lateralelastic wheels. Karl Popp, Werner Schiehlen. System Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade. Springer,2003:65-84
    [45]阳光武,肖守讷,金鼎昌.基于弹性构架的地铁车辆动力学分析.中国铁道科学.2004,25(4):42-45
    [46]姚远,张红军,罗赞,等.转向架构架柔度对构架垂向动态载荷影响的分析.内燃机车.2008,(2):7-10,27
    [47]包学海,楚永萍,唐永明,等.弹性构架对车辆系统振动响应的影响.铁道车辆.2010,48(3):4-7
    [48]Nizar Chaar. Wheelset structural flexibility and track flexibility in vehicle-track dynamic interaction. Doctoral thesis of Royal Institute of Technology.2007
    [49]N Chaar, M Berg. Vehicle-track dynamic simulations of a locomotive considering wheelset structural flexibility and comparison with measurements. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2005,219 (4):225-238
    [50]Werner Schiehlen. Computational dynamics:theory and applications of multibody systems. European Journal of Mechanics, A/Solids.2006,25 (4):566-594
    [51]万鹏.考虑轮对弹性时车辆系统动力学与仿真分析.西南交通大学硕士研究生学位论文.2008
    [52]徐传来.车轮参数化形状优化与疲劳强度研究.西南交通大学硕士研究生学位论文.2009
    [53]Aieksander Hac. Stochastic optimal control of vehicles with elastic body and active suspension. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME.1986,108 (2):106-100
    [54]Gerhard Schandl, Peter Lugner, Christian Benatzky, et al. Comfort enhancement by an active vibration reduction system for a flexible railway car body. Vehicle System Dynamics.2007,45 (9):835-847
    [55]Alexander Schirrer, Martin Kozek, Jurgen Schoftner. MIMO Vibration control for a flexible rail car body:design and experimental validation. Francisco Beltran-Carbajal. Vibration Analysis and Control-New Trends and Developments. InTech,2011:309-336
    [56]Martin Kozek, Christian Benatzky, Alexander Schirrer, et al. Vibration damping of a flexible carbody structure using piezo-stack actuators. Control Engineering Practice. 2011,19 (3):298-310
    [57]Alexander Schirrer. Co-simulation of Rail Car Body Vibration Control with SimPACK(?). VDM Verlag Dr. Miiller,2010
    [58]Anneli Orvnas. On active secondary suspension in rail vehicles to improve ride comfort. Doctoral thesis of Royal Institute of Technology.2011
    [59]A. Orvnas, S. Stichel, R. Persson. Aspects of using active vertical secondary suspension to improve ride comfort. S. Iwnicki, Roger Goodall, T.X. Mei.22nd International Symposium on Dynamics of Vehicles on Roads and Tracks, Manchester,2011. Manchester Metropolitan University,2011
    [60]Y. Sugahara, Y. Sugahara, Y. Sugahara, et al. Suppression of vertical vibration in railway vehicles by controlling the damping force of primary and secondary suspensions. Quarterly Report of RTRI.2008,49 (1):7-15
    [61]陆正刚.铁道车辆柔刚体动力学及结构振动控制研究.同济大学博士研究生学位论文.2005
    [62]周劲松,张伟,孙文静,等.铁道车辆弹性车体动力吸振器减振分析.中国铁道科学.2009,30(3):86-90
    [63]周劲松,宫岛,任利惠.铁道车辆弹性车体被动减振仿真分析.同济大学学报(自然科学版).2009,37(8):1085-1089
    [64]宫岛,周劲松,孙文静.高速列车弹性车体垂向振动控制.机械工程学报.2011,47(20):159-164
    [65]宫岛,周劲松,孙文静.高速列车弹性车体与转向架耦合振动分析.交通运势工程学报.2011,11(4):41-47
    [66]宫岛,周劲松,孙文静.基于格林函数法的铁道车辆弹性车体垂向振动分析.机械工程学报.2013,49(12):116-122
    [67]孙文静,周劲松,宫岛.弹性车体垂向运行平稳性一系最优控制研究.振动与冲击.2012,31(12):150-154,164
    [68]黄彩虹.高速车辆减振技术研究.西南交通大学博士研究生学位论文.2012
    [69]陈维通,曾京,黄彩虹.基于压电作动器的高速列车车体弹性振动主动控制.铁道 车辆.2012,50(11):1-6
    [70]Stefan Dietz, Helmuth Netter, Delf Sachau. Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle System Dynamics.1998,29 (6): 385-402
    [71]H. Claus. A deformation approach to stress distribution in flexible multibody systems. Multibody System Dynamics.2001,6 (2):143-161
    [72]毛娟.基于考虑构架弹性的动力学仿真的构架动应力研究.北京交通大学硕士研究生学位论文.2004
    [73]王文静,孙守光,李强.柔性构架的动应力仿真.铁道学报.2006,28(1):44-49
    [74]阳光武.机车车辆零部件的疲劳寿命预测仿真.西南交通大学博士研究生学位论文.2005
    [75]米彩盈,安琪,李芾.基于传递矩阵法的轮对固有频率计算方法.交通运输工程学报.2006,6(4):20-22,26
    [76]米彩盈,安琪,李芾.高速列车驱动车轴动态特性分析.交通运输工程学报.2007,7(4):1-5
    [77]米彩盈.高速动力车承载结构疲劳强度工程分析方法研究.西南交通大学博士研究生学位论文.2006
    [78]缪炳荣.基于多体动力学和有限元方法的机车车体结构疲劳仿真研究.西南交通大学博士研究生学位论文.2006
    [79]金新灿.通过道岔时的转向架结构振动与动态应力分析.北京交通大学博士研究生学位论文.2006
    [80]刘德刚,邵力耕.考虑车体和构架的弹性对构架动载荷、动应力及疲劳损伤的影响.铁道车辆.2005,43(11):1-4
    [81]卢耀辉.铁道客车转向架焊接构架疲劳可靠性研究.西南交通大学博士研究生学位论文.2011
    [82]李普庆,陆正刚.考虑构架弹性的高速货车转向架构架疲劳寿命预测.铁道车辆.2009,47(12):5-8
    [83]芦旭.基于刚柔耦合的CRH3车体振动疲劳强度分析.大连交通大学硕士研究生学位论文.2010
    [84]UIC 515-4:1993. Passenger rolling stock-Trailer bogies-Running gear-Bogie frame structure strength tests.1993
    [85]UIC 615-4:2003. Motive power units-Bogies and running gear-Bogie frame structure strength tests.2003
    [86]UIC 510-3:1994. Wagons-Strength testing of 2 and 3-axle bogies on test rig.1994
    [87]ERRI B 12/RP 17. Programme of tests to be carried out on wagons with steel underframe and body structure (suitable for being fitted with the automatic buffing and draw coupler) and on their cast steel frame bogies (9th edition).2012
    [88]ERRI B 12/RP 60. Regulations for proof tests and maximum permissible stresses (2nd Edition).2001
    [89]BS EN 13749:2011. Railway applications-Wheelsets and bogies-Method of specifying the structural requirements of bogie frames.2011
    [90]JIS E 4207:2004.铁路车辆-转向架-转向架构架设计通则.2004
    [91]TB/T 1335-1996.铁道车辆强度设计及试验鉴定规范.1996
    [92]中华人民共和国铁道部.200km/h及以上速度级铁道车辆强度设计及试验鉴定暂行规定.2001
    [93]安琪,李芾,黄运华,等.基于JIS标准的转向架焊接构架疲劳强度评估.机车电传动.2009,(4):26-29
    [94]安琪,李芾,傅茂海.牵引电机振动对构架疲劳强度的影响.西南交通大学学报.2010,45(2):209-212
    [95]TB/T 2368-2005.动力转向架构架强度试验方法.2005
    [96]TB/T 2637-2008.铁道客车转向架构架、摇枕及摇动台.2008
    [97]周张义.高速货车转向架焊接部件疲劳强度研究.西南交通大学博士研究生学位论文.2009
    [98]Jurgen Jakob, Heiko Mannsbarth. Flexcompact- a modular approach for maximum design flexibility. Istvan Zobory.7th International Conference On Railway Bogies And Running Gear, Budapest,2007. BUTE,2007:25-31
    [99]Maik Rubel. Influence of types of structural stiffness of the bogie frame on the resiliency properties of the bogie. Istvan Zobory.6th International Conference On Railway Bogies And Running Gear, Budapest,2004. BUTE,2004:277-286
    [100]Maik Rubel. Enfluss der Struktursteifigkeit und der Gestaltung von Drehgestellrahmen auf die lauftechnischen Eigenschaften von Schienenfahrzeugen. Dissertation, Fakultat Verkehrswissenschaften,,Friedrich List" der Technischen Universitat Dresden.2010
    [101]L. Lowenstein, A. Jockel, T.Hoffmann, et al. Syntegra(?)-The intelligent integration of traction, bogie and braking technology. UIC.8th World Congress on Railway Research, Seoul,2008. UIC,2008.
    [102]Robert J. Guyan. Reduction of Stiffness and Mass Matrices. AIAA Journal.1965,3 (2):380
    [103]F. W. Cater. The electric locomotive. Proc. Institution of Civil Engineers.1916,201: 221-252
    [104]UIC 515:1984. Coaches-Running gear.1984
    [105]TSI 2008/232/CE. Technical specification for interoperability'rolling stock' sub-system.2008
    [106]Heiko Mannsbarth, Jurgen Jakob. FLEXX Speed bogies for ZEFIRO 380-the new very high-speed train for China. European Railway Review.2010, (5):110-112
    [107]中华人民共和国铁道部.200km/h及以上速度级电动车组动力学性能试验鉴定方法及评定标准.2001
    [108]中华人民共和国铁道部.高速动车组整车试验规范.2008
    [109]中国铁道科学研究院.武广客运专线联调联试及试运行大纲.2009
    [110]中国铁道科学研究院.郑西客运专线联调联试及试运行大纲.2009
    [111]中国铁道科学研究院.沪宁城际铁路联调联试及运行试验大纲.2010
    [112]中国铁道科学研究院.哈大客运专线联调联试及动态检测大纲.2012
    [113]UIC 518:2009. Testing and approval of railway vehicles from the point of view of their dynamic behaviour-Safety-Track fatigue-Running behavior.2009
    [114]BS EN 14363:2005. Railway applications-Testing for the acceptance of running characteristics of railway vehicles-Testing of running behaviour and stationary tests. 2005
    [115]Federal Railroad Administration, DOT Pt.238. Passenger equipment safety standards. 2011
    [116]Federal Railroad Administration, DOT Pt.213. Track safety standards.2011
    [117]吕长乐,贾立功.Routh-Hurwitz稳定性判据在车辆动力学分析中的应用.铁道车辆.2002,40(5):14-15
    [118]马卫华.轮对纵向振动及其相关动力学影响研究.西南交通大学博士研究生学位论文.2007
    [119]Oldrich Polach, Adrian Vetter. Methods for running stability prediction and their sensitivity to wheel/rail contact geometry. Istvan Zobory.6th International Conference On Railway Bogies And Running Gear, Budapest,2004. BUTE,2004:191-200
    [120]Oldrich Polach. Comparability of the non-linear and linearized stability assessment during railway vehicle design. Vehicle System Dynamics.2006,44 (Supplement): 129-138
    [121]O. Polach. On non-linear methods of bogie stability assessment using computer simulations. Proceedings of the Institution of Mechanical Engineers, Part F, Journal of Rail and Rapid Transit.2006,220 (F1):13-27
    [122]Oldrich Polach. Influence of wheel/rail contact geometry on the behaviour of a railway vehicle at stability limit. ENOC-2005, Eindhoven,2005. Eindhoven University of Technology,2005:2203-2210
    [123]Oldrich Polach. Characteristic parameters of non-linear wheel/rail contact geometry. S. Iwnicki.21st International Symposium on Dynamics of Vehicles on Roads and Tracks, Stockholm,2009. KTH,2009
    [124]Oldrich Polach, Ingo Kaiser. Comparison of methods analyzing bifurcation and hunting of complex rail vehicle models. Journal of Computational and Nonlinear Dynamics. 2012,7 (4)
    [125]Oldrich Polach. Application of nonlinear stability analysis in railway vehicle industry. P.G.Thomsen, H.True. EUROMECH Colloquium 500:Non-smooth Problems in Vehicle Systems Dynamics, Lyngby,2008. Springer-Verlag,2010:15-27
    [126]BS EN 13715:2006. Railway applications-Wheelset and bogies-Wheels-Wheels trade.2006
    [127]TB 2344-2012.43kg/m-75kg/m钢轨订货技术条件.2012
    [128]张曙光.高速列车设计方法研究.中国铁道出版社,2009
    [129]梁树林,朴明伟,郝剑华,等.基于3种典型踏面的高速转向架稳定性研究.中国铁道科学.2010,31(3):57-62
    [130]朴明伟,梁树林,孔维刚,等.高速转向架非线性稳定性及安全裕度对策.振动与冲击.2011,30(8):161-168
    [131]朴明伟,梁树林,方照根,等.高速转向架非线性与高铁车辆安全稳定性裕度.中国铁道科学.2011,32(3):86-92
    [132]ERRI B 176/RP 1. Bogies with steered or steering wheelsets.1989
    [133]GB/T 5599-1985.铁道车辆动力学性能评定和试验鉴定规范.1985
    [134]中华人民共和国铁道部.200km/h电动车组动力学性能试验鉴定方法及评定标准.2005
    [135]UIC 513:1994. Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles.1994
    [136]BS EN 12299:2009. Railway applications-Ride comfort for passengers-Measurement and evaluation.2009
    [137]SIEMENS. Velaro China CRH3_350-Calculation Report Vehicle Dynamics.2010
    [138]BOMBARDIER TRANSPORTATION. Dynamic Assessment for Vehicles of Shenzhen Metro
    [139]丁雪萍,罗赟.机车车辆轨道扭曲抗脱轨能力评价.机车电传动.2012,(6): 81-83,87
    [140]ERRI B 55/RP 8. Prevention of derailment of goods wagon on distorted tracks.1983
    [141]J. J. Kalker. On the rolling contact of two elastic bodies in the presence of dry friction. Doctoral thesis of TU Delft.1973
    [142]J. J. Kalker. A fast algorithm for the simplified theory of rolling contact. Vehicle System Dynamics.1982,11 (1):1-13
    [143]Simon Iwnicki. Handbook of railway vehicle dynamics. CRC Press,2006
    [144]Ahmed A. Shabana, Khaled E. Zaazaa, Hiroyuki Sugiyama. Railroad vehicle dynamics-a computational approach. CRC Press,2007
    [145]B. Jacobson, J. J. Kalker. Rolling contact phenomena. Springer,2001
    [146]翟婉明.车辆-轨道耦合动力学.第三版.科学出版社,2007
    [147]TB 10621-2009.高速铁路设计规范.2009
    [148]西南交通大学机械工程学院.南车青岛四方机车车辆股份有限公司成都地铁一号线SDB80-(CD1)转向架焊接构架结构强度分析报告.2008
    [149]西南交通大学机械工程学院.南车眉山车辆有限公司Y25Lsdl转向架结构强度分析报告.2008
    [150]西南交通大学机械工程学院.南车四方车辆有限公司出口伊拉克共和国DMU动车组转向架焊接构架结构强度分析报告.2013
    [151]ERRI B 12/DT 135. Allgemein verwendbare Berechnungsmethoden fur die Entwicklung neuer Guterwagenbauarten oder neuer Giiterwagendrehgestelle.1983
    [152]UIC 530-2:2011. Wagons-Running safety.2011
    [153]沈培德.上海轨道交通1、2号线车辆原Duewag转向架构架的改进.电力机车与城规车辆.2007,30(5):33-37,42
    [154]AEF. Specification d'essais d'un chassis de bogie type PRSW fabrique par CSR.2008
    [155]Rimbaud M, Tourrade J.-C, Lallet P. L'allegement des chassis de bogies mecanosoudes des TGV. Mecanique industrielle et materiaux.1998,51 (1):24-27
    [156]Rimbaud Michel, Tourrade Jean Claude, Laulet Patrick. L'allegement des chassis de bogies micano-soudes de TGV. Revue generale des chemins de fer.1993, (11)
    [157]Jacques Raison, Jean-Jacques Viet. Conception des chassis de bogies mecanosoudes en acier pour les rames TGV. Revue generale des chemins de fer.1998, (5):17-23
    [158]郭同生,彭永明,杨俊杰.HXD2机车构架结构与强度研究.机车电传动.2008,(6):9-12
    [159]彭永明,封全保,李强.HXD2B机车转向架构架有限元分析.铁道机车车辆.2010,30(3):42-44
    [160]DV 952. Vorschrift fur das SchweiBen metallischer Werkstoffe in Privatwerken.1977
    [161]曲天威,王惠玉,芮斌,等.HXN3型机车转向架构架设计的思考.铁道机车车辆.2011,31(1):69-71
    [162]DVS 1612. Design and endurance strength assessment of welded joints with steels in rail vehicle construction.2009
    [163]BOMBARDIER TRANSPORTATION. Bogie frame FEA report.2002
    [164]AAR M-202. Truck bolsters, cast or structural-design and testing.2009
    [165]AAR M-203. Truck side frames, cast steel-design and testing.2011
    [166]TB/T 1959-2006.铁道货车摇枕、侧架静载荷及疲劳试验.2006
    [167]Forschungskuratorium Maschinenbau. Analytical stress assessment.5th edition. VDMA-Verlag,2003
    [168]LOGOMOTIVE. CSR Metro Type B calculation report on car body strength results. 2010
    [169]陆明万,张雄,葛东云.工程弹性力学与有限元法.清华大学出版社,2005
    [170]International Institute of Welding, IIW document IIW-1823-07 ex XIII-2151r4-07/XV 1254r4-07. Recommendations for fatigue design of welded joints and components. 2008
    [171]BS EN 1993-1-9:2005. Design of steel structures-Part 1-9:Fatigue.2005
    [172]AAR M-1001. Design, fabrication, and construction of freight cars.2011
    [173]DVS 1608:2011. Gestaltung und Festigkeitsbewertung von Schweiβkonstruktionen aus Aluminiumlegierungen im Schienenfahrzeugbau.2011
    [174]Dieter Radaj. Design and analysis of fatigue resistant welded structures. Abington Publishing,1990
    [175]C.M. Sonsino. Fatigue testing under variable amplitude loading. International Journal of Fatigue.2007,29 (6):1080-1089
    [176]C.M. Sonsino, K. Dieterich. Fatigue design with cast magnesium alloys under constant and variable amplitude loading.2006,28 (3):183-193
    [177]International Institute of Welding, IIW document XIII-1539-96/XV845-96. Recommendations for fatigue design of welded joints and components.1996
    [178]DIN 15018:1984. Cranes-Steel structures-Verifications and analyses.1984
    [179]尚德广,王德俊.多轴疲劳强度.科学出版社,2007
    [180]UIC 510-5:2007. Technical approval of monobloc wheels-Application document for standard EN 13979-1.2007
    [181]Lucchini Sidermeccanica. EMU for MoR CA250 Alstom Ferroviaria- FEM calculation report.2005
    [182]李芾,安琪,刘俊红.重载货车车轮温度场与应力场研究.系统仿真学报.2010,22(2):344-347,369
    [183]王建斌.高速动车组转向架构架强度设计与试验验证.西南交通大学博士研究生学位论文.2010
    [184]李文学.长客厂 250km/h高速客车转向架.铁道车辆.1996,34(7):14-18,21
    [185]AN Qi, LI Fu. Influence of structure mode on distortion stiffness of bogie frame. Journal of Traffic and Transportation Engineering.2008,8 (6):1-5,12
    [186]包世华,周坚.薄壁杆件结构力学.中国建筑工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700